• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ Scopus GeoRef AJ CNKI
Advanced Search
Volume 7 Issue 4
Dec.  2019
Turn off MathJax
Article Contents
NAN Tian, GUO Si-jia. 2019: Influence of borehole quantity and distribution on lithology field simulation. Journal of Groundwater Science and Engineering, 7(4): 295-308. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.001
Citation: NAN Tian, GUO Si-jia. 2019: Influence of borehole quantity and distribution on lithology field simulation. Journal of Groundwater Science and Engineering, 7(4): 295-308. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.001

Influence of borehole quantity and distribution on lithology field simulation

doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.001
  • Publish Date: 2019-12-28
  • This paper aims to study the influence of the number and distribution of drill samples on the simulation accuracy of the lithology field. This research mainly applies the variation function method in geo-statistics, and determines important indicators such as the variation, and then the lithology field is simulated by sequence index simulation. It is shown that (1) simulation error decreases with the increase of sampling density; (2) at the scale and complexity of this study, when the sampling density reaches 40 /km2, the average error of the lithology field simulation can be less than 2.0%; (3) in the study mode of examples, the simulation results of random sampling in the whole region are the most ideal, with an average error of 5.4%. The average error of the simulation results of the centralized sampling is about 10 times that of the random sampling method; (4) known from the influence analysis of the degree of study sample unevenness influence on the imitation results, under the same sample size, the simulation error decreases with the increase of the most adjacent index. When the nearest index reaches 1, the simulation error will be less than 6%, and the error variable range is within 3%.
  • 加载中
  • TONG Shao-qing, DONG Yan-hui, ZHANG Qian, et al. 2017. Visualizing complex pore structure and fluid flow in porous, media using 3D printing technology and LBM simulation. Journal of Groundwater Science and Engineering, (5): 265.
    SHEN Yuan-yuan, GUO Gao-xuan, XIN Bao-dong, et al. 2015. Three-dimensional geological structure model based on GMS in Shunyi and Pinggu Districts, Beijing. Urban Geology, 10(2): 67-71.
    ZHU Gui-e, XUE Yu-qun, LI Qin-fen, et al. 2000. The improvement of quasithree dimensional model of multi-aquifer ground water system in Shanghai. Carsologica Sinica, 19(4): 31-36.
    LI Hong, HAN Dong-mei, LIANG Xing, et al. 2014. Three dimensional hydrogeological str-ucture modeling of aquifer system to Quaternary in the Xinzhou Basin. Geotechnical Investigation and Surveying, 42(8): 39-48.
    ZHANG Fang, YIN Hong-lei, CHEN Yang, et al. 2014. Study on deep groundwater burial conditions of central area of Beijing based on 3D digital technology. Journal of Liaoning Technical University (Natural Science Edition), 33(5): 602-607.
    Rosen L, Gustafson G. 1996. A Bayesian Markov geostatistical model for estimation of hydrogeological properties. Ground Water, 34(5): 865-875.
    Strebelle S. 2001. Conditional Simulation of complex geological Structures using multiple-point statistics. Mathematical Geology, 34(1): 1-21.
    Khomsi S, Echihi O, Slimani N. 2012. Structural control on the deep hydrogeological and geothermal aquifers related to the fractured Campanian-Miocene reservoirs of north-eastern Tunisia foreland constrained by subsurface data. Comptes Rendus Geosciences, 344(S3-4): 247-265.
    Carle S F, Fogg G E. 1997. Modeling spatial variability with one and multidimensional continuous-Lag Markov chains. Mathematical Geology, 29(7): 891-918.
    LI Lu-Lu, SU Chen, HAO Qi-chen, et al. 2018. Numerical simulation of response of groundwater flow system in inland basin to density changes. Journal of Groundwater Science and Engineering, (1): 7-16.
    Nilsson B, Hojberg A L, Refsgaard J C, et al. 2007. Uncertainty in geological and hydrogeological data. Hydrology & Earth System Sciences, 11(5): 2675-2706.
    Harp D R, Vesselinov V V. 2011. Analysis of hydrogeological structure uncertainty by estimation of hydrogeological acceptance probability of geostatistical models. Advances in Water Resources, 36(4): 64-74.
    Wycisk P, Hubert T, Gossel W, et al. 2009. High-resolution 3D spatial modelling of complex geological structures for an environmental risk assessment of abundant mining and industrial megasites. Computers & Geosciences, 35(1): 165-182.
  • Relative Articles

    [1] Jia-xing Sun, Gao-fan Yue, Wei Zhang, 2023: Simulation of thermal breakthrough factors affecting carbonate geothermal-to-well systems, Journal of Groundwater Science and Engineering, 11, 379-390.  doi: 10.26599/JGSE.2023.9280030
    [2] Hao ZHOU, Yong WU, Feng HUANG, Xue-fang TANG, 2021: Experimental simulation and dynamic model analysis of Cadmium (Cd) release in soil affected by rainfall leaching in a coal-mining area, Journal of Groundwater Science and Engineering, 9, 65-72.  doi: 10.19637/j.cnki.2305-7068.2021.01.006
    [3] Min Liu, Zhen-long Nie, Le Cao, Li-fang Wang, Hui-xiong Lu, Zhe Wang, Pu-cheng Zhu, 2021: Comprehensive evaluation on the ecological function of groundwater in the Shiyang River watershed, Journal of Groundwater Science and Engineering, 9, 326-340.  doi: 10.19637/j.cnki.2305-7068.2021.04.006
    [4] Xue-ru Wen, Yan-pei Cheng, Jian-kang Zhang, Hua Dong, 2021: Ecological function zoning and protection of groundwater in Asia, Journal of Groundwater Science and Engineering, 9, 359-368.  doi: 10.19637/j.cnki.2305-7068.2021.04.009
    [5] Feng LIU, Gui-ling WANG, Wei ZHANG, Chen YUE, Li-bo TAO, 2020: Using TOUGH2 numerical simulation to analyse the geothermal formation in Guide basin, China, Journal of Groundwater Science and Engineering, 8, 328-337.  doi: 10.19637/j.cnki.2305-7068.2020.04.003
    [6] ZHANG Bing, GAO Ye-xin, FENG Xin, ZHANG Ya-zhe, LIU Ji-chao, ZHANG Ying-ping, 2020: Experimental study on height simulation of capillary fringe, Journal of Groundwater Science and Engineering, 8, 108-117.  doi: 10.19637/j.cnki.2305-7068.2020.02.002
    [7] ZHU Heng-hua, JIA Chao, XU Yu-liang, YU Ze-min, YU Wei-jiang, 2018: Study on numerical simulation of organic pollutant transport in groundwater northwest of Laixi, Journal of Groundwater Science and Engineering, 6, 293-305.  doi: 10.19637/j.cnki.2305-7068.2018.04.005
    [8] LI Lu-lu, SU Chen, HAO Qi-chen, SHAO Jing-li, 2018: Numerical simulation of response of groundwater flow system in inland basin to density changes, Journal of Groundwater Science and Engineering, 6, 7-17.  doi: 10.19637/j.cnki.2305-7068.2018.01.002
    [9] ZHANG Han-xiong, HU Xiao-nong, 2018: Simulation and analysis of Chloride concentration in Zhoushan reclamation area, Journal of Groundwater Science and Engineering, 6, 150-160.  doi: 10.19637/j.cnki.2305-7068.2018.02.008
    [10] GUO Chun-yan, CUI Ya-li, LIU Wen-na, CUI Xiang-xiang, FEI Yu-hong, 2018: Research on numerical simulation of the groundwater funnels restoration in Shijiazhuang, Journal of Groundwater Science and Engineering, 6, 126-135.  doi: 10.19637/j.cnki.2305-7068.2018.02.006
    [11] GUO Si-jia, GUO Gui-ping, 2018: Enhancement of gaseous mercury (Hg0) adsorption for the modified activated carbons by surface acid oxygen function groups, Journal of Groundwater Science and Engineering, 6, 104-114.  doi: 10.19637/j.cnki.2305-7068.2018.02.004
    [12] ZHU Wei, TANG Wen, LIU Qiang, ZHANG Mei-gui, 2017: Analysis on variation characteristics of geothermal response in Liaoning Province, Journal of Groundwater Science and Engineering, 5, 336-342.
    [13] LIU Qi, JIANG Si-min, PU Ye-feng, ZHANG Wei, 2016: Hydro-geochemical simulation of the mixing balance of exploitation and reinjection of geothermal fluid, Journal of Groundwater Science and Engineering, 4, 81-87.
    [14] CHENG Tang-pei, LIU Xing-wei, SHAO Jing-Li, CUI Ya-li, 2016: Review of the algebraic linear methods and parallel implementation in numerical simulation of groundwater flow, Journal of Groundwater Science and Engineering, 4, 12-17.
    [15] MA Luan, WANG Guang-cai, SHI Zhe-ming, GUO Yu-ying, XU Qing-yu, HUANG Xu-juan, 2016: Simulation of groundwater level recovery in abandoned mines, Fengfeng coalfield, China, Journal of Groundwater Science and Engineering, 4, 344-353.
    [16] WEI Jia-hua, CHU Hai-bo, WANG Rong, JIANG Yuan, 2015: Numerical simulation of karst groundwater system for discharge prediction and protection design of spring in Fangshan District, Beijing, Journal of Groundwater Science and Engineering, 3, 316-330.
    [17] GONG Xiao-ping, JIANG Guang-hui, CHEN Chang-jie, GUO Xiao-jiao, ZHANG Hua-sheng, 2015: Specific yield of phreatic variation zone in karst aquifer with the method of water level analysis, Journal of Groundwater Science and Engineering, 3, 192-201.
    [18] ZHANG Zhi-qiang, LI Hong-chao, WANG Yu-qing, ZHANG li-ye, WANG Ying, 2014: Application of Visual MODFLOW to simulation of migration in Cr6+ contaminated site, Journal of Groundwater Science and Engineering, 2, 28-35.
    [19] Shi-jie Xie, Qiang Zhang, Yu-chong Qiu, 2013: Simulation and Prediction of the Fluorides Migration in a Tailing Pond Using Modflow, Journal of Groundwater Science and Engineering, 1, 33-39.
    [20] Wang Qian, Zhang Lizhong, Cai Zizhao, Huo Zhibin, Zhang Huaidong, 2013: Evaluation Index System of Hydrogeological Investigation Software, Journal of Groundwater Science and Engineering, 1, 96-103.
  • 加载中

Catalog

    Article Metrics

    Article views (477) PDF downloads(291) Cited by()
    Proportional views
    Related

    Welcome to Journal of Groundwater Science and  Engineering!

    Quick Submit

    Online Submission   E-mail Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return