• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ Scopus GeoRef AJ CNKI
Advanced Search
Volume 10 Issue 3
Sep.  2022
Turn off MathJax
Article Contents
Abebe WT. 2022. Evaluation of groundwater resource potential by using water balance model: A case of Upper Gilgel Gibe Watershed, Ethiopia. Journal of Groundwater Science and Engineering, 10(3): 209-222 doi:  10.19637/j.cnki.2305-7068.2022.03.001
Citation: Abebe WT. 2022. Evaluation of groundwater resource potential by using water balance model: A case of Upper Gilgel Gibe Watershed, Ethiopia. Journal of Groundwater Science and Engineering, 10(3): 209-222 doi:  10.19637/j.cnki.2305-7068.2022.03.001

Evaluation of groundwater resource potential by using water balance model: A case of Upper Gilgel Gibe Watershed, Ethiopia

doi: 10.19637/j.cnki.2305-7068.2022.03.001
More Information
  • Corresponding author: wondmagegn.abebe@ju.edu.et
  • * The report is available in Ethiopia’s Ministry of Water Resources (MWR) library.
  • Received Date: 2021-12-08
  • Accepted Date: 2022-06-20
  • Publish Date: 2022-09-15
  • Groundwater resource potential is the nation’s primary freshwater reserve and accounts for a large portion of potential future water supply. This study focused on quantifying the groundwater resource potential of the Upper Gilgel Gibe watershed using the water balance method. This study began by defining the project area’s boundary, reviewing previous works, and collecting valuable primary and secondary data. The analysis and interpretation of data were supported by the application of different software like ArcGIS 10.4.1. Soil water characteristics of SPAW (Soil-plant-air-water) computer model, base flow index (BFI+3.0), and the water balance model. Estimation of the areal depth of precipitation and actual evapotranspiration was carried out through the use of the isohyetal method and the water balance model and found to be 1 664.5 mm/a and 911.6 mm/a, respectively. A total water volume of 875 829 800 m3/a is estimated to recharge the aquifer system. The present annual groundwater abstraction is estimated as 10 150 000 m3/a. The estimated specific yield, exploitable groundwater reserve, and safe yield of the catchment are 5.9%, 520 557 000 m3/a, and 522 768 349 m3/a respectively. The total groundwater abstraction is much less than the recharge and the safe yield of the aquifer. The results show that there is a sufficient amount of groundwater in the study area, and the groundwater resources of the area are considered underdeveloped.
  • * The report is available in Ethiopia’s Ministry of Water Resources (MWR) library.
  • 加载中
  • Abu-zeid M, Shiklomanov IA. 2003. Water resources as a challenge of the twenty-first century. World Meteorological Organization (WMO): 1–152. ISBN: 9263109699.
    Adem S. 2012. Groundwater resource evaluation and sustainable management in Adelle-Haromaya Dry Lake Catchment, Eastern Ethiopia. Addis Ababa University: 1–106.
    Awulachew SB. et al. 2007. Water resources and irrigation development in Ethiopia. Colombo, Sri Lanka: International Water Management Institute: 1–82 (Working paper 123).
    Bashe BB. 2017. Groundwater potential mapping using remote sensing and GIS in Rift Valley Lakes Basin, Weito Sub Basin, Ethiopia. International Journal of Scientific & Engineering Research, 8(2) : 1-8.
    Bedient PB, Huber WC, Vieux BE. 2013. Hydrology and floodplain analysis. 5th edn. Pearson Education Limited: 1-816. ISBN: 9780132567961.
    Chaemiso SE, Abebe A, Pingale SM. 2016. Assessment of the impact of climate change on surface hydrological processes using SWAT: A case study of Omo-Gibe river basin, Ethiopia. Modeling Earth Systems and Environment. Springer International Publishing, 2(4): 1–15.
    Chinnasamy P. 2018. Estimation of specific yield using water table fluctuations and cropped area in a hardrock aquifer system of Rajasthan, India. Agricultural Water Management. Elsevier, 202: 146–155.
    CSA. 2007. Summary and statistical report of the 2007 population and housing census. Addis Ababa: 1–113.
    Emerson DG, Vecchia AV, Dahl AL. 2005. Evaluation of drainage-area ratio method used to estimate streamflow for the Red River of the North Basin. North Dakota and Minnesota Scientific Investigations Report: 1–18.
    Gedamu BH. 2015. Characterizing the ground water resources potential in Omo Gibe River Basin. Addis Ababa University, Addis Ababa Institute of Technology: 1–124.
    Ghandhari A, Alavi Moghaddam SMR. 2011. Water balance principles: A review of studies on five watersheds in Iran. Journal of Environmental Science and Technology: 465–479.
    Gintamo TT. 2015. Ground water potential evaluation based on integrated GIS and remote sensing techniques, in Bilate River Catchment : South Rift Valley of Ethiopia. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 10: 85–120.
    Gregor BM. 2010. Bfi+ 3.0 User’s Manual. Hydrooffice Software Package: 1–21.
    Hendrayana H. et al. 2021. Thornthwaite and mather water balance method in Indonesian tropical area. IOP Conference Series: Earth and Environmental Science, 851(1).
    Karamouz M, Ahmadi A, Akhbari M. 2011. Groundwater hydrology: Engineering, planning, and management. CRC Press Taylor & Francis Group: 1-662. ISBN: 9781439891216.
    Kassahun N, Mohamed M. 2018. Groundwater potential assessment and characterization of Genale-Dawa River Basin. Open Journal of Modern Hydrology, 8: 126–144.
    Kovalevsky VS, Kruseman GP, Rushton KR. (eds). 2004. Groundwater studies an international guide for hydrogeological investigations. United Nations Educational, Scientific and Cultural Organization: 1–430. ISBN: 9292200054.
    Kumar CP. 2012. Assessment of groundwater potential. The International Journal of Engineering and Science (IJES), 1(1): 64–79.
    Moges S. 2012. Water solutions project case study agricultural use of ground water in Ethiopia: Assessment of potential and analysis of economics, policies, constraints and opportunities: 1–49.
    Raghunath HM. 2006. Hydrology: Principles analysis design. Revis. 2nd. New Age International (P) Ltd. Publishers: 1–477. ISBN: 9788122423327.
    Rwebugisa RA. 2008. Groundwater recharge assessment in the Makutupora Basin, Dodoma Tanzania. International Institute for Geo-information Science and Earth Observation Enschede. The Netherlands: 1–111.
    Saxton KE, Rawls WJ. 2006. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America, 1578: 1569–1578.
    Shaw EM. et al. 2010. Hydrology in practice. 4th Ed. Spon Press: 1–558. ISBN: 9780415370417.
    Shimelis A, Megerssa O, Fantahun A. 2014. Estimation of groundwater recharge using water balance model coupled with base flow separation in Bulbul River catchment of Gilgel-Gibe River Basin, Ethiopia. Asian Journal of Applied Science and Engineering, 3(2): 235–243.
    Tizro TA, Voudouris KS, Eini M. 2007. Groundwater balance, safe yield and recharge feasibility in a semi-arid environment: A case study from western part of Iran. Journal of Applied Sciences, 7(20): 2967–2976.
    Villholth KG. 2006. Groundwater assessment and management: Implications and opportunities of globalization. Springer, Hydrogeology Journal, 14: 330–339.
    Voudouris KSÃ. 2006. Groundwater balance and safe yield of the coastal aquifer system in NEastern Korinthia, Greece. Elsevier, Applied Geography, 26: 291–311.
    WHO. 2006. Protecting groundwater for health. IWA Publishing, World Health Organization: 1–175. ISBN: 9781843390794.
    WWAP. 2015. The United Nations world water development report 2015: Water for a sustainable world. Paris, UNESCO and UN-Water: 1–139. ISBN: 9789231000713.
  • Relative Articles

    [1] Guo Jin-xing, Li Zhi-ping, Stefan Catalin, 2022: Managed aquifer recharge (MAR) applications in China–achievements and challenges, Journal of Groundwater Science and Engineering, 10, 57-69.  doi: 10.19637/j.cnki.2305-7068.2022.01.006
    [2] Nasiri Shima, Ansari Hossein, Ziaei Ali Naghi, 2022: Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models : A case study of Samalqan plain in Iran, Journal of Groundwater Science and Engineering, 10, 44-56.  doi: 10.19637/j.cnki.2305-7068.2022.01.005
    [3] Gautam Vinay Kumar, Kothari Mahesh, Singh P.K., Bhakar S.R., Yadav K.K., 2022: Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan, Journal of Groundwater Science and Engineering, 10, 1-9.  doi: 10.19637/j.cnki.2305-7068.2022.01.001
    [4] Shahbaz Akhtar M, Nakashima Yoshitaka, Nishigaki Makoto, 2021: Clogging mechanisms and preventive measures in artificial recharge systems, Journal of Groundwater Science and Engineering, 9, 181-201.  doi: 10.19637/j.cnki.2305-7068.2021.03.002
    [5] Mehdi Afraz, Mobin Eftekhari, Mohammad Akbari, Elyasi Ali Haji, Zahra Noghani, 2021: Application assessment of GRACE and CHIRPS data in the Google Earth Engine to investigate their relation with groundwater resource changes (Northwestern region of Iran), Journal of Groundwater Science and Engineering, 9, 102-113.  doi: 10.19637/j.cnki.2305-7068.2021.02.002
    [6] Zhang Han, Chen Zong-yu, Tang Chang-yuan, 2021: Quantifying groundwater recharge and discharge for the middle reach of Heihe River of China using isotope mass balance method, Journal of Groundwater Science and Engineering, 9, 225-232.  doi: 10.19637/j.cnki.2305-7068.2021.03.005
    [7] Muhammad Juandi, 2020: Water sustainability model for estimation of groundwater availability in Kemuning district, Riau-Indonesia, Journal of Groundwater Science and Engineering, 8, 20-29.  doi: 10.19637/j.cnki.2305-7068.2020.01.003
    [8] Qaisar Mehmood, Muhammad Arshad, Muhammad Rizwan, Shanawar Hamid, Waqas Mehmood, Muhammad Ansir Muneer, Muhammad Irfan, Lubna Anjum, 2020: Integration of geoelectric and hydrochemical approaches for delineation of groundwater potential zones in alluvial aquifer, Journal of Groundwater Science and Engineering, 8, 366-380.  doi: 10.19637/j.cnki.2305-7068.2020.04.007
    [9] Dinagarapandi Pandi, Saravanan Kothandaraman, Mohan Kuppusamy, 2020: Delineation of potential groundwater zones based on multicriteria decision making technique, Journal of Groundwater Science and Engineering, 8, 180-194.  doi: 10.19637/j.cnki.2305-7068.2020.02.009
    [10] Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip, 2020: Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand, Journal of Groundwater Science and Engineering, 8, 10-19.  doi: 10.19637/j.cnki.2305-7068.2020.01.002
    [11] SADIKI Moulay Lhassan, EL MANSOURI Bouabid, BENSEDDIK Badr, CHAO Jamal, KILI Malika, EL MEZOUARY Lhoussaine, 2019: Improvement of groundwater resources potential by artificial recharge technique: A case study of Charf El Akab aquifer in the Tangier region, Morocco, Journal of Groundwater Science and Engineering, 7, 224-236.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.003
    [12] LIU Yu, CHENG Yan-pei, GE Li-qiang, 2018: Analysis on exploitation status, potential and strategy of groundwater resources in the five countries of Central Asia, Journal of Groundwater Science and Engineering, 6, 49-57.  doi: 10.19637/j.cnki.2305-7068.2018.01.006
    [13] SONG Chao, HAN Gui-lin, WANG Pan, SHI Ying-chun, HE Ze, 2017: Hydrochemical and isotope characteristics of spring water discharging from Qiushe Loess Section in Lingtai, northwestern China and their implication to groundwater recharge, Journal of Groundwater Science and Engineering, 5, 364-373.
    [14] Eunhee Lee, Kyoochul Ha, Nguyen Thi Minh Ngoc, Adichat Surinkum, Ramasamy Jayakumar, Yongje Kim, Kamaludin Bin Hassan, 2017: Groundwater status and associated issues in the Mekong-Lancang River Basin: International collaborations to achieve sustainable groundwater resources, Journal of Groundwater Science and Engineering, 5, 1-13.
    [15] NAN Tian, SHAO Jing-li, CUI Ya-li, 2016: Column test-based features analysis of clogging in artificial recharge of groundwater in Beijing, Journal of Groundwater Science and Engineering, 4, 88-95.
    [16] XIA Ri-yuan, 2016: Groundwater resources in karst area in Southern China and sustainable utilization pattern, Journal of Groundwater Science and Engineering, 4, 301-309.
    [17] GAO Zong-jun, ZHU Zhen-hui, LIU Xiao-di, XU Yan-lan, 2014: The Formation and Model of High Fluoride Groundwater and In-situ Dispelling Fluoride Assumption in Gaomi City of Shandong Province, Journal of Groundwater Science and Engineering, 2, 34-39.
    [18] LI Yu, CUI Yu, SUN Ying, LI Zhi-ping, WANG Xin-juan, WANG Li-ya, YANG Qing, WANG Rong, 2014: Sustainable utilization measures of groundwater resources in Beijing, Journal of Groundwater Science and Engineering, 2, 60-66.
    [19] Jiankang Zhang, Yanpei Cheng, Hua Dong, Qingshi Guo, Kun Liu, Fawang Zhang, 2013: Study on Ecological Environment and Sustainable Land Use Based on Satellite Remote Sensing, Journal of Groundwater Science and Engineering, 1, 89-96.
    [20] Jiansheng Shi, Hongtao Liu, Zhiyuan Liu, Tieliu Chen, 2013: Application of the “Accurate Control Groundwater Resources” Theory in Containment of Groundwater Resource Exhaustion Trend, Journal of Groundwater Science and Engineering, 1, 1-10.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(8)

    Article Metrics

    Article views (423) PDF downloads(72) Cited by()
    Proportional views

    Welcome to Journal of Groundwater Science and  Engineering!

    Quick Submit

    Online Submission   E-mail Submission


    DownLoad:  Full-Size Img  PowerPoint