• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of urbanization on groundwater level in aquifers of Binh Duong Province, Vietnam

Luong Van Viet

Van Viet Luong. 2021: Effects of urbanization on groundwater level in aquifers of Binh Duong Province, Vietnam. Journal of Groundwater Science and Engineering, 9(1): 20-36. doi: 10.19637/j.cnki.2305-7068.2021.01.003
Citation: Van Viet Luong. 2021: Effects of urbanization on groundwater level in aquifers of Binh Duong Province, Vietnam. Journal of Groundwater Science and Engineering, 9(1): 20-36. doi: 10.19637/j.cnki.2305-7068.2021.01.003

doi: 10.19637/j.cnki.2305-7068.2021.01.003

Effects of urbanization on groundwater level in aquifers of Binh Duong Province, Vietnam

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Location of observation wells

    Figure  2.  Land use and land cover in 2011 and 2018

    Figure  3.  CN grid around the observation wells in 2011 and 2018

    Figure  4.  Change of CN by buffer zones of wells

    Figure  5.  Results of MK test and Sen's slope analysis of GWL at observation wells in dry seasons of 2011-2018

    Figure  6.  Results of MK test and Sen's Slope analysis of GWL in observation wells in rainy seasons of 2011-2018

    Figure  7.  The increase of groundwater extraction in the period of 2011-2018 in the aquifers: a) n22 and b) n21

    Figure  8.  The relation between the rate of GWL reduction and dQ in the aquifer n22

    Figure  9.  The rate of GWL decline (Sen's slope) in observation wells

    Figure  10.  Location of weather stations

    Table  1.   Characteristics of the main aquifers in BD

    Series Subseries Aquifer Mean thickness (m) Depth from surface (m) Lithology Storage capacity
    Pleistocene Upper qp3 Sand, pebble, gravel and clay powder Very low
    Middle qp2-3 13.2 15~30 Pebble, gravel, sand and clay Low
    Lower qp1 20.1 30~50 Sand, pebble and gravel Medium
    Pliocene Middle n22 16.1 50~80 Fine sand and pebble, sand and clay powder Medium to high
    Lower n21 43.6 > 80 Sand, pebble, gravel, sand mixed with clay powder High
    下载: 导出CSV

    Table  2.   Change of built-up areas over the 2011-2018 period

    ID Administrative units Area (ha) Built-up areas (ha) Built-up areas (%) Increase (%)
    2011 2018 2011 2018
    1 Tan uyen Town 18 363 2 265 8 292 12.3 45.2 32.8
    2 Di An Town 6 010 2 794 4 745 46.5 79.0 32.5
    3 Thuan An Town 8 373 3 116 5 748 37.2 68.7 31.4
    4 Thu Dau Mot City 11 840 2 838 5 960 24.0 50.3 26.4
    5 Ben Cat Town 23 486 2 210 7 159 9.4 30.5 21.1
    6 Bac Tan Uyen District 40 824 950 5 617 2.3 13.8 11.4
    7 Phu Giao District 54 370 781 6 021 1.4 11.1 9.6
    8 Bau Bang District 34 047 786 3 731 2.3 11.0 8.7
    9 Dau Tieng District 72 044 872 5 201 1.2 7.2 6.0
    下载: 导出CSV

    Table  3.   The average of CN in administrative units

    ID Administrative units CN mean △CN
    Year 2011 Year 2018
    1 Tan uyen Town 74.1 79.0 4.9
    2 Di An Town 80.4 85.0 4.6
    3 Thuan An Town 79.2 83.6 4.4
    4 Thu Dau Mot City 76.8 80.5 3.7
    5 Ben Cat Town 71.2 74.6 3.4
    6 Bac Tan Uyen District 68.9 70.9 2
    7 Phu Giao District 67.4 69.2 1.8
    8 Bau Bang District 67.9 69.7 1.8
    9 Dau Tieng District 69.2 70.5 1.3
    10 Binh Duong Province 70.0 72.3 2.3
    下载: 导出CSV

    Table  4.   The average of CN in the buffer zone of wells

    Buffer radius
    1 km 3 km 5 km 7 km
    CN 2011 Min 65.8 65.9 66.1 66.0
    Max 83.7 83.1 81.2 81.2
    Mean 76.0 74.2 73.6 73.1
    CN 2018 Min 68.4 68.5 68.5 67.7
    Max 87.9 87.3 85.9 85.9
    Mean 80.9 79.0 78.2 77.6
    △CN Min 2.2 2.5 2.4 1.7
    Max 7.8 7.7 6.2 6.6
    Mean 4.9 4.8 4.6 4.5
    下载: 导出CSV

    Table  5.   The correlation coefficient (R) between the rate of GWL reduction and dQ

    Dry season Rainy season Mean
    Buffer radius 1 km 3 km 5 km 1 km 3 km 5 km 1 km 3 km 5 km
    qp1 -0.71 -0.94 -0.87 -0.99 -0.67 -0.29 -0.85 -0.80 -0.58
    n22 -0.61 -0.63 -0.58 -0.57 -0.67 -0.49 -0.59 -0.65 -0.53
    n21 -0.54 -0.55 -0.59 -0.50 -0.62 -0.73 -0.52 -0.59 -0.66
    下载: 导出CSV

    Table  6.   Comparison of GWL trends in rainy season and dry season

    Series Aquifer The number of wells tends to decrease Sen's slope (m/a)
    Mean Max
    Dry season Rainy season Dry season Rainy season Dry season Rainy season
    Pleistocene qp2-3 1 3 -0.33 -0.29 -0.33 -0.56
    qp1 2 6 -0.33 -0.27 -0.34 -0.61
    Pliocene n22 9 10 -0.31 -0.33 -0.65 -0.74
    n21 4 5 -0.35 -0.33 -0.57 -0.62
    下载: 导出CSV

    Table  7.   Results of MK test and Sen's Slope analysis of rainfall at weather stations in the 2011-2018 period

    Season Weather station Sen's slope (mm/season) Trend Confidence level (%)
    Dry season Tay Ninh 5.7 Unknown
    Dong Phu 3.1 Unknown
    Tri An 2.5 Unknown
    Tan Son Hoa 2.2 Unknown
    So Sao 9.1 Unknown
    Rainy season Tay Ninh 29.8 Increasing 60
    Dong Phu 42.0 Unknown
    Tri An 24.3 Unknown
    Tan Son Hoa 70.8 Increasing 70
    So Sao 50.0 Increasing 80
    下载: 导出CSV

    Table  8.   Results of MK test and Sen's Slope analysis of rainfall at weather stations in the 1988-2018 period

    Season Weather station Sen's slope (mm/season) Trend Confidence level (%)
    Dry season Tay Ninh 2.1 Unknown
    Dong Phu 4.6 Increasing 80
    Tri An 2.3 Increasing 90
    Tan Son Hoa 6.0 Increasing 98
    So Sao 3.9 Increasing 90
    Rainy season Tay Ninh 2.4 Unknown
    Dong Phu 1.9 Unknown
    Tri An 8.1 Increasing 90
    Tan Son Hoa 7.2 Unknown
    So Sao 3.3 Unknown
    下载: 导出CSV

    Table  9.   Infiltration change in the rainy season over the period of 2011-2018

    ID Administrative units Infiltration rate (mm/season) Change (%)
    CN of 2011 CN of 2018
    1 Tan Uyen Town 570 460 19
    2 Di An Town 428 326 24
    3 Thuan An Town 455 357 22
    4 Thu Dau Mot City 509 426 16
    下载: 导出CSV

    Table  10.   The mean of △CN by group, buffer radius and aquifers

    Group Series Number △CN by buffer radius
    1 km 3 km 5 km 7 km
    1 Pleistocene 6 5.8 5.7 5.4 5.1
    Pliocene 10 4.6 4.9 4.8 4.8
    2 Pleistocene 5 4.8 4.5 4.6 4.5
    Pliocene 14 4.7 4.5 4.4 4.2
    Difference Pleistocene 1 1.2 0.8 0.6
    Pliocene -0.1 0.4 0.4 0.6
    下载: 导出CSV
  • Abushandi E, Merkel B. 2013. Modelling rain-fall runoff relations using HEC-HMS and IHA-CRES for a single rain event in an arid region of Jordan. Water Resources Management, 27: 2391-2409. doi:  10.1007/s11269-013-0293-4
    Aish A, Batelaan O, De Smedt F. 2010. Distributed recharge estimation for groundwater mode-lling using WETSPASS, case study: Gaza Strip, Palestine. Arabian Journal for science and Engineering, 35(1B): 155-164. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=54292478&site=ehost-live
    Arnold CL, Gibbons CJ. 1996. Impervious surface coverage: The emergence of a key environmental indicator. Journal of the American Planning Association, 62(2): 243-258. doi:  10.1080/01944369608975688
    Aronica GT, Lanza LG. 2005a. Hydrology in the urban environment. Hydrological Processes, 19(5): 1005-1006. doi:  10.1002/hyp.5641
    Aronica GT, Lanza LG. 2005b. Drainage efficiency in urban areas: A case study. Hydrological Processes, 19(5): 1105-1119. doi:  10.1002/hyp.5648
    Bhatta B. 2009. Analysis of urban growth pattern using remote sensing and GIS: A case study of Kolkata, India. International Journal of Remote Sensing, 30: 4733-4746. doi:  10.1080/01431160802651967
    Bui DD, Kawamura A, Tong TN, et al. 2012. Spatio-temporal analysis of recent ground-water-level trends in the Red River Delta, Vietnam. Hydrogeology Journal, 20: 1635-1650. doi:  10.1007/s10040-012-0889-4
    Dams J, Woldeamlak ST, Batelaan O. 2008. Predicting land-use change and its impact on the groundwater system of the Kleine Nete catchment, Belgium. Hydrology and Earth System Sciences, 12(6): 1369-1385. doi:  10.5194/hess-12-1369-2008
    Dewan AM, Yamaguchi Y. 2009. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Applied Geography, 29(3): 390-401. doi:  10.1016/j.apgeog.2008.12.005
    Dwarakish GS, Ganasri BP. 2015. Impact of land use change on hydrological systems: A review of current modeling approaches. Cogent Geoscience, 1(1): 1115691. Doi:  10.1080/23312041.2015.1115691
    Eshtawi T, Evers M, Tischbein B. 2016. Quan-tifying the impact of urban area expansion on groundwater recharge and surface runoff. Hydrological Sciences Journal, 61(5): 826-843.
    Fadil A. 2011. Hydrologic modelling of the Bou-regreg watershed (Morocco) using GIS and SWAT Model. Journal of Geographic In-formation System, 3(4): 279-289. doi:  10.4236/jgis.2011.34024
    Fohrer N, Haverkamp S, Eckhardt K, et al. 2001. Hydrologic response to land use changes on the catchment scale. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(7‐8): 577-582. http://www.sciencedirect.com/science/article/pii/S1464190901000521
    Foster S, MacDonald A. 2014. The 'water security' dialogue: Why it needs to be better informed about groundwater. Hydrogeology Journal, 22: 1489-1492. doi:  10.1007/s10040-014-1157-6
    Hamad JT, Eshtawi TA, Abushaban AM, et al. 2012. Modeling the impact of land-use change on water budget of Gaza Strip. Journal of Water Resource and Protection, 4: 325-333. doi:  10.4236/jwarp.2012.46036
    Hardison EC, O'driscoll M, DeLoatch JP, et al. 2009. Urban land use, channel incision, and water table decline along coastal plain streams, North Carolina. Journal of American Water Resources, 45: 1032-1046. doi:  10.1111/j.1752-1688.2009.00345.x
    Hollis GE. 2010. The effect of urbanization on floods of different recurrence interval. Water Resources Research, 11 (3): 431-435.
    Hong Y, Adler R. 2008. Estimation of global SCS curve numbers using satellite remote sensing and geospatial data. International Journal of Remote Sensing, 29: 471-477. doi:  10.1080/01431160701264292
    HUANG Tian-ming, PANG Zhong-he. 2010. Estimating groundwater recharge following land‐use change using chloride mass balance of soil profiles: A case study at Guyuan and Xifeng in the Loess Plateau of China. Hydrogeology Journal, 19: 177-186.
    Jat MK, Garg PK, Khare D. 2008. Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. Int J Appl Earth Obs Geoinf. 10: 26-43. doi:  10.1016/j.jag.2007.04.002
    Jonathan MH. 1994. A practical method for estimating the impact of land-Use change on surface runoff, groundwater recharge and wetland hydrology. Journal of the American Planning Association, 60(1): 95-108. doi:  10.1080/01944369408975555
    Kendall MG. 1975. Rank correlation methods. London: Charles Griffin: 272.
    Khatri N, Tyagi S. 2015. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science, 8(1): 23-39. doi:  10.1080/21553769.2014.933716
    Laouacheria F, Mansouri R. 2015. Comparison of WBNM and HEC-HMS for runoff hydro-graph prediction in a small urban catch-ment. Water Resources Management, 29: 2485-2501. doi:  10.1007/s11269-015-0953-7
    Mann HB. 1945. Nonparametric tests against trend. Econometrica, 13: 245-259. doi:  10.2307/1907187
    Marsh TD, Davies PA, Pontin JMA. 1983. The decline and partial recovery of ground water levels below London. Proceedings of the Institution of Civil Engineers, 74: 263-276. doi:  10.1680/iicep.1983.1468
    McGrane SJ. 2016. Impacts of urbanization on hydrological and water quality dynamics, and urban water management: A review. Hydrological Sciences J, 61: 13, 2295-2311. Doi:  10.1080/02626667.2015.1128084.
    Mishra N, Khare D, Gupta KK, et al. 2014. Impact of land use change on groundwater-a review. Advances in Water Resource and Protection, 2: 28-41.
    O'Driscoll M, Clinton S, Jefferson A, et al. 2010. Urbanization effects on watershed hydrology and in-stream processes in the southern United States. Water, 2 (3): 605-648. doi:  10.3390/w2030605
    Okotto L, Okotto-Okotto J, Price H, et al. 2015. Socio-economic aspects of domestic ground-water consumption, vending and use in Kisumu, Kenya. Applied Geography, 58: 189-197. doi:  10.1016/j.apgeog.2015.02.009
    Pradeep KN, Jivesh AT, Biranchi ND, et al. 2018. Impact of urbanization on the groundwater regime in a fast growing city in central India. Environ Monit Assess, 146: 339-373. http://www.ncbi.nlm.nih.gov/pubmed/18205022
    Rahman A, Aggarwal SP, Netzband M, et al. 2011. Monitoring urban sprawl using remote sensing and GIS techniques of a fast growing urban centre, India. IEEE Journal of Selected Topcis in Applied Earth Observation and Remote Sensing, 4(1): 56-64. doi:  10.1109/JSTARS.2010.2084072
    Sahu RK, Mishra SK, Eldho TI. 2012. Performance evaluation of modified versions of SCS curve number method for two watersheds of Maharashtra, India. ISH Journal of Hydraulic Engineering, 18(1): 27-36. doi:  10.1080/09715010.2012.662425
    Tang Z, Engel BA, Pijanowski BC, et al. 2005. Forecasting land use change and its environ-mental impact at a watershed scale. Journal of Environmental Management, 76(1): 35-45.
    United Nations, Department of Economic and Social Affairs, Population Division. 2018. World urbanization prospects: The 2018 revision. The World's Cities in 2018-Data Booklet (ST/ESA/ SER._A/417).
    USACE. 2000. Hydrologic modeling system HEC-HMS technical reference manual. Hydrologic Engineering Center, Davis, CA.
    Wada Y, Beek Ludovicus PH, van Kempen CM, et al. 2010. Global depletion of groundwater resources. Geophysical Research Letters, 37: L20402. doi:  10.1029/2010GL044571
    Wakode HB, Baier K, Jha R, et al. 2014. Assess-ment of impact of urbanization on ground-water resources using GIS techniques-case study of Hyderabad, India. International Jour-nal of Environmental Research, 8(4): 1145-1158. http://www.researchgate.net/publication/268979978_Assessment_of_Impact_of_Urbanization_on_Groundwater_Resources_using_GIS_Techniques-_Case_Study_of_Hyderabad_India
    Walsh CJ, Roy AH, Feminella JW, et al. 2005. The urban stream syndrome: Current knowledge and the search for a cure. Journal of the North American Benthological Society, 24(3): 706-723. doi:  10.1899/04-028.1
    WWAP (UNESCO World Water Assessment Programme), 2019. The United NationsWorld Water Development Report 2019: Leaving No One Behind. Paris: UNESCO.
  • [1] Vinay Kumar Gautam, Mahesh Kothari, P.K. Singh, S.R. Bhakar, K.K. Yadav2022:  Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan, Journal of Groundwater Science and Engineering, 10, 1-9. doi: 10.19637/j.cnki.2305-7068.2022.01.001
    [2] Nasiri Shima, Ansari Hossein, Ziaei Ali Naghi2022:  Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models : A case study of Samalqan plain in Iran, Journal of Groundwater Science and Engineering, 10, 44-56. doi: 10.19637/j.cnki.2305-7068.2022.01.005
    [3] Yuan Ruo-xi, Wang Gui-ling, Liu Feng, Zhang Wei, Wang Wan-li, Cao Sheng-wei2021:  Evaluation of shallow geothermal energy resources in the Beijing-Tianjin-Hebei Plain based on land use, Journal of Groundwater Science and Engineering, 9, 129-139. doi: 10.19637/j.cnki.2305-7068.2021.02.005
    [4] Abdullah Al Jami, Meher Uddin Himel, Khairul Hasan, Shilpy Rani Basak, Ayesha Ferdous Mita2020:  NARX neural network approach for the monthly prediction of groundwater levels in Sylhet Sadar, Bangladesh, Journal of Groundwater Science and Engineering, 8, 118-126. doi: 10.19637/j.cnki.2305-7068.2020.02.003
    [5] ZHOU Nian-qing, LI Tian-shui, ZHAO Shan, ZHAO Shan, XIA Xue-min2019:  Characteristics of the main inorganic nitrogen accumulation in surface water and groundwater of wetland succession zones, Journal of Groundwater Science and Engineering, 7, 173-181. doi: 10.19637/j.cnki.2305-7068.2019.02.008
    [6] A Muthamilselvan, N Rajasekaran, R Suresh2019:  Mapping of hard rock aquifer system and artificial recharge zonation through remote sensing and GIS approach in parts of Perambalur District of Tamil Nadu, India, Journal of Groundwater Science and Engineering, 7, 264-281. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.007
    [7] XU Jun-xiang, WANG Shao-juan, LI Chang-suo, XING Li-ting2019:  Numerical analysis and evaluation of groundwater recession in a flood detention basin, Journal of Groundwater Science and Engineering, 7, 253-263. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.006
    [8] Khongsab Somphone, OunakoneKone Xayviliya2017:  Climate change and groundwater resources in Lao PDR, Journal of Groundwater Science and Engineering, 5, 53-58.
    [9] Ramasamy Jayakumar, Eunhee Lee2017:  Climate change and groundwater conditions in the Mekong Region–A review, Journal of Groundwater Science and Engineering, 5, 14-30.
    [10] Duong D Bui, Nghia C Nguyen, Nuong T Bui, Anh T T Le, Dao T Le2017:  Climate change and groundwater resources in Mekong Delta, Vietnam, Journal of Groundwater Science and Engineering, 5, 76-90.
    [11] SRISUK Kriengsak, NETTASANA Tussanee2017:  Climate change and groundwater resources in Thailand, Journal of Groundwater Science and Engineering, 5, 67-75.
    [12] Than Zaw, Maung Maung Than2017:  Climate change and groundwater resources in Myanmar, Journal of Groundwater Science and Engineering, 5, 59-66.
    [13] BAI Bing, CHENG Yan-pei, JIANG Zhong-cheng, ZHANG Cheng2017:  Climate change and groundwater resources in China, Journal of Groundwater Science and Engineering, 5, 44-52.
    [14] Chamroeun SOK, Sokuntheara CHOUP2017:  Climate change and groundwater resources in Cambodia, Journal of Groundwater Science and Engineering, 5, 31-43.
    [15] MA Luan, WANG Guang-cai, SHI Zhe-ming, GUO Yu-ying, XU Qing-yu, HUANG Xu-juan2016:  Simulation of groundwater level recovery in abandoned mines, Fengfeng coalfield, China, Journal of Groundwater Science and Engineering, 4, 344-353.
    [16] Ramasamy Jayakumar2015:  Groundwater level monitoring-importance global groundwater monitoring network, Journal of Groundwater Science and Engineering, 3, 295-305.
    [17] Yan Zhang, Shuai Song, Jing Li, Fadong Li, Guangshuai Zhao, Qiang Liu2013:  Stable Isotope Composition of Rainfall, Surface Water and Groundwater along the Yellow River, Journal of Groundwater Science and Engineering, 1, 82-88.
    [18] Li Manzhou, Pang Zhenlei2013:  Water Resources Issues and Control Policy Recommendations in the Process of “Industrialization, Urbanization and Agricultural Modernization” in Henan Province, Journal of Groundwater Science and Engineering, 1, 32-40.
    [19] B.T. Hiller, N. Jadamba2013:  Groundwater Use in the Selenge River Basin, Mongolia, Journal of Groundwater Science and Engineering, 1, 11-32.
    [20] Jiankang Zhang, Yanpei Cheng, Hua Dong, Qingshi Guo, Kun Liu, Fawang Zhang2013:  Study on Ecological Environment and Sustainable Land Use Based on Satellite Remote Sensing, Journal of Groundwater Science and Engineering, 1, 89-96.
  • 加载中
图(11) / 表ll (10)
计量
  • 文章访问数:  807
  • HTML全文浏览量:  366
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-16
  • 录用日期:  2020-08-08
  • 刊出日期:  2021-03-28

目录

    /

    返回文章
    返回