• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO Scopus GeoRef AJ CNKI
Advanced Search
Volume 3 Issue 4
Dec.  2015
Turn off MathJax
Article Contents
WEI Jia-hua, CHU Hai-bo, WANG Rong, et al. 2015: Numerical simulation of karst groundwater system for discharge prediction and protection design of spring in Fangshan District, Beijing. Journal of Groundwater Science and Engineering, 3(4): 316-330.
Citation: WEI Jia-hua, CHU Hai-bo, WANG Rong, et al. 2015: Numerical simulation of karst groundwater system for discharge prediction and protection design of spring in Fangshan District, Beijing. Journal of Groundwater Science and Engineering, 3(4): 316-330.

Numerical simulation of karst groundwater system for discharge prediction and protection design of spring in Fangshan District, Beijing

  • Publish Date: 2015-12-28
  • As the rapid growth of population and social economy, the situation of water resources shortage in Beijing city becomes more and more serious. Karst groundwater in Beijing has great potential for development. The reasonable exploitation of karst groundwater can enhance the water-supply stability of Beijing city. Firstly, the distribution of springs has been investigated in Fangshan, Beijing, and the characteristics of these springs have also been analyzed. Secondly, the hydrogeological conceptual model has been built, based on this, the groundwater flow numerical simulation model was established, and the parameter identification and validation of the model were performed under groundwater level and spring discharge. The results shows that the simulated values of groundwater level and spring discharge are very close to measured values, and the model can be used for groundwater resources evaluation and spring discharge prediction. Finally, a reasonable exploitation design has been developed with three exploitation scenarios considering the spring discharge protection; meanwhile, the quantity of groundwater resources was evaluated in the karst aquifer. The simulation results indicate that different exploitation yields have a significant impact on spring discharge; and the effective measures should be taken to protect the spring discharge
  • 加载中
  • Doummar J, Sauter M, Geyer T. 2012. Simulation of flow processes in a large scale karst system with an integrated catchment model (Mike She)-Identification of relevant parameters influencing spring discharge. Journal of Hydrology, 426(12): 112-123.
    Gurwin J, Lubczynski M. 2005. Modeling of complex multi-aquifer systems for ground-water resources evaluation-Swidnica study case (Poland). Hydrogeology Journal, 13(4): 627-639.
    Kaufmann G. 2003. Modelling unsaturated flow in an evolving karst aquifer. Journal of Hydro-logy, 276(1): 53-70.
    Quinn J J, Tomasko D, Kuiper J A. 2006. Modeling complex flow in a karst aquifer. Sedimentary Geology, 184(3-4): 343-351.
    HU Cai-hong, HAO Yong-hong, et al. 2008. Simulation of spring flows from a karst aquifer with an artificial neural network. Hydrological Processes, 22(5): 596-604.
    Geyer T, Birk S, et al. 2008. Quantification of temporal distribution of recharge in karst systems from spring hydrographs. Journal of Hydrology, 348(3): 452-463.
    Chitsazan M, Movahedian A. 2015. Evaluation of artificial recharge on groundwater using MODFLOW model (Case Study: Gotvand Plain-Iran). Journal of Geoscience and Environment Protection, 3(5): 122-132.
    Hartmann A, Gleeson T, et al. 2015. A large-scale simulation model to assess karstic ground?water recharge over Europe and the Mediterranean. Geoscientific Model Development, 8(6): 1729-1746.
    Juki? D, Deni?-Juki? V. 2009. Groundwater balance estimation in karst by using a conceptual rainfall-runoff model. Journal of Hydrology, 373(3): 302-315.
    Jeannin P Y. 2001. Modeling flow in phreatic and epiphreatic karst conduits in the H?lloch cave (Muotatal, Switzerland). Water Resources Research, 37(2): 191-200.
    Teutsch G. 1990. An extended double-porosity concept as a practical modelling approach for a karstified terranes?. UK: IAHS Publication, 281.
    Aquilina L, Ladouche B, D?rfliger N. 2006. Water storage and transfer in the epikarst of karstic systems during high flow periods. Journal of Hydrology, 327(3-4): 472-485.
    Kiraly L. 2003. Karstification and groundwater flow. Speleogenesis & Evolution of Karst Aquifers, 1(3):1-26.
    Scanlon B R, Mace R E, et al. 2003. Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA. Journal of Hydrology, 276(1-4): 137- 158.
    HU C, HAO Y, et al. 2008. Simulation of spring flows from a karst aquifer with an artificial neural network. Hydrological Processes, 22(5): 596-604.
    Barrett M E, Charbeneau R J. 1997. A parsimonious model for simulating flow in a karst aquifer. Journal of Hydrology, 196(1-4): 47-65.
    LI Ping, LU Wen-xi, et al. 2008. Seepage analysis in a fractured rock mass: the upper reservoir of Pushihe pumped-storage power station in China. Engineering Geology, 97(1-2): 53-62.
    Fleury P, Plagnes V, Bakalowicz M. 2007. Modelling of the functioning of karst aquifers with a reservoir model: Application to Fontaine de Vaucluse (South of France). Journal of Hydrology, 345(1-2): 38-49.
    Kaufmann G, Braun J. 2000. Karst aquifer evolution in fractured, porous rocks. Water Resources Research, 36(6): 1381-1391.
  • Relative Articles

    [1] Xin Wang, Guo-qiang Zhou, Yan-guang Liu, Ying-nan Zhang, Mei-hua Wei, Kai Bian, 2024: Research progress on temperature field evolution of hot reservoirs under low-temperature tailwater reinjection, Journal of Groundwater Science and Engineering, 12, 205-222.  doi: 10.26599/JGSE.2024.9280016
    [2] Zhe Wang, Li-juan Wang, Jian-mei Shen, Zhen-long Nie, Le Cao, Ling-qun Meng, 2024: Groundwater recharge via precipitation in the Badain Jaran Desert, China, Journal of Groundwater Science and Engineering, 12, 109-118.  doi: 10.26599/JGSE.2024.9280009
    [3] Mouna Djellali, Omar Guefaïfia, Chemsedinne Fehdi, Adel Djellali, Amor Hamad, 2023: Assessing the impact of artificial recharge on groundwater in an over-exploited aquifer: A case study in the Cheria Basin, North-East of Algeria, Journal of Groundwater Science and Engineering, 11, 263-277.  doi: 10.26599/JGSE.2023.9280022
    [4] Yu-kun Sun, Feng Liu, Hua-jun Wang, Xin-zhi Gao, 2022: Numerical simulation of operation performance on production and injection of a double well geothermal system in Kailu Basin, Inner Mongolia, Journal of Groundwater Science and Engineering, 10, 196-208.  doi: 10.19637/j.cnki.2305-7068.2022.02.008
    [5] Xin Ma, Dong-guang Wen, Guo-dong Yang, Xu-feng Li, Yu-jie Diao, Hai-hai Dong, Wei Cao, Shu-guo Yin, Yan-mei Zhang, 2021: Potential assessment of CO2 geological storage based on injection scenario simulation: A case study in eastern Junggar Basin, Journal of Groundwater Science and Engineering, 9, 279-291.  doi: 10.19637/j.cnki.2305-7068.2021.04.002
    [6] Feng LIU, Gui-ling WANG, Wei ZHANG, Chen YUE, Li-bo TAO, 2020: Using TOUGH2 numerical simulation to analyse the geothermal formation in Guide basin, China, Journal of Groundwater Science and Engineering, 8, 328-337.  doi: 10.19637/j.cnki.2305-7068.2020.04.003
    [7] Chun-chao ZHANG, Xin-wei HOU, Xiang-quan LI, Zhen-xing WANG, Chun-lei GUI, Xue-feng ZUO, Jian-fei MA, Ming GAO, 2020: Numerical simulation and environmental impact prediction of karst groundwater in Sangu Spring Basin, China, Journal of Groundwater Science and Engineering, 8, 210-222.  doi: 10.19637/j.cnki.2305-7068.2020.03.002
    [8] LI Wen-yon, FU Li, ZHU Zheng-feng, 2019: Numerical simulation and land subsidence control for deep foundation pit dewatering of Longyang Road Station on Shanghai Metro Line 18, Journal of Groundwater Science and Engineering, 7, 133-144.  doi: 10.19637/j.cnki.2305-7068.2019.02.004
    [9] LI Lu-lu, SU Chen, HAO Qi-chen, SHAO Jing-li, 2018: Numerical simulation of response of groundwater flow system in inland basin to density changes, Journal of Groundwater Science and Engineering, 6, 7-17.  doi: 10.19637/j.cnki.2305-7068.2018.01.002
    [10] WANG Shu-fang, LIU Jiu-rong, SUN Ying, LIU Shi-liang, GAO Xiao-rong, SUN Cai-xia, LI Hai-kui, 2018: Study on the geothermal production and reinjection mode in Xiong County, Journal of Groundwater Science and Engineering, 6, 178-186.  doi: 10.19637/j.cnki.2305-7068.2018.03.003
    [11] LI Bo, LI Xue-mei, 2018: Characteristics of karst groundwater system in the northern basin of Laiyuan Spring area, Journal of Groundwater Science and Engineering, 6, 261-269.  doi: 10.19637/j.cnki.2305-7068.2018.04.002
    [12] ZHAN Jiang, LI Wu-jin, LI Zhi-ping, ZHAO Gui-zhang, 2018: Indoor experiment and numerical simulation study of ammonia-nitrogen migration rules in soil column, Journal of Groundwater Science and Engineering, 6, 205-219.  doi: 10.19637/j.cnki.2305-7068.2018.03.006
    [13] ZHANG Chun-chao, LI Xiang-quan, GAO Ming, HOU Xin-wei, LIU Ling-xia, WANG Zhen-xing, MA Jian-fei, 2017: Exploitation of groundwater resources and protection of wetland in the Yuqia Basin, Journal of Groundwater Science and Engineering, 5, 222-234.
    [14] YUE Gao-fan, LV Wen-bin, ZHANG Wei, SU Ran, LIN Wen-jing, 2016: Optimization of geothermal water exploitation in Xinji, Hebei Province, P. R. China, Journal of Groundwater Science and Engineering, 4, 197-203.
    [15] QI Jian-feng, TIAN Meng-ke, CHI Xiu-cheng, WANG Cheng-zhen, 2016: Research on ground fissure origins and mechanisms in Hebei Plain, P. R. China, Journal of Groundwater Science and Engineering, 4, 188-196.
    [16] ZHOU Xun, WANG Xiao-cui, CAO Qin, LONG Mi, ZHENG Yu-hui, GUO Juan, SHEN Xiao-wei, ZHANG Yu-qi, TA Ming-ming, CUI Xiang-fei, 2016: A discussion of up-flow springs, Journal of Groundwater Science and Engineering, 4, 279-283.
    [17] WANG Ji-ning, MENG Yong-hui, 2016: Characteristics analysis and model prediction of sea-salt water intrusion in lower reaches of the Weihe River, Shandong Province, China, Journal of Groundwater Science and Engineering, 4, 149-156.
    [18] WANG Ye, ZHANG Qiu-lan, WANG Shi-chang, SHAO Jing-li, 2015: Forecasting of water yield of deep-buried iron mine in Yanzhou, Shandong, Journal of Groundwater Science and Engineering, 3, 342-350.
    [19] LIU Yan-guang, ZHU Xi, YUE Gao-fan, LIN Wen-jing, HE Yu-jiang, WANG Gui-ling, 2015: A review of fluid flow and heat transfer in the CO2-EGS, Journal of Groundwater Science and Engineering, 3, 170-175.
    [20] YANG Yun, WU Jian-feng, LIU De-peng, 2015: Numerical modeling of water yield of mine in Yangzhuang Iron Mine, Anhui Province of China, Journal of Groundwater Science and Engineering, 3, 352-362.
  • 加载中

Catalog

    Article Metrics

    Article views (599) PDF downloads(1964) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return