Citation: | LIU Yan-guang, LIU Bing, LU Chuan, et al. 2017: Reconstruction of deep fluid chemical constituents for estimation of geothermal reservoir temperature using chemical geothermometers. Journal of Groundwater Science and Engineering, 5(2): 173-181. |
Peiffer L, Wanner C, et al. 2014. Optimized multicomponent vs. classical geothermometry: Insights from modeling studies at the Dixie Valley geothermal area. Geothermics, 51: 154-169.
|
SHEN Li-cheng. 2007. Deep-seated geological effect of degassing in Southwestern China and carbon circulation. Chongqing: Southwest University.
|
SUN Hong-li, MA Feng, et al. 2015. Geochemical characteristics and geothermometer applica-tion in high temperature geothermal field in Tibet. Geological Science and Technology Information, 34(3):171-177.
|
Wolery T J, Jove-Colon C F. 2004. Qualification of thermodynamic data for geochemical modeling of mineral-water interactions in dilute systems. Office of Scientific & Technical Information Technical Reports.
|
PANG Zhong-he, WANG Ji-yang, FAN Zhi-cheng. 1990. Calculating the temperature of geother-mal reservoirs in Zhangzhou geothermal areas using SiO2 mixed models. Chinese Science Bulletin (1): 57-59.
|
DUAN Chen-yang. 2014. Research on the hydro-geochemical characteristics of geothermal water and its formation in Bujiemu River Valley, Yangyi. Beijing: China University of Geosciences.
|
Reed M H, Spycher N F. 1984. Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution. Geochimica Et Cosmochimica Acta, 48(7): 1479-1492.
|
ZHANG Zhan-shi, SUN Zhan-xue, et al. 2004. Applications of fixed-AI modified log (Q/K) graph in hot spring system. Earth Science-Journal of China University of Geosciences, 29(3): 352-356.
|
ZHU Mei-xiang, XU Yong. 1989. Hydrothermal alterations in the Yangbajain geothermal field, Tibet. Scientia Geologica Sinica, (2): 162- 175.
|
SHEN Li-cheng, WU Kun-yu, et al. 2011. Carbon dioxide degassing flux from two geothermal fields in Tibet, China. Chinese Science Bulletin, 56(26): 2198-2208.
|
Grassi S, Amadori M, et al. 2014. Identifying sources of B and As contamination in surface water and groundwater downstream of the Larderello geothermal-industrial area (Tuscany-Central Italy). Journal of Hydrology, 509(2): 66-82.
|
ZHU Mei-xiang, XU Yong. 1989. Hydrothermal alterations in the Yangbajain geothermal field, Tibet. Scientia Geologica Sinica, (2): 162- 175.
|
Giggenbach W F. 1991. Chemical techniques in geothermal exploration. In: D’Amore F. (Coordinator). Application of Geothermal Reservoir Development. Rome: UNITAR/ UNDP Publications, 119.
|
TONG Wei, ZHANG Ming-tao, et al. 1981. Tibet geothermal power. Beijing: Science Press.
|
Arnórsson S, Gunnlaugsson E, et al. 1983b. The chemistry of geothermal waters in Iceland. III. Chemical geothermometry in geothermal investigations. Geochimica Et Cosmochimica Acta, 47(3): 567-577.
|
Reed M H, Spycher N F. 1984. Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution. Geochimica Et Cosmochimica Acta, 48(7): 1479-1492.
|
TONG Wei, ZHANG Ming-tao, et al. 1981. Tibet geothermal power. Beijing: Science Press.
|
Reed M H. 1982. Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase. Geochimica Et Cosmochimica Acta, 46(4): 513-528.
|
CHEN Chong-cheng, HUANG Zhen-guang. 1997. Research on systematic geothermometer: A Case Study. Journal of Fuzhou University (Natural Sciences), 25(4): 122-126.
|
Lloyd R R. 1968. Oxygen isotopic behavior in the sulfate-water system. Journal of Geophysical Research, 73(18): 6099-6110.
|
ZHAO Ping, DUO Ji, et al. 1998b. Geochemical features of gases in Tibet Yambajan geothermal field. Chinese Science Bulletin, 43(07): 691-696.
|
ZHAO Qing-sheng. 1988. The application of geothermometers in the exploration of hydrothermal Resources in western Sichuan. Journal of Chengdu University of Science and Technology, (37): 44-50.
|
PANG Zhong-he, WANG Ji-yang, FAN Zhi-cheng. 1990. Calculating the temperature of geother-mal reservoirs in Zhangzhou geothermal areas using SiO2 mixed models. Chinese Science Bulletin (1): 57-59.
|
DUO Ji. 2003. The basic characteristics of the Yangbajing Geothermal Field-A typical high temperature geothermal systems. Engineering Science, 5(1): 42-47.
|
LIU Ying-chao, LIU Kai, et al. 2015. Hydrochemical characteristics and isotopic analysis of geothermal water in Liangxiang geothermal field. South-to-North Water Transfers and water Science & Technology, 13(5): 963-967.
|
Sandia National Laboratories. 2007. Qualification of thermodynamic data for geochemical modeling of mineral–water interactions in dilute systems (data0.ymp.R5). Report ANL- WIS-GS-000003 REV 01. Nevada: Sandia National Laboratories.
|
ZHAO Ping, JIN Ji, et al. 1998a. Chemical composition of thermal water in the Yangbajing geothermal field, Tibet. Scientia Geologica Sinica, 33(1): 61-72.
|
Sandia National Laboratories. 2007. Qualification of thermodynamic data for geochemical modeling of mineral–water interactions in dilute systems (data0.ymp.R5). Report ANL- WIS-GS-000003 REV 01. Nevada: Sandia National Laboratories.
|
Arnórsson S, Gunnlaugsson E, et al. 1983a. The chemistry of geothermal waters in Iceland. II. Mineral equilibria and independent variables controlling water compositions. Geochimica Et Cosmochimica Acta, 47(3): 547-566.
|
ZHAO Qing-sheng. 1988. The application of geothermometers in the exploration of hydrothermal Resources in western Sichuan. Journal of Chengdu University of Science and Technology, (37): 44-50.
|
SUN Hong-li, MA Feng, et al. 2015. Geochemical characteristics and geothermometer applica-tion in high temperature geothermal field in Tibet. Geological Science and Technology Information, 34(3):171-177.
|
ZHAO Ping, JIN Ji, et al. 1998a. Chemical composition of thermal water in the Yangbajing geothermal field, Tibet. Scientia Geologica Sinica, 33(1): 61-72.
|
XU Tian-fu, Nicolas Spycher, et al. 2011. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non- isothermal multiphase flow conditions. Computers & Geosciences, 37: 763-774.
|
Lichtner P C, Karra S, et al. 2015. PFLOTRAN User’s Guide. Los Alamos National Labo-ratory Report.
|
ZHENG Xi-lai, GUO Jian-qing. 1996. Studies of mixing and its application in geothermal systems. Journal of Xi’an College of Geology, 18(4): 53-57.
|
PANG Zhong-he, Mark Reed. 1998. Theoretical chemical thermometry on geothermal waters: Problems and methods. Geochimica Et Cosmochimica Acta, 62(6): 1083-1091.
|
ZHU Mei-xiang, XU Yong. 1989. Hydrothermal alterations in the Yangbajain geothermal field, Tibet. Scientia Geologica Sinica, (2): 162- 175.
|
Peiffer L, Wanner C, et al. 2014. Optimized multicomponent vs. classical geothermometry: Insights from modeling studies at the Dixie Valley geothermal area. Geothermics, 51: 154-169.
|
PANG Zhong-he, YANG Feng-tian, LUO Lu. 2013. Research on the reservation temperature of geothermal field: Research methods of solid earth sciences. Beijing: Science Press.
|
Yokoyama T, Nakai S, 1999. Helium and carbon isotopic compositions of hot spring gases in the Tibetan Plateau. Journal of Volcanology and Geothermal Research, 88(1): 99-107.
|
TONG Wei, ZHANG Zhi-fei, et al. 1978. Himalayan thermal zones. Journal of Peking University: Natural Sciences (1): 81-93, 162.
|
FENG Jin-liang, ZHAO Zhen-hong, et al. 2014. Rare earth elements in sinters from the geo-thermal waters (hot springs) on the Tibetan Plateau, China. Journal of Volcanology and Geothermal Research, 287:1-11.
|
Wanner C, Peiffer L, 2013. Assessing thermo- hydrodynamic–chemical processes at the Dixie Valley geothermal area: A reactive transport modeling approach. Proceedings 38th Workshop on Geothermal Reservoir Engineering, Stanford University. Report SGP-TR-198.
|
Lyon G L, Hulston J R. 1984. Carbon and hydrogen isotopic compositions of New Zealand geothermal gases. Geochimica Et Cosmochimica Acta, 48(6): 1161-1171.
|
Arnórsson S, D’Amore F, Gerardo-Abaya J. 2000. Isotopic and chemical techniques in geothermal exploration, development and use. Vienna: International Atomic Energy Agency.
|
Fournier R O, Truesdell A H. 1973. An empirical Na-K-Ca geothermometer for natural waters. Geochimica Et Cosmochimica Acta, 37(5): 1255-1275.
|
Fournier R O, Potter R W. 1982. Revised and expanded silica (quartz) geothermometer. Geothermal Resources Council Bulletin, 11(10): 3-12.
|
PANG Zhong-he, YANG Feng-tian, LUO Lu. 2013. Research on the reservation temperature of geothermal field: Research methods of solid earth sciences. Beijing: Science Press.
|
CAI Zu-huang, SHI Hui-xin, et al. 1985. Isotopic research of current activities of the Yambajan area at the piedmont fault of Nyenchen Tanglha mountains. Chinese Science Bulletin, 30(24): 1891-1893.
|
Lichtner P C, Karra S, et al. 2015. PFLOTRAN User’s Guide. Los Alamos National Labo-ratory Report.
|
Spycher N, Peiffer L, et al. 2014. Integrated multi- component solute geothermometry. Geother?mics, 51(7):113-123.
|
ZHU Li-xin. 1989. Essential methods of geother-mal explorations-current research on micro-elements with geo-chemical techniques, techniques of geological exploration abroad. Foreign Geoexploration Technology, (1): 9-11.
|
TAN Hong-bing, ZHANG Wen-jie, et al. 2012. Isotope and geochemical study for geothermal assessment of the Xining basin of the northeastern Tibetan Plateau. Geothermics, 42: 47-55.
|
ZHAO Ping, DUO Ji, et al. 1998b. Geochemical features of gases in Tibet Yambajan geothermal field. Chinese Science Bulletin, 43(07): 691-696.
|
Palandri J L, Reed M H. 2001. Reconstruction of in situ composition of sedimentary formation waters. Geochimica Et Cosmochimica Acta, 65(11): 1741-1767.
|
YAO Zu-jin, CHEN Zong-yu. 1995. Research on water-rock interactions of low-temperature geothermal systems. New Energy, 17(4): 9-14.
|
PANG Zhong-he. 1996. Whole-system geoche-mical modeling and the study of water-rock interaction. Earth Science Frontiers (China University of Geosciences, Beijing), 3(3-4): 119-123.
|
ZHANG Meng, LIN Wen-jing, et al. 2014. Hydrogeochemical characteristics and genetic model of Gulu high-temperature geothermal system in Tibet, China. Journal of Chengdu University of Technology (Science & Technology Edition), 41(3): 382-392.
|
LI Jie-xiang, GUO Qing-hai, et al. 2015. Evaluation of temperature of parent geothermal fluid and its cooling processes during ascent to surface: A case study in Rehai Geothermal Field, Tengchong. Earth Science: Journal of China University of Geosciences, 40 (9):1576-1584.
|
Armienta M A, Rodríguez R, et al. 2014. Groundwater quality and geothermal energy. The case of Cerro Prieto Geothermal Field, México. Renewable Energy, (63): 236-254.
|
LV Yuan-yuan, ZHENG Mian-ping, et al. 2014. Geochemical processes and origin of boron isotopes in geothermal water in the Yunnan-Tibet geothermal zones. Science China: Earth Sciences, 44(9): 1968-1979.
|
Fouillac C, Michard G. 1981. Sodium/lithium ratio in water applied to geothermometry of geothermal reservoirs. Geothermics, 10(1): 55-70.
|
Fournier R O. 1979. A revised equation for the Na/K geothermometer. Geothermal Resources Council Transactions, (3): 221-224.
|
Michard G, Fouillac C, et al. 1981. Une méthode globale d’estimation des températures des réservoirs alimentant les sources thermales. Exemple du Massif Central Francais. Geochimica Et Cosmochimica Acta, 45(7): 1199-1207.
|
ZHU Li-xin. 1989. Essential methods of geother-mal explorations-current research on micro-elements with geo-chemical techniques, techniques of geological exploration abroad. Foreign Geoexploration Technology, (1): 9-11.
|
Yokoyama T, Nakai S, 1999. Helium and carbon isotopic compositions of hot spring gases in the Tibetan Plateau. Journal of Volcanology and Geothermal Research, 88(1): 99-107.
|
YU Jin-sheng, ZHANG Hong-bin, et al. 1980. Oxygen isotopic composition of meteoric water in the eastern part of Xizang. Geochemica, (2): 113-121.
|
Lyon G L, Hulston J R. 1984. Carbon and hydrogen isotopic compositions of New Zealand geothermal gases. Geochimica Et Cosmochimica Acta, 48(6): 1161-1171.
|
Shinichi Miyazaki, Zeng Yi, et al. 2005. One of the analysis of the development program of geothermal resources in Yambajan, Tibet- exploring well drillings (CJZK3001), proceedings of the national academic seminar on sustainable development of geothermal industries. Beijing: Chemical Industry Press, 106-112.
|
WEI Ke-qin, LIN Rui-fen, et al. 1983. Hydrogen and oxygen stable isotopic composition and tritium content of waters from Yangbajain geothermal area, Xizang, China. Geochemica, (4): 338-346.
|
LIAO Zhi-jie. 1982. Setting of the geothermal activities of Xizang (Tibet) and a discussion of associated heat source problems. Acta Scientiarum Naturalium Universitatis Pekinensis, (2): 70-78.
|
XU Wan-cai. 1992. Application of the saturation index method to the study of geothermal geochemistry. Journal of Xi’an College of Geology, 14(3):66-70.
|
Michard G, Roekens E. 1983. Modelling of the chemical composition of alkaline hot waters. Geothermics, 12(2-3): 161-169.
|
Parkhurst D L, Appelo C A J. 1999. User’s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one- dimen-sional transport, and inverse geochemical calculations. Denver: USGS.
|
LI Jie-xiang, GUO Qing-hai, et al. 2015. Evaluation of temperature of parent geothermal fluid and its cooling processes during ascent to surface: A case study in Rehai Geothermal Field, Tengchong. Earth Science: Journal of China University of Geosciences, 40 (9):1576-1584.
|
ZHAO Qing-sheng. 1988. The application of geothermometers in the exploration of hydrothermal Resources in western Sichuan. Journal of Chengdu University of Science and Technology, (37): 44-50.
|
Verma S P, Pandarinath K, et al. 2008. SolGeo: A new computer program for solute geother-mometers and its application to Mexican geothermal fields. Geothermics, 37: 597-621.
|
CHAI Rui, WANG Hao, et al. 2010. Application of multi-mineral balance method to estimation of geothermal temperature. Coal Science and Technology, 38(4): 100-103.
|
Wanner C, Peiffer L, 2013. Assessing thermo- hydrodynamic–chemical processes at the Dixie Valley geothermal area: A reactive transport modeling approach. Proceedings 38th Workshop on Geothermal Reservoir Engineering, Stanford University. Report SGP-TR-198.
|
Fournier R O, Rowe J J. 1966. Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells. American Journal of Science, 264(9): 685-697.
|
PANG Zhong-he. 1996. Whole-system geoche-mical modeling and the study of water-rock interaction. Earth Science Frontiers (China University of Geosciences, Beijing), 3(3-4): 119-123.
|
Hoke L, Lamb S, et al. 2000. Southern limit of mantle-derived geothermal helium emissions in Tibet: Implications for lithospheric structure. Earth and Planetary Science Letters, 180(3-4): 297-308.
|
ZHAO Ping, Mack Kennedy, et al. 2001, Noble gases constraints on the origin and evolution of geothermal fluids from the Yangbajain geothermal field, Tibet. Acta Petrologica Sinica, 17(3): 497-503.
|
Sanliyuksel D, Baba A. 2011. Hydrogeochemical and isotopic composition of a low- temperature geothermal source in northwest Turkey: Case study of Kirkgecit geothermal area. Environmental Earth Sciences, 62(3): 529-540.
|
PANG Zhong-he, Mark Reed. 1998. Theoretical chemical thermometry on geothermal waters: Problems and methods. Geochimica Et Cosmochimica Acta, 62(6): 1083-1091.
|
Shinichi Miyazaki, Zeng Yi, et al. 2005. One of the analysis of the development program of geothermal resources in Yambajan, Tibet- exploring well drillings (CJZK3001), proceedings of the national academic seminar on sustainable development of geothermal industries. Beijing: Chemical Industry Press, 106-112.
|
YAO Zu-jin, CHEN Zong-yu. 1995. Research on water-rock interactions of low-temperature geothermal systems. New Energy, 17(4): 9-14.
|
YU Jin-sheng, ZHANG Hong-bin, et al. 1980. Oxygen isotopic composition of meteoric water in the eastern part of Xizang. Geochemica, (2): 113-121.
|
Fournier R O. 1977. Chemical geothermometers and mixing models for geothermal systems. Geothermics, 5(1-4): 41-50.
|
ZHANG Meng, LIN Wen-jing, et al. 2014. Hydrogeochemical characteristics and genetic model of Gulu high-temperature geothermal system in Tibet, China. Journal of Chengdu University of Technology (Science & Technology Edition), 41(3): 382-392.
|
Arnorsson S, Sigurdsson S, et al. 1982. The chemistry of geothermal waters in Iceland. I. Calculation of aqueous speciation from 0 to 370 °C. Geochimica Et Cosmochimica Acta, 46(9): 1513-1532.
|
TAN Hong-bing, ZHANG Wen-jie, et al. 2012. Isotope and geochemical study for geothermal assessment of the Xining basin of the northeastern Tibetan Plateau. Geothermics, 42: 47-55.
|
Palandri J L, Reed M H. 2001. Reconstruction of in situ composition of sedimentary formation waters. Geochimica Et Cosmochimica Acta, 65(11): 1741-1767.
|
ZHAO Ping, XIE E-jun, et al. 2002. Geochemical characteristics of geothermal gases and their geological implications in Tibet. Acta Petrologica Sinica, 18(4): 539-550.
|
Verma S P, Pandarinath K, et al. 2008. SolGeo: A new computer program for solute geother-mometers and its application to Mexican geothermal fields. Geothermics, 37: 597-621.
|
LV Yuan-yuan, ZHENG Mian-ping, et al. 2014. Geochemical processes and origin of boron isotopes in geothermal water in the Yunnan-Tibet geothermal zones. Science China: Earth Sciences, 44(9): 1968-1979.
|
ZHAO Ping, DUO Ji, et al. 1998b. Geochemical features of gases in Tibet Yambajan geothermal field. Chinese Science Bulletin, 43(07): 691-696.
|
ZHENG Xi-lai, GUO Jian-qing. 1996. Studies of mixing and its application in geothermal systems. Journal of Xi’an College of Geology, 18(4): 53-57.
|
Powell T, Cumming W. 2010. Spreadsheets for geothermal water and gas geochemistry. Stanford: Proceedings Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University.
|
SHEN Li-cheng, WU Kun-yu, et al. 2011. Carbon dioxide degassing flux from two geothermal fields in Tibet, China. Chinese Science Bulletin, 56(26): 2198-2208.
|
ZHENG Xi-lai, GUO Jian-qing. 1996. Studies of mixing and its application in geothermal systems. Journal of Xi’an College of Geology, 18(4): 53-57.
|
ZHAO Ping, JIN Ji, et al. 1998a. Chemical composition of thermal water in the Yangbajing geothermal field, Tibet. Scientia Geologica Sinica, 33(1): 61-72.
|
Parkhurst D L, Appelo C A J. 1999. User’s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one- dimen-sional transport, and inverse geochemical calculations. Denver: USGS.
|
Michard G, Fouillac C, et al. 1981. Une méthode globale d’estimation des températures des réservoirs alimentant les sources thermales. Exemple du Massif Central Francais. Geochimica Et Cosmochimica Acta, 45(7): 1199-1207.
|
ZHU Li-xin. 1989. Essential methods of geother-mal explorations-current research on micro-elements with geo-chemical techniques, techniques of geological exploration abroad. Foreign Geoexploration Technology, (1): 9-11.
|
Wanner C, Peiffer L, et al. 2014. Reactive transport modeling of the Dixie Valley geothermal area: Insights on flow and geothermometry. Geothermics, 51:130-141.
|
LIU Ying-chao, LIU Kai, et al. 2015. Hydrochemical characteristics and isotopic analysis of geothermal water in Liangxiang geothermal field. South-to-North Water Transfers and water Science & Technology, 13(5): 963-967.
|
LIAO Zhi-jie. 1982. Setting of the geothermal activities of Xizang (Tibet) and a discussion of associated heat source problems. Acta Scientiarum Naturalium Universitatis Pekinensis, (2): 70-78.
|
ZHANG Zhan-shi, SUN Zhan-xue, et al. 2004. Applications of fixed-AI modified log (Q/K) graph in hot spring system. Earth Science-Journal of China University of Geosciences, 29(3): 352-356.
|
Spycher N, Peiffer L, et al. 2014. Integrated multi- component solute geothermometry. Geother?mics, 51(7):113-123.
|
ZHAO Ping, XIE E-jun, et al. 2002. Geochemical characteristics of geothermal gases and their geological implications in Tibet. Acta Petrologica Sinica, 18(4): 539-550.
|
XU Wan-cai. 1992. Application of the saturation index method to the study of geothermal geochemistry. Journal of Xi’an College of Geology, 14(3):66-70.
|
ZHAO Ping, Mack Kennedy, et al. 2001, Noble gases constraints on the origin and evolution of geothermal fluids from the Yangbajain geothermal field, Tibet. Acta Petrologica Sinica, 17(3): 497-503.
|
ZHANG Zhan-shi, SUN Zhan-xue, et al. 2004. Applications of fixed-AI modified log (Q/K) graph in hot spring system. Earth Science-Journal of China University of Geosciences, 29(3): 352-356.
|
Sanliyuksel D, Baba A. 2011. Hydrogeochemical and isotopic composition of a low- temperature geothermal source in northwest Turkey: Case study of Kirkgecit geothermal area. Environmental Earth Sciences, 62(3): 529-540.
|
ZHAO Ping, Mack Kennedy, et al. 2001, Noble gases constraints on the origin and evolution of geothermal fluids from the Yangbajain geothermal field, Tibet. Acta Petrologica Sinica, 17(3): 497-503.
|
XU Tian-fu, Nicolas Spycher, et al. 2011. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non- isothermal multiphase flow conditions. Computers & Geosciences, 37: 763-774.
|
Wolery T J, Jove-Colon C F. 2004. Qualification of thermodynamic data for geochemical modeling of mineral-water interactions in dilute systems. Office of Scientific & Technical Information Technical Reports.
|
AN Ke-shi, ZHANG Xi-gen, HE Shi-chun. 1980. Geochemical features of Yambajan geother?mal field. Hydrogeology and Engineering Geology, (1): 14-18.
|
ZHAO Ping, XIE E-jun, et al. 2002. Geochemical characteristics of geothermal gases and their geological implications in Tibet. Acta Petrologica Sinica, 18(4): 539-550.
|
Lloyd R R. 1968. Oxygen isotopic behavior in the sulfate-water system. Journal of Geophysical Research, 73(18): 6099-6110.
|
ZHANG Meng, LIN Wen-jing, et al. 2014. Hydrogeochemical characteristics and genetic model of Gulu high-temperature geothermal system in Tibet, China. Journal of Chengdu University of Technology (Science & Technology Edition), 41(3): 382-392.
|
SHEN Li-cheng. 2007. Deep-seated geological effect of degassing in Southwestern China and carbon circulation. Chongqing: Southwest University.
|
Wanner C, Peiffer L, et al. 2014. Reactive transport modeling of the Dixie Valley geothermal area: Insights on flow and geothermometry. Geothermics, 51:130-141.
|
WEI Ke-qin, LIN Rui-fen, et al. 1983. Hydrogen and oxygen stable isotopic composition and tritium content of waters from Yangbajain geothermal area, Xizang, China. Geochemica, (4): 338-346.
|
HU Hong, ZHU Jia-ling, ZHAO Ji-chu. 2003. Na-K geothermometers study on springs in KUIRAU park, ROTORUA. Journal of Heilongjiang Institute of Science &Technology, 13(4): 45-49.
|
Michard G, Roekens E. 1983. Modelling of the chemical composition of alkaline hot waters. Geothermics, 12(2-3): 161-169.
|
Powell T, Cumming W. 2010. Spreadsheets for geothermal water and gas geochemistry. Stanford: Proceedings Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University.
|
TONG Wei, ZHANG Zhi-fei, et al. 1978. Himalayan thermal zones. Journal of Peking University: Natural Sciences (1): 81-93, 162.
|
Reed M H. 1982. Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase. Geochimica Et Cosmochimica Acta, 46(4): 513-528.
|
[1] | Man Li, Wei Zhang, Yu-zhong Liao, Feng Liu, Long Li, 2025: Evaluation of the scaling and corrosion in Tai'an geothermal water , Journal of Groundwater Science and Engineering. doi: 10.26599/JGSE.2025.9280044 |
[2] | Xiu-yan Wang, Lin Sun, Shuai-wei Wang, Ming-yu Wang, Jin-qiu Li, Wei-chao Sun, Jing-jing Wang, Xi Zhu, He Di, 2023: Development and application of multi-field coupled high-pressure triaxial apparatus for soil, Journal of Groundwater Science and Engineering, 11, 308-316. doi: 10.26599/JGSE.2023.9280025 |
[3] | Feng Ma, Gui-ling Wang, Hong-li Sun, Zhan-xue Sun, 2022: Indication of hydrogen and oxygen stable isotopes on the characteristics and circulation patterns of medium-low temperature geothermal resources in the Guanzhong Basin, China, Journal of Groundwater Science and Engineering, 10, 70-86. doi: 10.19637/j.cnki.2305-7068.2022.01.007 |
[4] | ZHANG Ying, LUO Jun, FENG Jian-yun, 2020: Characteristics of geothermal reservoirs and utilization of geothermal resources in the southeastern coastal areas of China, Journal of Groundwater Science and Engineering, 8, 134-142. doi: 10.19637/j.cnki.2305-7068.2020.02.005 |
[5] | Yan WANG, Yan-guang LIU, Kai BIAN, Hong-liang ZHANG, Shen-jun QIN, Xiao-jun WANG, 2020: Seepage-heat transfer coupling process of low temperature return water injected into geothermal reservoir in carbonate rocks in Xian County, China, Journal of Groundwater Science and Engineering, 8, 305-314. doi: 10.19637/j.cnki.2305-7068.2020.04.001 |
[6] | FENG Jian-yun, ZHANG Ying, HE Zhi-liang, SUN Zi-ming, LUO Jun, 2019: Discussion on evaluation methodology of hydrothermal geothermal reservoir, Journal of Groundwater Science and Engineering, 7, 29-41. doi: 10.19637/j.cnki.2305-7068.2019.01.003 |
[7] | ZENG Tu-rong, 2019: Research on basic characteristics of 2H, 18O and 14C in geothermal fluid in Guangdong Province, China, Journal of Groundwater Science and Engineering, 7, 42-52. doi: 10.19637/j.cnki.2305-7068.2019.01.004 |
[8] | MAO Xiao-ping, LI Ke-wen, WANG Xin-wei, 2019: Causes of geothermal fields and characteristics of ground temperature fields in China, Journal of Groundwater Science and Engineering, 7, 15-28. doi: 10.19637/j.cnki.2305-7068.2019.01.002 |
[9] | WANG Shu-fang, LIU Jiu-rong, SUN Ying, LIU Shi-liang, GAO Xiao-rong, SUN Cai-xia, LI Hai-kui, 2018: Study on the geothermal production and reinjection mode in Xiong County, Journal of Groundwater Science and Engineering, 6, 178-186. doi: 10.19637/j.cnki.2305-7068.2018.03.003 |
[10] | HUANG Shan-shan, JIANG Si-min, ZHANG Rui-cheng, ZHANG Shi-rong, ZHANG Wen, 2018: Foundation pit dewatering optimization design based on GMW-2005 and LGR technique, Journal of Groundwater Science and Engineering, 6, 234-242. doi: 10.19637/j.cnki.2305-7068.2018.03.008 |
[11] | GAN Hao-nan, LIN Wen-jing, YUE Gao-fan, WANG Xiao, MA Feng, WANG Gui-ling, 2017: Research on the fault controlling mechanism of geothermal water in Zhangzhou Basin, Journal of Groundwater Science and Engineering, 5, 326-335. |
[12] | ZHU Wei, TANG Wen, LIU Qiang, ZHANG Mei-gui, 2017: Analysis on variation characteristics of geothermal response in Liaoning Province, Journal of Groundwater Science and Engineering, 5, 336-342. |
[13] | ZHANG Pei-feng, 2016: Thermal stresses analysis of casing string used in enhanced geothermal systems wells, Journal of Groundwater Science and Engineering, 4, 293-300. |
[14] | FENG Guan-hong, XU Tian-fu, ZHU Hui-xing, 2016: Dynamics of fluid and heat flow in a CO2-based injection-production geothermal system, Journal of Groundwater Science and Engineering, 4, 377-388. |
[15] | LIU Qi, JIANG Si-min, PU Ye-feng, ZHANG Wei, 2016: Hydro-geochemical simulation of the mixing balance of exploitation and reinjection of geothermal fluid, Journal of Groundwater Science and Engineering, 4, 81-87. |
[16] | YUE Gao-fan, LV Wen-bin, ZHANG Wei, SU Ran, LIN Wen-jing, 2016: Optimization of geothermal water exploitation in Xinji, Hebei Province, P. R. China, Journal of Groundwater Science and Engineering, 4, 197-203. |
[17] | SHANG Xiao-gang, YU Xiang-hui, LI Cheng-ying, CHAI Hui-peng, JIANG Nan-jie, 2015: Geochemical characteristics of geothermal water in Weiyuan geothermal field, Huzhu County, Qinghai Province, Journal of Groundwater Science and Engineering, 3, 59-69. |
[18] | LIU Zhi-ming, LIN Wen-jing, LIU Qin-xuan, ZHANG Wei, LIU Chun-lei, MA Feng, WANG Gui-ling, 2014: Evaluation and reasonable utilization of geothermal resources of Shenze County, Hebei Province, Journal of Groundwater Science and Engineering, 2, 17-27. |
[19] | LIU Kai, SUN Ying, LI Yu, LIU Jiu-rong, LIU Ying-chao, 2014: Zonation for exploitation and utilization of geothermal water in Beijing, Journal of Groundwater Science and Engineering, 2, 94-104. |
[20] | Le SONG, Yan-pei CHENG, 2014: Optimization Research of Water-Soil Resources in Huanghua, Journal of Groundwater Science and Engineering, 2, 86-94. |
JGSE-ScholarOne Manuscript Launched on June 1, 2024.