• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental and numerical investigation of groundwater head losses on and nearby short intersections between disc-shaped fractures

Qu Ci-xiao Wang Ming-yu Wang Peng

Qu CX, Wang MY, Wang P. 2022. Experimental and numerical investigation of groundwater head losses on and nearby short intersections between disc-shaped fractures. Journal of Groundwater Science and Engineering, 10(1): 33-43 doi:  10.19637/j.cnki.2305-7068.2022.01.004
Citation: Qu CX, Wang MY, Wang P. 2022. Experimental and numerical investigation of groundwater head losses on and nearby short intersections between disc-shaped fractures. Journal of Groundwater Science and Engineering, 10(1): 33-43 doi:  10.19637/j.cnki.2305-7068.2022.01.004

doi: 10.19637/j.cnki.2305-7068.2022.01.004

Experimental and numerical investigation of groundwater head losses on and nearby short intersections between disc-shaped fractures

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The physical laboratory setup of disc-shaped fracture

    Figure  2.  The numerical representation of a disc-shaped fracture in HGS

    Figure  3.  The schematic diagram of three losses ($ {H}_{l} $, $ {H}_{n} $ and $ {H}_{i} $) defined in this paper

    Figure  4.  The relationships between the hydraulic gradient ($ {\nabla \mathit{H}}_{\mathit{i}\mathit{n}-\mathit{o}\mathit{u}\mathit{t}\_\mathit{e}\mathit{x}\mathit{p}} $ and $ {\nabla \mathit{H}}_{\mathit{p}1-2\_\mathit{e}\mathit{x}\mathit{p}} $) and the flow rate (Q) in different experimental scenarios.

    Figure  5.  The percentage of $ \Delta {\mathit{H}}_{\mathit{s}\_\mathit{e}\mathit{x}\mathit{p}} $ to $ \Delta {\mathit{H}}_{\mathit{i}\mathit{n}-\mathit{o}\mathit{u}\mathit{t}\_\mathit{e}\mathit{x}\mathit{p}} $ in different experimental scenarios

    Figure  6.  The strong turbulent area and dominant flow area in a disc-shaped fracture

    Figure  7.  The percentage of $ \Delta {H}_{i\_der} $ to $ \Delta {H}_{in-out\_exp} $ in different experimental scenarios

    Table  1.   The parameters assigned in the corresponding numerical models

    ParametersUnitsValues
    Boundary (flow in and flow out) Length (L) cm 10, 8, 6, 4 corresponding with each experiment
    Specified flux (Q) cm3/s corresponding with each experiment
    Aperture (b) cm 0.215, 0.125 corresponding with each experiment
    Reference fluid density ($ \rho ) $ kg/cm3 9.98E-4
    Reference fluid viscosity (μ) kg/(cm·s) 9.53E-6
    Acceleration due to gravity ($ g $) cm/s2 9.81E+2
    下载: 导出CSV

    Table  2.   The experimental results of $ {\Delta \mathit{H}}_{\mathit{i}\mathit{n}-\mathit{o}\mathit{u}\mathit{t}\_\mathit{e}\mathit{x}\mathit{p}} $ and $ \Delta {\mathit{H}}_{\mathit{p}1-2\_\mathit{e}\mathit{x}\mathit{p}} $ along with the percentage of $ \Delta {\mathit{H}}_{\mathit{s}\_\mathit{e}\mathit{x}\mathit{p}} $ to $ \Delta {\mathit{H}}_{\mathit{i}\mathit{n}-\mathit{o}\mathit{u}\mathit{t}\_\mathit{e}\mathit{x}\mathit{p}} $

    b=0.152 cmb=0.215 cm
    Q
    (cm3/s)
    $ {\Delta H}_{in-out\_exp} $
    (cm)
    $ \Delta {H}_{p1-2\_exp} $
    (cm)
    $ \dfrac{\Delta {H}_{s\_exp}}{\Delta {H}_{in-out\_exp}} $
    (-)
    Q
    (cm3/s)
    $ {\Delta H}_{in-out\_exp} $
    (cm)
    $ \Delta {H}_{p1-2\_exp} $
    (cm)
    $ \dfrac{\Delta {H}_{s\_exp}}{\Delta {H}_{in-out\_exp}} $
    (-)
    L=10 cm 14.41 0.48 0.34 29.17% 35.34 0.45 0.29 35.56%
    26.53 0.95 0.65 31.58% 43.55 0.60 0.35 41.67%
    35.54 1.35 0.88 34.81% 54.91 0.88 0.48 45.45%
    42.88 1.72 1.10 36.05% 69.03 1.22 0.66 45.90%
    70.97 3.38 1.89 44.08% 75.28 1.48 0.71 52.03%
    L=8 cm 14.53 0.47 0.35 25.53% 35.28 0.49 0.30 38.78%
    26.54 0.97 0.66 31.96% 43.57 0.68 0.38 44.12%
    35.68 1.36 0.89 34.56% 54.70 0.97 0.48 50.52%
    43.51 1.77 1.08 38.98% 68.48 1.36 0.66 51.47%
    71.83 3.40 1.87 45.00% 75.06 1.58 0.67 57.59%
    L=6 cm 14.61 0.54 0.35 35.19% 35.58 0.55 0.28 49.09%
    26.30 1.04 0.65 37.50% 43.10 0.71 0.36 49.30%
    35.68 1.49 0.88 40.94% 55.17 1.08 0.47 56.48%
    43.43 1.89 1.07 43.39% 68.55 1.48 0.57 61.49%
    71.66 3.60 1.83 49.17% 75.78 1.75 0.62 64.57%
    L=4 cm 14.61 0.59 0.36 38.98% 35.25 0.97 0.29 70.10%
    26.51 1.22 0.66 45.90% 42.94 1.31 0.31 76.34%
    35.57 1.81 0.86 52.49% 55.76 2.00 0.41 79.50%
    42.94 2.37 1.05 55.70% 69.71 2.92 0.53 81.85%
    71.07 4.86 1.74 64.20% 74.82 3.46 0.52 84.97%
    下载: 导出CSV

    Table  3.   The derivate results of $ {\Delta \mathit{H}}_{\mathit{i}\mathit{n}-\mathit{o}\mathit{u}\mathit{t}\_\mathit{d}\mathit{e}\mathit{r}} $ and the ratios of $ \Delta {\mathit{H}}_{\mathit{i}\_\mathit{d}\mathit{e}\mathit{r}} $ to $ \Delta {\mathit{H}}_{\mathit{i}\mathit{n}-\mathit{o}\mathit{u}\mathit{t}\_\mathit{e}\mathit{x}\mathit{p}} $

    b=0.152 cmb=0.215 cm
    Q
    (cm3/s)
    $ \dfrac{\Delta {H}_{in-out\_num}}{\Delta {H}_{p1-2\_num}} $
    (-)
    $ \Delta {H}_{in-out\_der} $
    (cm)
    $ \dfrac{\Delta {H}_{i\_der}}{\Delta {H}_{in-out\_exp}} $
    (-)
    Q
    (cm3/s)
    $ \dfrac{\Delta {H}_{in-out\_num}}{\Delta {H}_{p1-2\_num}} $
    (-)
    $ \Delta {H}_{in-out\_der} $
    (cm)
    $ \dfrac{\Delta {H}_{i\_der}}{\Delta {H}_{in-out\_exp}} $
    (-)
    L=10 cm 14.41 1.46 0.49 0.00% 35.34 1.46 0.42 6.23%
    26.53 1.46 0.95 0.44% 43.55 1.46 0.52 15.12%
    35.54 1.46 1.28 5.15% 54.91 1.46 0.69 20.63%
    42.88 1.46 1.60 6.94% 69.03 1.46 0.97 21.28%
    70.97 1.46 2.74 18.65% 75.28 1.46 1.04 30.20%
    L=8 cm 14.53 1.52 0.54 0.00% 35.28 1.52 0.47 6.96%
    26.54 1.52 1.00 0.00% 43.57 1.52 0.58 15.08%
    35.68 1.52 1.36 0.55% 54.70 1.52 0.72 24.81%
    43.51 1.52 1.65 7.27% 68.48 1.52 1.01 26.25%
    71.83 1.52 2.84 16.42% 75.06 1.52 1.03 35.56%
    L=6 cm 14.61 1.61 0.57 0.00% 35.58 1.61 0.46 17.90%
    26.30 1.61 1.05 0.00% 43.10 1.61 0.57 18.23%
    35.68 1.61 1.41 4.76% 55.17 1.61 0.76 29.82%
    43.43 1.61 1.73 8.70% 68.55 1.61 0.92 37.90%
    71.66 1.61 2.96 18.02% 75.78 1.61 1.01 42.87%
    L=4 cm 14.61 1.76 0.63 0.00% 35.25 1.76 0.52 47.42%
    26.51 1.76 1.16 4.85% 42.94 1.76 0.54 58.38%
    35.57 1.76 1.51 16.44% 55.76 1.76 0.73 63.95%
    42.94 1.76 1.85 22.09% 69.71 1.76 0.94 68.08%
    71.07 1.76 3.06 37.05% 74.82 1.76 0.91 73.57%
    下载: 导出CSV
    Major lossMinor loss
    $ \Delta {H}_{l} $$ \Delta {H}_{n} $$ \Delta {H}_{i} $
    $ \Delta {H}_{in-out\_exp} $
    $ \Delta {H}_{p1-2\_exp} $
    $ \Delta {H}_{s\_exp} $
    $ \Delta {H}_{in-out\_der} $
    $ \Delta {H}_{i\_der} $
    $ \Delta {H}_{in-out\_num} $
    $ \Delta {H}_{p1-2\_num} $
    下载: 导出CSV
  • Baecher GB, Lanney NA. 1978. Trace length biases in joint surveys, 19th U. S. Symposium on Rock Mechanics: 56–65.
    Bear. 1972. Dynamics of fluids in porous media, Dover Publications.
    Borgne TL, Bour O, Paillet FL, et al. 2006. Assessment of preferential flow path connectivity and hydraulic properties at single-borehole and cross-borehole scales in a fractured aquifer. Journal of Hydrology, 328(1-2): 347-359. doi:  10.1016/j.jhydrol.2005.12.029
    Cacas MC. 1990. Modeling fracture flow with a stochastic discrete fracture network: Calibration and Validation 1. The flow model. Water Resources Research, 26(3): 491-500. doi:  10.1029/WR026i003p00491
    Cao C, Xu ZG, Chai JR, et al. 2019. Radial fluid flow regime in a single fracture under high hydraulic pressure during shear process. Journal of Hydrology, 579: 124-142. doi:  10.1016/j.jhydrol.2019.124142
    Dershowitz WS, Einstein HH. 1988. Characterizing rock joint geometry with joint system models. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 21(1): 21-51. doi:  10.1007/BF01019674
    Dverstorp B, Andersson J, Nordqvist W. 1992. Discrete fracture network interpretation of field tracer migration in sparsely fractured rock. Water Resources Research, 28(9): 2327-2343. doi:  10.1029/92WR01182
    Gong Y, Mehana M, El-Monier I, et al. 2020. Proppant placement in complex fracture geometries: A computational fluid dynamics study. Journal of Natural Gas Science and Engineering, 79: 103295. doi:  10.1016/j.jngse.2020.103295
    Grechka V, Kachanov M. 2006. Effective elasticity of rocks with closely spaced and intersecting cracks. Geophysics. 71: 85-91.
    Guo JC, Zheng J, Lyu Q, et al. 2020. A procedure to estimate the accuracy of circular and elliptical discs for representing the natural discontinuity facet in the discrete fracture network models. Computers and Geotechnics, 121: 103483. doi:  10.1016/j.compgeo.2020.103483
    Hartley L, Roberts D. 2013. Summary of discrete fracture network modelling as applied to hydrogeology of the Forsmark and Laxemar sites, Swedish: 8-9.
    Hunter Rouse. 1946. Elementary mechanics of fluids. New York, John Wiley & Sons, Inc. Chapter, 7: 192-226.
    Hu YJ, Mao GH, Cheng WP, Zhang JJ. 2005. Theoretical and experimental study on flow distribution at fracture intersections,. Journal of Hydraulic Research, 43(3): 321-327. doi:  10.1080/00221680509500126
    Jing LR. 2007. The basics of fracture system characterization – Field mapping and stochastic simulations. Developments in geotechnical engineering, 85: 147-177. doi:  10.1016/s0165-1250(07)85005-x
    Johnson J, Brown S, Stockman H. 2006. Fluid flow and mixing in rough-walled fracture intersections. Journal of Geophysical Research: Solid Earth, 111(B12).
    Kemler E. 1933. A study of the sata on the flow of fluid in pipes. Transactions of the ASME. 55 (Hyd-55-2): 7–32.
    Kolditz O. 2001. Non‐linear flow in fractured rock. International Journal of Numerical Methods for Heat & Fluid Flow, 11(6): 547-575. doi:  10.1108/eum0000000005668
    Koudina N, Gonzalez Garcia R, Thovert JF, et al. 1998. Permeability of three-dimensional fracture networks. Physical Review E, 57(4): 4466-4479. doi:  10.1103/physreve.57.4466
    Lei Q, Latham JP, Tsang CF. 2017. The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Computers and Geotechnics, 85: 151-176. doi:  10.1016/j.compgeo.2016.12.024
    Liu R, Jiang Y, Li B. 2016. Effects of intersection and dead-end of fractures on nonlinear flow and particle transport in rock fracture networks. Geosciences Journal, 20(3): 415-426. doi:  10.1007/s12303-015-0057-7
    Long JCS, Gilmour P, Witherspoon PA. 1985. A model for steady fluid flow in random three-dimensional networks of disc-shaped fractures. Water Resources Research, 21(8): 1105-1115. doi:  10.1029/wr021i008p01105
    Moody LF, Princeton NJ. 1944. Friction factors for pipe flow. Transactions of the ASME, 66: 671-684.
    Petchsingto T, Karpyn ZT. 2009. Deterministic modeling of fluid flow through a CT-scanned fracture using computational fluid dynamics. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 31(11): 897–905.
    Pollard DD. 1976. On the form and stability of open hydraulic fractures in the earth’s crust. Geophysical Research Letters, 3(9): 513-516. doi:  10.1029/GL003i009p00513
    Pruess K. 1998. On water seepage and fast preferential flow in heterogeneous, unsaturated rock fractures. Journal of Contaminant Hydrology, 30(3-4): 333-362. doi:  10.1016/s0169-7722(97)00049-1
    Reza J, Maria K et al. 2018. A multi-scale approach to identify and characterize preferential flow paths in a fractured crystalline rock. Proceedings of the 52nd U. S. Rock Mechanics/Geomechanics Symposium 17-20, Seattle: Washington.
    Su GW, Geller JT, Pruess K et al. 2001. Solute transport along preferential flow paths in unsaturated fractures. Water Resources Research, 37(10): 2481-2491. doi:  10.1029/2000wr000093
    Tuckwell GW, Lonergan L, Jolly RJH. 2003. The control of stress history and flaw distribution on the evolution of polygonal fracture networks. Journal of Structural Geology 25(8): 1241–1250.
    Vu MN, Pouya A, Seyedi DM. 2018. Effective permeability of three-dimensional porous media containing anisotropic distributions of oriented elliptical disc-shaped fractures with uniform aperture. Advances in Water Resources, 118: 1-11. doi:  10.1016/j.advwatres.2018.05.014
    Wang M, Kulatilake PHSW, Um J, et al. 2002. Estimation of REV size and three dimensional hydraulic conductivity tensor for a fractured rock mass through a single well packer test and discrete fracture fluid flow modeling. International Journal of Rock Mechanics and Mining Sciences, 39(7): 887-904. doi:  10.1007/s00603-018-1422-4
    Wang Y, Liu YG, Bian K, et al. 2020. Seepage-heat transfer coupling process of low temperature return water injected into geothermal reservoir in carbonate rocks in Xian County, China. Journal of Groundwater Science and Engineering, 8(4): 305-314. doi:  10.19637/j.cnki.2305-7068.2020.04.001
    Wilson CR, Witherspoon PA. 1976. Flow interference effects at fracture intersections. Water Resources Research, 12(1): 102-104. doi:  10.1029/wr012i001p00102
    Witherspoon PA, Wang JSY, Gale JE. 1980. Validity of cubic law for fluid flow in a deformable rock fracture. Water Resources Research, 16(6): 1016-1024. doi:  10.1029/WR016i006p01016
    Xiong F, Wei W, Xu C, et al. 2020. Experimental and numerical investigation on nonlinear flow behaviour through three dimensional fracture intersections and fracture networks. Computers and Geotechnics, 121, May 103446.
    Zimmerman RW, Al-Yaarubi A, Pain CC, et al. 2004. Non-linear regimes of fuid fow in rock fractures. International Journal of Rock Mechanics and Mining Sciences, 41(1): 1-7. doi:  10.1016/j.ijrmms.2004.03.036
    Zhang Z, Nemcik J, Ma S. 2013. Micro- and macro-behaviour of fluid flow through rock fractures: An experimental study. Hydrogeology Journal, 21(8): 1717-1729. doi:  10.1007/s10040-013-1033-9
  • [1] Sun Yu-kun, Liu Feng, Wang Hua-jun, Gao Xin-zhi2022:  Numerical simulation of operation performance on production and injection of a double well geothermal system in Kailu Basin, Inner Mongolia, Journal of Groundwater Science and Engineering, 10, 196-208. doi: 10.19637/j.cnki.2305-7068.2022.02.008
    [2] Gao Fei, Liu Feng, Wang Hua-jun2021:  Numerical modelling of the dynamic process of oil displacement by water in sandstone reservoirs with random pore structures, Journal of Groundwater Science and Engineering, 9, 233-244. doi: 10.19637/j.cnki.2305-7068.2021.03.006
    [3] LIU Feng, WANG Gui-ling, ZHANG Wei, YUE Chen, TAO Li-bo2020:  Using TOUGH2 numerical simulation to analyse the geothermal formation in Guide basin, China, Journal of Groundwater Science and Engineering, 8, 328-337. doi: 10.19637/j.cnki.2305-7068.2020.04.003
    [4] Rasoul Daneshfaraz, Ehsan Aminvash, Reza Esmaeli, Sina Sadeghfam, John Abraham2020:  Experimental and numerical investigation for energy dissipation of supercritical flow in sudden contractions, Journal of Groundwater Science and Engineering, 8, 396-406. doi: 10.19637/j.cnki.2305-7068.2020.04.009
    [5] ZHANG Chun-chao, HOU Xin-wei, LI Xiang-quan, WANG Zhen-xing, GUI Chun-lei, ZUO Xue-feng, MA Jian-fei, GAO Ming2020:  Numerical simulation and environmental impact prediction of karst groundwater in Sangu Spring Basin, China, Journal of Groundwater Science and Engineering, 8, 210-222. doi: 10.19637/j.cnki.2305-7068.2020.03.002
    [6] LI Wen-yon, FU Li, ZHU Zheng-feng2019:  Numerical simulation and land subsidence control for deep foundation pit dewatering of Longyang Road Station on Shanghai Metro Line 18, Journal of Groundwater Science and Engineering, 7, 133-144. doi: 10.19637/j.cnki.2305-7068.2019.02.004
    [7] Babak Ghazi, Rasoul Daneshfaraz, Esmaeil Jeihouni2019:  Numerical investigation of hydraulic characteristics and prediction of cavitation number in Shahid Madani Dam's Spillway, Journal of Groundwater Science and Engineering, 7, 323-332. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.003
    [8] XU Jun-xiang, WANG Shao-juan, LI Chang-suo, XING Li-ting2019:  Numerical analysis and evaluation of groundwater recession in a flood detention basin, Journal of Groundwater Science and Engineering, 7, 253-263. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.006
    [9] ZHAN Jiang, LI Wu-jin, LI Zhi-ping, ZHAO Gui-zhang2018:  Indoor experiment and numerical simulation study of ammonia-nitrogen migration rules in soil column, Journal of Groundwater Science and Engineering, 6, 205-219. doi: 10.19637/j.cnki.2305-7068.2018.03.006
    [10] ZHU Heng-hua, JIA Chao, XU Yu-liang, YU Ze-min, YU Wei-jiang2018:  Study on numerical simulation of organic pollutant transport in groundwater northwest of Laixi, Journal of Groundwater Science and Engineering, 6, 293-305. doi: 10.19637/j.cnki.2305-7068.2018.04.005
    [11] LI Lu-lu, SU Chen, HAO Qi-chen, SHAO Jing-li2018:  Numerical simulation of response of groundwater flow system in inland basin to density changes, Journal of Groundwater Science and Engineering, 6, 7-17. doi: 10.19637/j.cnki.2305-7068.2018.01.002
    [12] GUO Chun-yan, CUI Ya-li, LIU Wen-na, CUI Xiang-xiang, FEI Yu-hong2018:  Research on numerical simulation of the groundwater funnels restoration in Shijiazhuang, Journal of Groundwater Science and Engineering, 6, 126-135. doi: 10.19637/j.cnki.2305-7068.2018.02.006
    [13] LIU Jun-qiu, XIE Xin-min2016:  Numerical simulation of groundwater and early warnings from the simulated dynamic evolution trend in the plain area of Shenyang, Liaoning Province (P.R. China), Journal of Groundwater Science and Engineering, 4, 367-376.
    [14] CHENG Tang-pei, LIU Xing-wei, SHAO Jing-Li, CUI Ya-li2016:  Review of the algebraic linear methods and parallel implementation in numerical simulation of groundwater flow, Journal of Groundwater Science and Engineering, 4, 12-17.
    [15] YANG Yun, WU Jian-feng, LIU De-peng2015:  Numerical modeling of water yield of mine in Yangzhuang Iron Mine, Anhui Province of China, Journal of Groundwater Science and Engineering, 3, 352-362.
    [16] WEI Jia-hua, CHU Hai-bo, WANG Rong, JIANG Yuan2015:  Numerical simulation of karst groundwater system for discharge prediction and protection design of spring in Fangshan District, Beijing, Journal of Groundwater Science and Engineering, 3, 316-330.
    [17] Ya-feng CHEN, Qiang ZHANG, Shi-jie XIE2014:  Application of Tracer Experiments to Predict Leakage Channel-An Example of a Power Plant in Zhen'An, Journal of Groundwater Science and Engineering, 2, 49-55.
    [18] LU Chuan, LI Long, LIU Yan-guang, WANG Gui-ling2014:  Capillary Pressure and Relative Permeability Model Uncertainties in Simulations of Geological CO2 Sequestration, Journal of Groundwater Science and Engineering, 2, 1-17.
    [19] Zong-jun Gao, Yong-gui Liu2013:  Groundwater Flow Driven by Heat, Journal of Groundwater Science and Engineering, 1, 22-27.
    [20] Aizhong Ding, Lirong Cheng, Steve Thornton, Wei Huang, David Lerner2013:  Groundwater quality Management in China, Journal of Groundwater Science and Engineering, 1, 54-59.
  • 加载中
图(7) / 表ll (4)
计量
  • 文章访问数:  474
  • HTML全文浏览量:  209
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-12
  • 录用日期:  2021-12-28
  • 网络出版日期:  2022-03-24
  • 刊出日期:  2022-03-15

目录

    /

    返回文章
    返回