• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Extenuating the parameters using HEC-HMS hydrological model for ungauged catchment in the central Omo-Gibe Basin of Ethiopia

Demisse Habtamu Semunigus Ayalew Abebe Temesgen Ayana Melkamu Teshome Lohani Tarun Kumar

Demisse HS, Ayalew AT, Ayana MT, et al. 2021. Extenuating the parameters using HEC-HMS hydrological model for ungauged catchment in the central Omo-Gibe Basin of Ethiopia. Journal of Groundwater Science and Engineering, 9(4): 317-325 doi:  10.19637/j.cnki.2305-7068.2021.04.005
Citation: Demisse HS, Ayalew AT, Ayana MT, et al. 2021. Extenuating the parameters using HEC-HMS hydrological model for ungauged catchment in the central Omo-Gibe Basin of Ethiopia. Journal of Groundwater Science and Engineering, 9(4): 317-325 doi:  10.19637/j.cnki.2305-7068.2021.04.005

doi: 10.19637/j.cnki.2305-7068.2021.04.005

Extenuating the parameters using HEC-HMS hydrological model for ungauged catchment in the central Omo-Gibe Basin of Ethiopia

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Study Area a) Major river basins in Ethiopia, b) Omo-Gibe River Basin and selected sub-watersheds c) Selected sub-watersheds and rivers

    Figure  2.  Sensitivity analysis using ENS of Upper Gojeb Sub-catchment

    Figure  3.  Calibration and Validation of the hydrograph

    Figure  4.  Model parameter transfer by spatial proximity method

    Figure  5.  Model parameter transfer by area ratio method

    Figure  6.  Comparsion of average monthly simulated flow for selected sub-catchment of Lower Guma by using four regionalization method

    Table  1.   Summary of hydrologically gauged stations

    NoRiverStation/siteArea (km2)Latitude/DegreeLongitude/Degree
    1Upper GojebNear Shebe35777.436.5
    2Gilgel GibeNear Asendabo29667.737.3
    3Upper GumaNear Andra231.27.136.3
    下载: 导出CSV

    Table  2.   Model parameters estimated for ungauged catchments using regional model

    Ungauged catchmentsTCRISMSIDMDCRKXCC
    Mansa272517110.472.70.421.60.180.58
    Zigna252618110.392.60.240.60.180.67
    Denchiya262618110.462.60.250.60.180.82
    Lower Guma302618110.392.60.170.50.190.83
    Lower Gojeb52292390.472.80.351.60.230.84
    下载: 导出CSV

    Table  3.   Geographic and physiographic catchment characteristics correlation (R2) and Land Cover catchment characteristics correlation (R2)

    Ungauged
    Catchments
    Geographic and physiographic catchment characteristics correlation (R2)Land Cover catchment characteristics correlation (R2)
    Gauged catchmentsGauged catchments
    Upper GumaUpper GojebGilgel GibeUpper GumaUpper GojebGilgel Gibe
    Mansa0.920.820.830.520.060.62
    Zigna0.900.850.850.030.060.03
    Denchiya0.870.840.830.010.080.01
    Lower Guma0.900.840.840.770.050.88
    Lower Gojeb0.560.960.920.580.080.67
    下载: 导出CSV

    Table  4.   Correlation of Soil catchment characteristics (R2) and Climate catchment characteristics (R2)

    Ungauged
    Catchments
    Correlation of Soil catchment characteristics (R2)Climate catchment characteristics (R2)
    Gauged catchmentsGauged catchments
    Upper GumaUpper GojebGilgel GibeUpper GumaUpper GojebGilgel Gibe
    Mansa0.350.370.11111
    Zigna0.920.980.42111
    Denchiya0.480.530.14111
    Lower Guma0.930.980.41111
    Lower Gojeb0.450.480.15111
    下载: 导出CSV

    Table  5.   Correlation values between model parameters (MPs) and physical catchment characteristics (PCCs) for gauged catchments

    PCCsTCRISMSIDMDCRKXCC
    Avarge slope −0.64 −0.76 −0.44 −0.44 −0.98 −0.83 −0.99 −0.02 −0.77 −0.24
    Longest flow path −0.64 −0.51 0.96 −0.96 −0.04 0.69 0.34 0.99 −0.50 −0.91
    Mean elevation 0.99 0.97 −0.50 0.50 0.72 0.00 0.41 −0.82 0.96 0.94
    Minimum elevation 0.89 0.95 0.05 −0.05 0.98 0.55 0.84 −0.38 0.96 0.60
    Maximum elevation 0.57 0.44 −0.98 0.98 −0.04 −0.75 −0.42 −0.97 0.43 0.88
    Sum stream length −0.40 −0.25 1.00 −1.00 0.4 0.87 0.59 0.90 −0.24 −0.76
    Area −0.43 −0.29 1.00 −1.00 0.21 0.85 0.56 0.92 −0.27 −0.79
    Perimeter −0.21 −0.06 0.98 −0.98 0.43 0.95 0.74 0.80 −0.04 −0.62
    HI
    DD 0.44 0.29 −1.00 1.00 −0.20 −0.84 0.55 −0.92 0.28 0.79
    CI 0.73 0.61 −0.92 0.92 0.16 −0.60 −0.23 −1.00 0.60 0.96
    EL −0.99 −1.00 0.26 −0.26 −0.87 −0.26 −0.63 0.65 −1.00 −0.82
    Basin shape 0.30 0.15 −0.99 0.99 −0.34 −0.91 −0.67 −0.85 0.13 0.69
    Dystric nitosols −0.70 −0.80 −0.37 0.37 −0.99 −0.79 −0.97 0.06 −0.81 −0.31
    Dystric fluvisols 1.00 1.00 −0.32 0.32 0.84 0.20 0.58 −0.69 1.00 0.86
    Orthic acrisols 0.32 0.47 0.74 −0.74 0.83 0.98 0.98 0.38 0.48 −0.13
    Dystric gleysols 0.09 −0.07 −0.95 0.95 −0.54 −0.98 −0.81 −0.71 −0.08 0.52
    Leptosols −0.99 −0.96 0.50 0.50 −0.72 0.00 −0.41 −0.41 −0.96 −0.94
    Cambisols −0.99 −0.96 0.50 −0.50 −0.72 0.00 −0.41 −0.41 −0.96 −0.94
    Chromic vertisols 0.58 0.70 0.51 −0.51 0.96 0.87 1.00 0.10 0.71 0.16
    Eutric cambisol −0.99 −0.96 0.50 −0.50 −0.72 0.00 −0.41 −0.41 −0.96 −0.94
    Eutric nitosols −0.16 0.00 0.97 −0.97 0.48 0.96 0.77 0.77 0.01 −0.58
    Orthic solonchaks −0.99 −0.96 0.50 −0.50 −0.72 0.00 −0.41 0.82 −0.96 −0.94
    Gypsic yermosola −0.99 −0.96 0.50 −0.50 −0.72 0.00 −0.41 0.82 −0.96 −0.94
    Eutric fluvisols 0.59 0.71 0.50 −0.50 0.96 0.87 0.99 0.08 0.72 0.18
    Cultivation 0.99 1.00 −0.29 0.29 0.86 0.23 0.60 −0.67 1.00 0.84
    Natural forest −0.98 −1.00 0.22 −0.22 −0.90 −0.30 −0.66 0.61 −1.00 −0.71
    Shurb land
    Grass land −0.79 −0.68 0.88 −0.88 −0.24 0.53 0.14 1.00 −0.67 −0.98
    Wood land
    SAAR −0.18 −0.33 −0.83 0.83 −0.74 −1.00 −0.94 −0.51 −0.34 0.28
    MP dry −0.44 −0.57 −0.65 0.65 −0.90 −0.94 −1.00 −0.26 −0.59 0.00
    MP wet −0.20 −0.35 −0.82 0.82 −0.76 −1.00 −0.95 −0.49 −0.36 0.25
    PET 0.38 0.23 −1.00 1.00 −0.27 −0.88 −0.61 −0.89 0.21 0.75
    Note: CI-Circularity index, DD-Drainage density, EL-Elongation Ratio, HI-Hypsometric integral, PET-Potential Evapo-transpiration, SAAR-Standard Annual Average Rainfall.
    下载: 导出CSV
  • Abebe NA, Ogden FL, Pradhan, NR. 2010. Sensitivity and uncertainty analysis of the conceptual HBV rainfall–runoff model: Implications for parameter estimation. Journal of Hydrology, 389: 301-310. doi:  10.1016/j.jhydrol.2010.06.007
    Arsenault R, Breton-Dufour M, Poulin A, et al. 2019. Streamflow prediction in ungauged basins: analysis of regionalization methods in a hydrologically heterogeneous region of Mexico. Hydrological Sciences Journal, 64(11): 1297-1311. doi:  10.1080/02626667.2019.1639716
    Bao Z, Zhang J, Liu J, et al. 2012. Comparison of regionalization approaches based on regression and similarity for predictions in Ungauged catchments under multiple hydro-climatic conditions. Journal of Hydrology, 466-467: 37-46
    Barbarossa V, Huijbregts MAJ, Hendriks AJ, et al. 2017. Developing and testing a global-scale regression model to quantify mean annual stream-flow. Journal of Hydrology, 544: 479-487. doi:  10.1016/j.jhydrol.2016.11.053
    Blöschl, G. 2005. Rainfall runoff modeling of ungauged catchments In M. L. Anderson, ed. Encyclopedia of hydrological sciences UK: John Wiley & Sons: 2061– 2080.
    Donnelly C, Andersson JCM, Arheimer B. 2016. Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe. Hydrological Sciences Journal, 61(2): 255-273. doi:  10.1080/02626667.2015.1027710
    Goswami M, Connor KM, Bhattarai KP, et al. 2005. Assessing the performance of eight real-time updating models and procedure for the Brosna River. Hydrology and the Earth System Sciences, 9(4): 394-411. doi:  10.5194/hess-9-394-2005
    Hailegeorgis TT, Abdella YS, Alfredsen, K, et al. 2015. Evaluation of regionalization methods for hourly continuous streamflow simulation using distributed models in Boreal Catchments. Journal of Hydrologic Engineering, 1-20: 04015028. doi:  10.1061/(ASCE)HE.1943-5584.0001218
    Ibrahim B, Wisser D, Barry B, et al. 2015. Hydrological predictions for small ungauged watersheds in the Sudanian zone of the Volta basin in West Africa. Journal of Hydrology: Regional Studies, 4: 386-397. doi:  10.1016/j.ejrh.2015.07.007
    IHMS. 2006. Integrated Hydrological Modeling System Manual. Version 5.1.
    Javeed Y, Apoorva KV. 2015. Flow regionalization under limited data availability application of IHACRES in the Western Ghats. Aquatic Proceeding 4: (LCWRCOE) 2015: 933-941.
    Li H, Zhang Y, Zhou X. 2015. Predicting surface runoff from Catchment to Large Region. Advances in Meteorology: 1-13. doi:  10.1155/2015/720967
    Mazvimavi D. 2003. Estimation of flow characteristics of ungauged catchments: Case study in Zimbabwe. Wageningen Universiteit: 1-176.
    Merz R, Bloschl G. 2004. Regionalization of catchment model parameters. Journal of Hydrology, 287(1-4): 95-123. doi:  10.1016/j.jhydrol.2003.09.028
    Mosavi A, Golshan M, Choubin B. 2021. Fuzzy clustering and distributed model for streamflow estimation in ungauged watersheds. Scientific Reports, 11: 8243. doi:  10.1038/s41598-021-87691-0
    Nega H, Seleshi Y. 2021. Regionalization of mean annual flow for ungauged catchments in case of Abbay River Basin, Ethiopia. Modeling Earth Systems and Environment, 7: 341-350. doi:  10.1007/s40808-020-01033-z
    Oudin L, Andre´assian V, Perrin C, et al. 2008. Spatial proximity, physical similarity, regression and Ungauged catchments: A comparison of regionalization approaches based on 913 French catchments. Water Resources Research, 44: W03413. doi:  10.1029/2007WR006240
    Pinheiro VB, Naghettini M. 2013. Calibration of the parameters of a rainfall-runoff model in Ungauged basins using synthetic flow duration curves as estimated by regional analysis. Journal of Hydrologic Engineering, 18: 1617-1626. doi:  10.1061/(ASCE)HE.1943-5584.0000737
    Pool S, Viviroli D, Seibert J. 2017. Prediction of hydrographs and flow-duration curves in almost ungauged catchments: Which runoff measurements are most informative for model calibration? Journal of Hydrology, 554: 613-622.
    Rajendran M, Gunawarden ERN, Dayawansa NDK. 2020. Runoff prediction in an ungauged catchment of Upper Deduru Oya Basin, Sri Lanka: A comparison of HEC-HMS and WEAP models. International Journal of Progressive Sciences and Technologies (IJPSAT), 18(2): 121-129.
    Roy S, Mistri B. 2013. Estimation of peak flood discharge for an Ungauged River: A case study of the Kunur River, West Bengal, Geography Journal, 214140: 11.
    Samuel J, Coulibaly P, Metcalfe RA. 2011. Metcalfe estimation of continuous stream flow in ontario ungauged basins: Comparison of regionalization methods. Journal of Hydrologic Engineering, 16(5): 447-459. doi:  10.1061/(ASCE)HE.1943-5584.0000338
    Sawicz K, Wagener Sivapalan TM, Troch PA, et al. 2011. Catchment classification: Empirical analysis of hydrologic similarity based on catchment function in the eastern USA. Hydrology Earth Systems Sciences, 15(9): 2895-2911. doi:  10.5194/hess-15-2895-2011
    Sellami H, Jeunesse IL, Benabdallah S, et al. 2014. Uncertainty analysis in model parameters regionalization: A case study involving the SWAT model in Mediterranean catchments (Southern France). Hydrology and Earth System Sciences, 18: 2393-2413. doi:  10.5194/hess-18-2393-2014
    Shoaib SA, Bardossy A, Wagener T, et al. 2013. A different light in predicting Ungauged Basins: Regionalization approach based on Eastern USA Catchments. Journal of Civil Engineering and Architecture, 7 (3) (64): 364-378.
    Sivapalan M, Takeuchi K, Franks SW, et al. 2003. IAHS decade on predictions in ungauged basins (PUB), 2003-2012: Shaping an exciting future for the hydrological sciences. Hydrologocal Sciences Journal, 48(6): 857-880. doi:  10.1623/hysj.48.6.857.51421
    Solomon SM. 2001. Climate change 2007-The physical science basis: Working group1 contribution to the fourth assessment report of the IPCC: (vol. 4). Cambridge University Press.
    Swain JB, Patra KC. 2019. Impact of catchment classification on streamflow regionalization in ungauged catchments. SN Applied Sciences 1: 456. doi:  10.1007/s42452-019-0476-6
    Tamalew C, Kemal A. 2016. Estimation of discharge for ungauged catchments using rainfall-runo model in Didessa Subbasin: The case of Blue Nile River. International Journal of Innovations in Engineering Research and Technology, 3(9): 62-72.
    Tesfalem A, Yan L, Sirak T, et al. 2021. Quantifying the regional water balance of the Ethiopian Rift Valley Lake basin using an uncertainty estimation framework. Hydrology and Earth Science System:1-25.
    Teutschbein C, Grabs T, Hjalmar L, et al. 2018. Simulating streamflow in ungauged basins under a changing climate: The importance of landscape characteristics. Journal of Hydrology, 561: 160-178. doi:  10.1016/j.jhydrol.2018.03.060
    Wagener T, Wheater HS, Gupta HV. 2004. Rainfall-runoff modelling in gauged and ungauged catchments. London, Imperial College Press: 300.
    Wale A, Rientjes THM, Gieske ASM, et al. 2009. Ungauged catchment contributions to Lake Tana’s water balance. Hydrological Processes, 23(6): 3682-3692. doi:  10.1002/hyp.7284
    Zamoum S, Souag-Gamane, D. 2019. Monthly streamflow estimation in ungauged catchments of northern Algeria using regionalization of conceptual model parameters. Arabian Journal of Geosciences, 342: 12 (11).
    Zhang Y, Chiew FHS. 2009. Relative merits of different methods for runoff predictions in ungauged catchments. Water Resources Research, 45(7).
  • [1] Allia Zineb, Lalaoui Meriem2024:  Formation mechanism of hydrochemical and quality evaluation of shallow groundwater in the Upper Kebir sub-basin, Northeast Algeria, Journal of Groundwater Science and Engineering, 12, 78-91. doi: 10.26599/JGSE.2024.9280007
    [2] Wei Shuai-chao, Liu Feng, Zhang Wei, Wang Gui-ling, Yuan Ruo-xi, Liao Yu-zhong, Yan Xiao-xue2022:  Research on the characteristics and influencing factors of terrestrial heat flow in Guizhou Province, Journal of Groundwater Science and Engineering, 10, 166-183. doi: 10.19637/j.cnki.2305-7068.2022.02.006
    [3] Sun Yu-kun, Liu Feng, Wang Hua-jun, Gao Xin-zhi2022:  Numerical simulation of operation performance on production and injection of a double well geothermal system in Kailu Basin, Inner Mongolia, Journal of Groundwater Science and Engineering, 10, 196-208. doi: 10.19637/j.cnki.2305-7068.2022.02.008
    [4] HAO Hong-bo, LV Jie, CHEN Yan-mei, WANG Chuan-zi, HUANG Xiao-rui2021:  Research advances in non-Darcy flow in low permeability media, Journal of Groundwater Science and Engineering, 9, 83-92. doi: 10.19637/j.cnki.2305-7068.2021.01.008
    [5] Ma Xin, Wen Dong-guang, Yang Guo-dong, Li Xu-feng, Diao Yu-jie, Dong Hai-hai, Cao Wei, Yin Shu-guo, Zhang Yan-mei2021:  Potential assessment of CO2 geological storage based on injection scenario simulation: A case study in eastern Junggar Basin, Journal of Groundwater Science and Engineering, 9, 279-291. doi: 10.19637/j.cnki.2305-7068.2021.04.002
    [6] ZHANG Bing, GAO Ye-xin, FENG Xin, ZHANG Ya-zhe, LIU Ji-chao, ZHANG Ying-ping2020:  Experimental study on height simulation of capillary fringe, Journal of Groundwater Science and Engineering, 8, 108-117. doi: 10.19637/j.cnki.2305-7068.2020.02.002
    [7] Rasoul Daneshfaraz, Ehsan Aminvash, Reza Esmaeli, Sina Sadeghfam, John Abraham2020:  Experimental and numerical investigation for energy dissipation of supercritical flow in sudden contractions, Journal of Groundwater Science and Engineering, 8, 396-406. doi: 10.19637/j.cnki.2305-7068.2020.04.009
    [8] ZHANG Chun-chao, HOU Xin-wei, LI Xiang-quan, WANG Zhen-xing, GUI Chun-lei, ZUO Xue-feng, MA Jian-fei, GAO Ming2020:  Numerical simulation and environmental impact prediction of karst groundwater in Sangu Spring Basin, China, Journal of Groundwater Science and Engineering, 8, 210-222. doi: 10.19637/j.cnki.2305-7068.2020.03.002
    [9] LIU Feng, WANG Gui-ling, ZHANG Wei, YUE Chen, TAO Li-bo2020:  Using TOUGH2 numerical simulation to analyse the geothermal formation in Guide basin, China, Journal of Groundwater Science and Engineering, 8, 328-337. doi: 10.19637/j.cnki.2305-7068.2020.04.003
    [10] NAN Tian, GUO Si-jia2019:  Influence of borehole quantity and distribution on lithology field simulation, Journal of Groundwater Science and Engineering, 7, 295-308. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.001
    [11] ZHANG Han-xiong, HU Xiao-nong2018:  Simulation and analysis of Chloride concentration in Zhoushan reclamation area, Journal of Groundwater Science and Engineering, 6, 150-160. doi: 10.19637/j.cnki.2305-7068.2018.02.008
    [12] GUO Chun-yan, CUI Ya-li, LIU Wen-na, CUI Xiang-xiang, FEI Yu-hong2018:  Research on numerical simulation of the groundwater funnels restoration in Shijiazhuang, Journal of Groundwater Science and Engineering, 6, 126-135. doi: 10.19637/j.cnki.2305-7068.2018.02.006
    [13] LI Lu-lu, SU Chen, HAO Qi-chen, SHAO Jing-li2018:  Numerical simulation of response of groundwater flow system in inland basin to density changes, Journal of Groundwater Science and Engineering, 6, 7-17. doi: 10.19637/j.cnki.2305-7068.2018.01.002
    [14] TONG Shao-qing, DONG Yan-hui, ZHANG Qian, SONG Fan2017:  Visualizing complex pore structure and fluid flow in porous media using 3D printing technology and LBM simulation, Journal of Groundwater Science and Engineering, 5, 254-265.
    [15] ZHOU Xun, WANG Xiao-cui, CAO Qin, LONG Mi, ZHENG Yu-hui, GUO Juan, SHEN Xiao-wei, ZHANG Yu-qi, TA Ming-ming, CUI Xiang-fei2016:  A discussion of up-flow springs, Journal of Groundwater Science and Engineering, 4, 279-283.
    [16] CHENG Tang-pei, LIU Xing-wei, SHAO Jing-Li, CUI Ya-li2016:  Review of the algebraic linear methods and parallel implementation in numerical simulation of groundwater flow, Journal of Groundwater Science and Engineering, 4, 12-17.
    [17] LIU Yan-guang, ZHU Xi, YUE Gao-fan, LIN Wen-jing, HE Yu-jiang, WANG Gui-ling2015:  A review of fluid flow and heat transfer in the CO2-EGS, Journal of Groundwater Science and Engineering, 3, 170-175.
    [18] 2014:  The Experimental Investigations on Motion Features of Groundwater Flow near the Pumping Well, Journal of Groundwater Science and Engineering, 2, 1-11.
    [19] BAI Xi-qing, LIU Yan2014:  Feasibility Analysis on Resuming Flow of Large Karst Spring in Heilongdong, Journal of Groundwater Science and Engineering, 2, 80-87.
    [20] Zong-jun Gao, Yong-gui Liu2013:  Groundwater Flow Driven by Heat, Journal of Groundwater Science and Engineering, 1, 22-27.
  • 加载中
图(6) / 表ll (5)
计量
  • 文章访问数:  666
  • HTML全文浏览量:  270
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-31
  • 录用日期:  2021-10-22
  • 刊出日期:  2021-12-15

目录

    /

    返回文章
    返回