• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Arsenic contamination caused by roxarsone transformation with spatiotemporal variation of microbial community structure in a column experiment

Liu Ya-ci Zhang Zhao-ji Zhao Xin-yi Wen Meng-tuo Cao Sheng-wei Li Ya-song

Liu YC, Zhang ZJ, Zhao XY, et al. 2021. Arsenic contamination caused by roxarsone transformation with spatiotemporal variation of microbial community structure in a column experiment. Journal of Groundwater Science and Engineering, 9(4): 304-316 doi:  10.19637/j.cnki.2305-7068.2021.04.004
Citation: Liu YC, Zhang ZJ, Zhao XY, et al. 2021. Arsenic contamination caused by roxarsone transformation with spatiotemporal variation of microbial community structure in a column experiment. Journal of Groundwater Science and Engineering, 9(4): 304-316 doi:  10.19637/j.cnki.2305-7068.2021.04.004

doi: 10.19637/j.cnki.2305-7068.2021.04.004

Arsenic contamination caused by roxarsone transformation with spatiotemporal variation of microbial community structure in a column experiment

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The particle size distribution of soil

    Figure  2.  Design of the one-dimensional soil column

    Figure  3.  Spatiotemporal variation in As(Ⅲ) and As(Ⅴ) concentrations

    Figure  4.  The variation in alpha diversity indices over time. CV: coefficient of variation.

    Figure  5.  Principal coordinate analysis (PCoA) of soil samples on genus level. Samples were named by sampling time (Day 7, 14, 28, 56, 84, or 112) and depth (d-1, d-2, d-3, d-4, d-5, d-6, and d-7 representing 5 cm, 15 cm, 25 cm, 35 cm, 45 cm, 55 cm, and 65 cm, respectively).

    Figure  6.  Relative microbial community abundance on genus level of different soil depths at six sampling times

    Figure  7.  The relative abundance of strain norank_f__Family_XVⅢ over time

    Figure  8.  Spearman correlation heatmap between dominant species and environmental factors. Red represents a positive correlation and blue represents a negative correlation; *: 0.01<P ≤0.05, **: 0.001<P ≤0.01, ***: P ≤0.001

    Figure  9.  Phylogenetic tree of the dominant strains on genus level (The bar chart on the right shows the abundance of strains at different sampling times.)

    Table  1.   The chemical composition of soil

    Chemical compoundsSiO2Al2O3CaOFe2O3MgOK2ONa2OTiO2Others
    Proportion (%)64.6515.226.544.462.892.681.810.8020.948
    下载: 导出CSV

    Table  2.   Correlation analysis of arsenic (As) species and chemical elements

    As(Ⅴ)As(Ⅲ)Nitrogen contentTOC
    Pearson correlationSignificance (bilateral)Pearson correlationSignificance (bilateral)Pearson correlationSignificance (bilateral)Pearson correlationSignificance (bilateral)
    Mg −0.596**(1) 0.000 −0.333*(2) 0.031 −0.041 0.798 −0.180 0.255
    Al −0.430** 0.005 −0.232 0.139 −0.163 0.303 −0.144 0.361
    P −0.029 0.853 0.011 0.947 −0.111 0.482 0.141 0.375
    K −0.220 0.161 −0.101 0.526 −0.227 0.149 −0.125 0.429
    Ca −0.351* 0.023 −0.181 0.252 −0.370* 0.016 −0.275 0.078
    Mn −0.282 0.070 −0.089 0.576 −0.290 0.063 −0.224 0.154
    Fe −0.148 0.349 −0.024 0.881 −0.271 0.082 −0.066 0.676
    Cu 0.013 0.934 0.090 0.571 −0.296 0.057 0.014 0.927
    Zn −0.196 0.213 −0.071 0.656 −0.300 0.053 −0.214 0.174
    Pb 0.191 0.225 0.209 0.184 −0.246 0.117 0.105 0.509
    As(Ⅴ) 1.000 0.448** 0.003 −0.079 0.618 0.303 0.051
    As(Ⅲ) 0.448** 0.003 1.000 −0.182 0.249 0.100 0.529
    Nitrogen content −0.079 0.618 −0.182 0.249 1.000 0.443** 0.003
    TOC 0.303 0.051 0.100 0.529 0.443** 0.003 1.000
    Note: (1) ** Correlation is significant at the 0.01 level; (2)* Correlation is significant at the 0.05 level.
    下载: 导出CSV
  • Abedin MJ, Cresser MS, Meharg AA, et al. 2002. Arsenic accumulation and metabolism in rice (Oryza sativa L). Environmental Science & Technology, 36(5): 962-968. doi:  10.1021/es0101678
    Arcega-Cabrera F, Fargher L, Quesadas-Rojas M, et al. 2018. Environmental exposure of children to toxic trace elements (Hg, Cr, As) in an urban area of Yucatan, Mexico: Water, blood, and urine levels. Bulletin of Environmental Contamination and Toxicology, 100: 620-626. doi:  10.1007/s00128-018-2306-8
    Boopathy R, Kulpa CF, Manning J. 1998. Anaerobic biodegradation of explosives and related compounds by sulfate-reducing and methanogenic bacteria: A review. Bioresource Technology, 63(1): 81-89. doi:  10.1016/S0960-8524(97)00083-7
    Cao WG, Chen NX, Zhang YL, et al. 2014. Distribution of arsenic in sediment of Hangjinhou Bannerlinhe transect in Hetao Basin, North China. Journal of Groundwater Science and Engineering, 2(4): 87-96.
    Chen C, Liu L, Li YX, et al. 2021. Efficient degradation of roxarsone and simultaneous in-situ adsorption of secondary inorganic arsenic by a combination of Co3O4-Y2O3 and peroxymonosulfate. Journal of Hazardous Materials, 407: 124559. doi:  10.1016/j.jhazmat.2020.124559
    Chen GW, Ke ZC, Liang TF, et al. 2016. Shewanella oneidensis MR-1-induced Fe(Ⅲ) reduction facilitates roxarsone transformation. PLoS ONE, 11(4): e0154017. doi:  10.1371/journal.pone.0154017
    Chen GW, Xu RD, Liu L, et al. 2018. Limited carbon source retards inorganic arsenic release during roxarsone degradation in Shewanella oneidensis microbial fuel cells. Applied Microbiology and Biotechnology, 102: 8093-8106. doi:  10.1007/s00253-018-9212-1
    Chen J, Rosen BP. 2016. Organoarsenical biotransformations by Shewanella putrefaciens. Environmental Science & Technology, 50(15): 7956-7963. doi:  10.1021/acs.est.6b00235
    Chen J, Zhang J, Rosen BP. 2019. Role of arsEFG in roxarsone and nitarsone detoxification and resistance. Environmental Science & Technology, 53(11): 6182-6191. doi:  10.1021/acs.est.9b01187
    Chen N, Wan YC, Zhan GM, et al. 2020. Simulated solar light driven roxarsone degradation and arsenic immobilization with hematite and oxalate. Chemical Engineering Journal, 384: 123254. doi:  10.1016/j.cej.2019.123254
    Chen CM, Kukkadapu RK, Lazareva O, et al. 2017. Solid-phase Fe speciation along the vertical redox gradients in floodplains using XAS and mössbauer spectroscopies. Environmental Science & Technology, 51(14): 7903-7912. doi:  10.1021/acs.est.7b00700
    Datta R, Sarkar D, Sharma S, et al. 2006. Arsenic biogeochemistry and human health risk assessment in organo-arsenical pesticide-applied acidic and alkaline soils: An incubation study. Science of The Total Environment, 372(1): 39-48. doi:  10.1016/j.scitotenv.2006.08.003
    European Commission (EC), 1999. Council Directive 1999/29/EC of 22 April 1999 on the undesirable substances and products in animal nutrition.
    Fisher E, Dawson AM, Polshyna G, et al. 2008. Transformation of inorganic and organic arsenic by Alkaliphilus oremlandii sp. nov. strain OhILAs. Annals of the New York Academy of Sciences, 1125: 230-241. doi:  10.1196/annals.1419.006
    Fu QL, He JZ, Gong H, et al. 2016. Extraction and speciation analysis of roxarsone and its metabolites from soils with different physicochemical properties. Journal of Soils and Sediments, 16: 1557-1568. doi:  10.1007/s11368-015-1344-7
    Fu YR, Chen ML, Bi XY, et al. 2011. Occurrence of arsenic in brown rice and its relationship to soil properties from Hainan Island, China. Environmental Pollution, 159(7): 1757-1762. doi:  10.1016/j.envpol.2011.04.018
    Gorontzy T, Kuver J, Blotevogel KH, 1993. Microbial transformation of nitroaromatic compounds under anaerobic conditions. Microbiology, 139(6): 1331-1336. DOI: 10.1009/00221287-139-6-1331.
    Han JC, Zhang F, Cheng L, et al. 2017. Rapid release of arsenite from roxarsone bioreduction by exoelectrogenic bacteria. Environmental Science & Technology Letters, 4: 350-355. doi:  10.1021/acs.estlett.7b00227
    Hu YN, Cheng HF, Tao S, et al. 2019. China’s ban on phenylarsonic feed additives, a major step toward reducing the human and ecosystem health risk from arsenic. Environmental Science & Technology, 53: 12177-12187. doi:  10.1021/acs.est.9b04296
    Huang K, Peng HY, Gao F, et al. 2019. Biotransformation of arsenic-containing roxarsone by an aerobic soil bacterium Enterobacter sp. CZ-1. Environmental Pollution, 247: 482-487. doi:  10.1016/j.envpol.2019.01.076
    Konkel L. 2016. Organoarsenic drugs over time: The pharmacokinetics of roxarsone in chicken meat. Environmental Health Perspectives, 124(8): 50. doi:  10.1289/ehp.124-A150
    Kowalski LM, Reid WM. 1975. Effects of roxarsone on pigmentation and coccidiosis in broilers. Poultry Science, 54(5): 1544-1549. doi:  10.3382/ps.0541544
    Li YS, Liu YC, Zhang ZJ, et al. 2020. Identification of an anaerobic bacterial consortium that degrades roxarsone. MicrobiologyOpen, 9(4): e1003. doi:  10.1002/mbo3.1003
    Liang TF, Ke ZC, Chen Q, et al. 2014. Degradation of roxarsone in a silt loam soil and its toxicity assessment. Chemosphere, 112: 128-133. doi:  10.1016/j.chemosphere.2014.03.103
    Liu YC, Li YS, Zhang ZJ, et al. 2017a. Distribution of arsenic compounds in vadose zone and groundwater around the chicken farm in Lubei Plain. South-to-North Water Transfers and Water Science & Technology, 15(3): 86-93. (in Chinese) doi:  10.13476/j.cnki.nsbdqk.2017.03.015
    Liu YC, Zhang ZJ, Li YS, et al. 2017b. Response of microbial communities to roxarsone under different culture conditions. Canadian Journal of Microbiology, 63: 661-670. doi:  10.1139/cjm-2016-0652
    Liu YC, Tian X, Cao SW, et al. 2021. Pollution characteristics and health risk assessment of arsenic transformed from feed additive organoarsenicals around chicken farms on the North China Plain. Chemosphere, 278: 130438. doi:  10.1016/j.chemosphere.2021.130438
    Masscheleyn PH, Delaune RD, Patrick WH. 1991. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Science & Technology, 25(8): 1414-1419. doi:  10.1021/es00020a008
    Ministry of Agriculture of the People’s Republic of China. 2018. Bulletin No. 2638: Regulations on the use of feed additives.
    Mondal NK. 2020. Prevalence of arsenic in chicken feed and its contamination pattern in different parts of chicken flesh: a market basket study. Environmental Monitoring and Assessment, 192(9): 590. doi:  10.1007/s10661-020-08558-x
    Morrison JL. 1969. Distribution of arsenic from poultry litter in broiler chickens, soil, and crops. Journal of Agricultural and Food Chemistry, 17(6): 1288-1290. doi:  10.1021/jf60166a018
    Nachman KE, Graham JP, Price LB, et al. 2005. Arsenic: A roadblock to potential animal waste management solutions. Environmental Health Perspectives, 113(9): 1123-1124. doi:  10.1289/ehp.7834
    Rahman MA, Hogan B, Duncan E, et al. 2014. Toxicity of arsenic species to three freshwater organisms and biotransformation of inorganic arsenic by freshwater phytoplankton (Chlorellasp. CE-35). Ecotoxicology and Environmental Safety, 106(1): 126-135. doi:  10.1016/j.ecoenv.2014.03.004
    Sarkar D, Makris KC, Parra-Noonan MT, et al. 2007. Effect of soil properties on arsenic fractionation and bioaccessibility in cattle and sheep dipping vat sites. Environment International, 33(2): 164-169. doi:  10.1016/j.envint.2006.09.004
    Stolz JF, Perera E, Kilonzo B, et al. 2007. Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (roxarsone) and release of inorganic arsenic by Clostridium species. Environmental Science & Technology, 41(3): 818-823. doi:  10.1021/es061802i
    Tang R, Yuan SJ, Wang YL, et al. 2020. Arsenic volatilization in roxarsone-loaded digester: Insight into the main factors and arsM genes. Science of The Total Environment, 711: 135123. doi:  10.1016/j.scitotenv.2019.135123
    U. S. Food and Drug Administration. 2013. FDA’s response to the citizen petition. Food and Drug Administration:Silver Spring: MD.FDA-2009-p-0594.
    Wu SS, Yang T, Mai JM, et al. 2022. Enhanced removal of organoarsenic by chlorination: Kinetics, effect of humic acid, and adsorbable chlorinated organoarsenic. Journal of Hazardous Materials, 422: 126820. doi:  10.1016/j.jhazmat.2021.126820
    Yang T, Wu SS, Liu CP, et al. 2021. Efficient degradation of organoarsenic by UV/chlorine treatment: Kinetics, mechanism, enhanced arsenic removal, and cytotoxicity. Environmental Science & Technology, 55: 2037-2047. doi:  10.1021/acs.est.0c05084
    Yao LX, Li GL, Dang Z, et al. 2009. Arsenic speciation in turnip as affected by application of chicken manure bearing roxarsone and its metabolites. Plant Soil, 316: 117-124. doi:  10.1007/s11104-008-9764-4
    Yao LX, Huang LX, He ZH, et al. 2016. Delivery of roxarsone via chicken diet→chicken→chicken manure→soil→rice plant. Science of The Total Environment, 566-567: 1152-1158. doi:  10.1016/j.scitotenv.2016.05157
    Yao LX, Huang LX, Bai CH, et al. 2017. Soil calcium significantly promotes uptake of inorganic arsenic by garland chrysanthemum (ChrysanthemumL coronarium) fertilized with chicken manure bearing roxarsone and its metabolites. Environmental Science and Pollution Research, 24: 16429-16439. doi:  10.1007/s11356-017-9242-8
    Yao LX, Huang LX, Bai CH, et al. 2019a. Effect of roxarsone metabolites in chicken manure on soil biological property. Ecotoxicology and Environmental Safety, 171: 493-501. doi:  10.1016/j.ecoenv.2019.01.017
    Yao LX, Carey MP, Zhong JW, et al. 2019b. Soil attribute regulates assimilation of roxarsone metabolites by rice (Oryza sativa L). Ecotoxicology and Environmental Safety, 184: 109660. doi:  10.1016/j.ecoenv.2019.109660
    Zhan L, Xia ZW, Xu ZM, et al. 2021. Study on the remediation of tetracycline antibiotics and roxarsone contaminated soil. Environmental Pollution, 271: 116312. doi:  10.1016/j.envpol.2020.116312
  • [1] Song Chao, Liu Man, Dong Qiu-yao, Zhang Lin, Wang Pan, Chen Hong-yun, Ma Rong2022:  Variation characteristics of CO2 in a newly-excavated soil profile, Chinese Loess Plateau: Excavation-induced ancient soil organic carbon decomposition, Journal of Groundwater Science and Engineering, 10, 19-32. doi: 10.19637/j.cnki.2305-7068.2022.01.003
    [2] Bahrami Mehdi, Khaksar Elmira, Khaksar Elahe2020:  Spatial variation assessment of groundwater quality using multivariate statistical analysis(Case Study: Fasa Plain, Iran), Journal of Groundwater Science and Engineering, 8, 230-243. doi: 10.19637/j.cnki.2305-7068.2020.03.004
    [3] Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip2020:  Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand, Journal of Groundwater Science and Engineering, 8, 10-19. doi: 10.19637/j.cnki.2305-7068.2020.01.002
    [4] Negar Fathi, Mohammad Bagher Rahnama, Mohammad Zounemat Kermani2020:  Spatial analysis of groundwater quality for drinking purpose in Sirjan Plain, Iran by fuzzy logic in GIS, Journal of Groundwater Science and Engineering, 8, 67-78. doi: 10.19637/j.cnki.2305-7068.2020.01.007
    [5] ZHU Wei, TANG Wen, LIU Qiang, ZHANG Mei-gui2017:  Analysis on variation characteristics of geothermal response in Liaoning Province, Journal of Groundwater Science and Engineering, 5, 336-342.
    [6] ZHOU Xun2017:  Arsenic distribution and source in groundwater of Yangtze River Delta economic region, China, Journal of Groundwater Science and Engineering, 5, 343-353.
    [7] GONG Xiao-ping, JIANG Guang-hui, CHEN Chang-jie, GUO Xiao-jiao, ZHANG Hua-sheng2015:  Specific yield of phreatic variation zone in karst aquifer with the method of water level analysis, Journal of Groundwater Science and Engineering, 3, 192-201.
    [8] CAO Wen-geng, CHEN Nan-xiang, ZHANG Yi-long, DONG Qiu-yao2014:  Distribution of arsenic in sediment of Hangjinhou Banner- Linhe transect in Hetao Basin, North China, Journal of Groundwater Science and Engineering, 2, 87-96.
    [9] Do Van Binh2013:  Source and Formation of the Arsenic in Ground Water in Hanoi , Vietnam, Journal of Groundwater Science and Engineering, 1, 102-108.
  • 加载中
图(10) / 表ll (2)
计量
  • 文章访问数:  1312
  • HTML全文浏览量:  582
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-09
  • 录用日期:  2021-10-21
  • 网络出版日期:  2021-10-29
  • 刊出日期:  2021-12-15

目录

    /

    返回文章
    返回