• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical modelling of the dynamic process of oil displacement by water in sandstone reservoirs with random pore structures

Gao Fei Liu Feng Wang Hua-jun

Fei Gao, Feng Liu, Hua-jun Wang. 2021: Numerical modelling of the dynamic process of oil displacement by water in sandstone reservoirs with random pore structures. Journal of Groundwater Science and Engineering, 9(3): 233-244. doi: 10.19637/j.cnki.2305-7068.2021.03.006
Citation: Fei Gao, Feng Liu, Hua-jun Wang. 2021: Numerical modelling of the dynamic process of oil displacement by water in sandstone reservoirs with random pore structures. Journal of Groundwater Science and Engineering, 9(3): 233-244. doi: 10.19637/j.cnki.2305-7068.2021.03.006

doi: 10.19637/j.cnki.2305-7068.2021.03.006

Numerical modelling of the dynamic process of oil displacement by water in sandstone reservoirs with random pore structures

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Eight growth directions of each cell for randomly-generated 2-D porous media

    Figure  2.  Diagram of a geometric model for simulation

    Figure  3.  Comparison of the outlet oil phase saturation between the simulation and experimental results

    Figure  4.  Comparison of simulation results under different sizes of computational domain

    Figure  5.  Distribution of water phase during the process of oil displacement (Re=14.8)

    Note: The white, red and blue colours represent the matrix of the reservoir, the water phase and the oil phase, respectively, and the transition zone of water-oil phase is shown as the green or yellow colour.

    Figure  6.  Variations of the pressure drop and the saturation of oil phase between the inlet and outlet under different displacement velocities of water phase

    Figure  7.  Variations of the pressure drop and the saturation of oil phase between the inlet and outlet under different viscosity ratios of oil-water phase

    Figure  8.  Variations of the pressure drop and displacement efficiency with oil-water viscosity ratios

    Figure  9.  Distribution of oil phase at 180 s during the process of oil displacement (Re=58.7)

    Figure  10.  Variations of the average velocity of water and oil phase under different porosities

    Figure  11.  Variations of the pressure drop and the saturation of oil phase between the inlet and outlet under different porosities

    Figure  12.  Fine throats along preferential flow paths (Φ=0.384) and variations of tortuosity with porosity of porous media with random pores

    Table  1.   Major physical parameters for simulation

    ItemUnitValueItemUnitValue
    Water densitykg/m31000Water viscosityPa·s0.001
    Oil densitykg/m3900Oil viscosityPa·s0.048
    Sandstone densitykg/m32500Sandstone porosity-0.327
    Surface tensionN/m0.035Initial saturation-1.0
    下载: 导出CSV

    Table  2.   Parameters for different simulation situations

    NoPorosityOil-water viscosity ratioRe number
    10.3274814.8, 29.4, 58.7, 73.4, 95.4
    20.3271.2, 26, 48, 7058.7
    30.327, 0.351, 0.3844858.7
    下载: 导出CSV

    Table  3.   Displacement efficiency under different Re numbers of water phases

    ItemRe =14.8Re =29.4Re =58.7Re =73.4Re =95.4
    Displacement efficiency(%)65.269.774.377.079.0
    下载: 导出CSV
  • De Castro MS, Rodriguez MH. 2015. Interfacial waves in stratified viscous oil-water flow. Experimental Thermal and Fluid Science, 62: 85-98. doi:  10.1016/j.expthermflusci.2014.12.003
    Fernandez-Berdaguer EM, Savioli GB. 2009. An inverse problem arising from the displacement of oil by water in porous media. Applied Numerical Mathematics, 59(10): 2452-2466. doi:  10.1016/j.apnum.2009.04.009
    Flury M, Flühler H, Jury W A, et al. 1994. Susceptibility of soils to preferential flow of water: A field study. Water Resources Research, 30(7): 1945-1954. doi:  10.1029/94WR00871
    Gao ZJ, Liu YG. 2013. Groundwater flow driven by heat. Journal of Groundwater Science and Engineering, 1(3): 22-27.
    Hossein R, Mahshid J, Saman A, et al. 2013. Review of sand production prediction models. Journal of Petroleum Engineering: 1-16. doi:  10.1155/2013/864981
    Ju Y, Gong WB, Zheng JT. 2019. Characterization of immiscible phase displacement in heterogeneous pore structures: Parallel multicomponent lattice Boltzmann simulation and experimental validation using three-dimensional printing technology. International Journal of Multiphase Flow, 114: 50-65. doi:  10.1016/j.ijmultiphaseflow.2019.02.006
    Koponen A, Kataja M, Timonen J. 1997. Permeability and effective porosity of porous media. Physical Review E, 56: 3319-3325. doi:  10.1103/PhysRevE.56.3319
    Li LL, Su C, Hao QC, et al. 2018. Numerical simulation of response of groundwater flow system in inland basin to density changes. Journal of Groundwater Science and Engineering, 6(1): 7-17. doi:  10.19637/j.cnki.2305-7068.2018.01.002
    Li ZF, He SL, Yang WX, et al. 2006. Physical simulation experiment of water driving by micro-model and fractal features of residual oil distribution. Journal of China University of Petroleum, 30(3): 67-71. (in Chinese)
    Liu HH. 2015. New water-oil displacement efficiency prediction method. Open Petroleum Engineering Journal, 7(1): 88-91. doi:  10.2174/1874834101407010088
    Liu YZ, Sun L, Pan Y, et al. 2012. Experimental study on microscopic water/oil displacement percolation mechanism of fractured reservoir. Reservoir Evaluation and Development, 2(5): 28-31. (in Chinese)
    Liu ZP, Wu LG, Wei CP. 2020. Physical experiments and numerical simulations of viscosity reducer flooding for ordinary heavy oil. Journal of Petroleum Science and Engineering, 192: 107194. doi:  10.1016/j.petrol.2020.107194
    Lu C, Li L, Liu YG, Wang GL. 2014. Capillary pressure and relative permeability model uncertainties in simulations of geological CO2 sequestration. Journal of Groundwater Science and Engineering, 2(2): 1-17.
    Meiburg E, Homsy G M. 1988. Nonlinear unstable viscous fingers in Hele–Shaw flows. II. Numerical simulation. Physics of Fluids, 31(3): 429-439. doi:  10.1063/1.866824
    Mirchi A, Hadian S, Madani K, et al. 2012. World energy balance outlook and OPEC production capacity: Implications for global oil security. Energies, 5(8): 2626-2651. doi:  10.3390/en5082626
    Oliveira CL, Andrade JS, Herrmann HJ. 2011. Oil displacement through a porous medium with a temperature gradient. Physical Review E Statistical Nonlinear and Soft Matter Physics, 83(2): 648-670. doi:  10.1103/physreve.83.066307
    Rebold JH. 1962. Evaluation of water-oil displacement efficiency using subsurface logs. Journal of Petroleum Technology, 14(1): 17-21. doi:  10.2118/84-PA
    Rivas-Gomez S, Gonzalez-Guevara JA, Cruz-Hernandez J, et al. 2001. Numerical simulation of oil displacement by water in a vuggy fractured porous medium. Proceedings of SPE Reservoir Simulation Symposium, Houston, Texas.
    Sun W, Tang GQ. 2006. Visual study of water injection in low permeable sandstone. Journal of Canadian Petroleum Technology, 45(11): 21-26.
    Takeshi Tsuji, Fei Jiang, Kenneth T. 2016. Characterization of immiscible fluid displacement processes with various capillary numbers and viscosity ratios in 3D natural sandstone. Advances in Water Resources, 95: 3-15. doi:  10.1016/j.advwatres.2016.03.005
    Wang M, Pan N. 2008. Predictions of effective physical properties of complex multiphase materials. Materials Science and Engineering, 63(1): 1-30. doi:  10.1016/j.mser.2008.07.001
    Wang M, Pan N. 2009. Elastic property of multiphase composites with random microstructures. Journal of Computational Physics, 228: 5978-5988. doi:  10.1016/j.jcp.2009.05.007
    Wang SL, Yu CL, Sang GQ, et al. 2020. An oil-water two-phase reservoir numerical simulation coupled with dynamic capillary force based on the full-implicit method. Computers and Mathematics with Applications, 79(9): 2527-2549. doi:  10.1016/j.camwa.2019.11.013
    Wei JG, Li AJ, Chen YD. 2013. Oil displacement efficiency and performance evaluation of composite ion profile control agents prepared with oilfield sewage. Advances in Petroleum Exploration and Development, 5(2): 52-57.
    Xu CF, Liu HX, Qian GB, et al. 2011. Microcosmic mechanisms of water-oil displacement in conglomerate reservoirs in Karamay Oilfield, NW China. Petroleum Exploration and Development, 38(6): 725-732. doi:  10.1016/S1876-3804(12)60006-8
    Yang B, Feng LF, Wang S, et al. 2016. A numerical prediction model for hydraulic conductivity of sandy aquifers based on randomly generated pore structures. E. J. Geotechnical Engineering, 21(2): 677-690.
    Yang YQ, Cheng LY, Sha O, et al. 2013. Methods of determining oil displacement efficiency of oil displacement agent. Oilfield Chemistry, 30(2): 290-294. (in Chinese)
    Zhang LH, Tong J, Xiong Y. 2017. Effect of temperature on the oil-water relative permeability for sandstone reservoirs. International Journal of Heat and Mass Transfer, 105: 535-548. doi:  10.1016/j.ijheatmasstransfer.2016.10.029
    Zhang RX, Gao YY, Li JM. 1995. Effects of displacement conditions on the water-oil displacement efficiency in glutenite reservoirs. Henan Petroleum, 13(4): 32-37. (in Chinese)
    Zhao Y, Qu ZH, Liu Z. 2002. Experimental study on water/oil displacement mechanisms in fractured reservoir by real sandstone micro-models. Petroleum Exploration & Development, 29(1): 116-119. (in Chinese)
  • [1] MA Li-sha, HAN Zhan-tao, WANG Yan-yan2021:  Dispersion performance of nanoparticles in water, Journal of Groundwater Science and Engineering, 9, 37-44. doi: 10.19637/j.cnki.2305-7068.2021.01.004
    [2] Li Yue-nan, Gu Yan-sheng, Li Man-zhou, Huo Guang-jie, Wang Xi-ping, Xu Zhi-jie, Yue Jie, Du Dan, Geng Man-ge2021:  Comparison on the phytoextraction efficiency of Bidens pilosa at heavy metal contaminated site in natural and electrokinetic conditions, Journal of Groundwater Science and Engineering, 9, 121-128. doi: 10.19637/j.cnki.2305-7068.2021.02.004
    [3] YIN Xiao-lin, GAO Yuan-yuan, WU Hai-ping, ZHAO Xue-ming2020:  Water-saving potential evaluation of water-receiving regions in Shandong province on the East Route of the South-to-North Water Transfer Project of China, Journal of Groundwater Science and Engineering, 8, 287-297. doi: 10.19637/j.cnki.2305-7068.2020.03.009
    [4] ZHANG Ying, LUO Jun, FENG Jian-yun2020:  Characteristics of geothermal reservoirs and utilization of geothermal resources in the southeastern coastal areas of China, Journal of Groundwater Science and Engineering, 8, 134-142. doi: 10.19637/j.cnki.2305-7068.2020.02.005
    [5] HU Zun-fang, KANG Feng-xin, ZOU An-de, YU Lin-song, LI Yang, TIAN Tong-liang, KANG Gui-ling2019:  Evolution trend of the water quality in Dongping Lake after South-North Water Transfer Project in China, Journal of Groundwater Science and Engineering, 7, 333-339. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.004
    [6] ZHANG Sheng, ZHANG Cui-yun, HE Ze, CHEN Li, YIN Mi-ying, NING Zhuo, SUN Zhen-hua, ZHEN Shi-jun, ZHANG Fa-wang2017:  Application of bioremediation in oil contaminated soil, Journal of Groundwater Science and Engineering, 5, 116-123.
    [7] LIU Ji-chao, SHI Jian-sheng, GAO Ye-xin, REN Zhan-bing2016:  Exploration on compound water circulation system to solve water resources problems of North China Plain, Journal of Groundwater Science and Engineering, 4, 229-237.
    [8] WANG Ying, CHEN Zong-yu2016:  Responses of groundwater system to water development in northern China, Journal of Groundwater Science and Engineering, 4, 69-80.
    [9] LI Xiao-yuan, YUE Gao-fan, SU Ran, YU Juan2016:  Research on Pisha-sandstone’s anti-erodibility based on grey multi-level comprehensive evaluation method, Journal of Groundwater Science and Engineering, 4, 103-109.
    [10] LIU Jin-hui, SUN Zhan-xue, SHI Wei-jun, ZHOU Yi-peng2015:  Factors influencing in-situ leaching of uranium mining in a sandstone deposit in Shihongtan, Northwest China, Journal of Groundwater Science and Engineering, 3, 16-20.
    [11] GUO Jiao, SHI Ying-chun, WU Li-jie2015:  Gravity erosion and lithology in Pisha sandstone in southern Inner Mongolia, Journal of Groundwater Science and Engineering, 3, 45-58.
    [12] HAN Kang-qin, LIU Jian, HAN Lei-lei, HAN Wen-ling, ZHANG Yun-xiao2014:  Prediction of Impacts Caused by South-to-North Water Diversion on Underground Water Level in Shijiazhuang, Journal of Groundwater Science and Engineering, 2, 27-33.
    [13] LIU Kai, SUN Ying,  LI Yu, LIU Jiu-rong, LIU Ying-chao2014:  Zonation for exploitation and utilization of geothermal water in Beijing, Journal of Groundwater Science and Engineering, 2, 94-104.
    [14] Le SONG, Yan-pei CHENG2014:  Optimization Research of Water-Soil Resources in Huanghua, Journal of Groundwater Science and Engineering, 2, 86-94.
    [15] GE Li-qiang, CHENG Yan-pei, YUE Chen2014:  Study of water resources for crop utilization in China from the perspective of Virtual Water, Journal of Groundwater Science and Engineering, 2, 67-75.
    [16] Meng-jie Wu, Hui-zhen Hen2013:  Brief Talk of Groundwater Resources in Role of Rural Drinking Water Safety and Construction of City Emergency Water Source, Journal of Groundwater Science and Engineering, 1, 40-52.
    [17] Guiling Wang, Wenjing Lin, Wei Zhang, Qi Fan, Qinghua Wu2013:  Study on Movement Evolution Law of Soil Water in Condition of Agronomic Water Saving Irrigation, Journal of Groundwater Science and Engineering, 1, 33-45.
    [18] Cheng Yanpei, Ma Renhui2013:  Analysis of Water Resource Demands: Based on the Hydrological Unit, Journal of Groundwater Science and Engineering, 1, 48-59.
    [19] Do Van Binh2013:  Source and Formation of the Arsenic in Ground Water in Hanoi , Vietnam, Journal of Groundwater Science and Engineering, 1, 102-108.
    [20] Xu Guangming, Bi Pan, Li Anna2013:  A Study of the Groundwater Reservoirs and Regulation in the Alluvial Fan of the Hutuo River, Journal of Groundwater Science and Engineering, 1, 24-31.
  • 加载中
图(12) / 表ll (3)
计量
  • 文章访问数:  501
  • HTML全文浏览量:  191
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-22
  • 录用日期:  2021-04-15
  • 网络出版日期:  2021-09-27
  • 刊出日期:  2021-09-28

目录

    /

    返回文章
    返回