• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Indication of hydrogen and oxygen stable isotopes on the characteristics and circulation patterns of medium-low temperature geothermal resources in the Guanzhong Basin, China

Ma Feng Wang Gui-ling Sun Hong-li Sun Zhan-xue

Ma F, Wang GL, Sun HL, et al. 2022. Indication of hydrogen and oxygen stable isotopes on the characteristics and circulation patterns of medium-low temperature geothermal resources in the Guanzhong Basin, China. Journal of Groundwater Science and Engineering, 10(1): 70-86 doi:  10.19637/j.cnki.2305-7068.2022.01.007
Citation: Ma F, Wang GL, Sun HL, et al. 2022. Indication of hydrogen and oxygen stable isotopes on the characteristics and circulation patterns of medium-low temperature geothermal resources in the Guanzhong Basin, China. Journal of Groundwater Science and Engineering, 10(1): 70-86 doi:  10.19637/j.cnki.2305-7068.2022.01.007

doi: 10.19637/j.cnki.2305-7068.2022.01.007

Indication of hydrogen and oxygen stable isotopes on the characteristics and circulation patterns of medium-low temperature geothermal resources in the Guanzhong Basin, China

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Main fracture distributions and tectonic zoning of the Guanzhong Basin

    Figure  2.  Distribution of sampling points of hydrogen-oxygen stable isotopes in study area

    Figure  3.  The isoline map of δD value of geothermal water in Guanzhong Basin

    Figure  4.  The isoline map of δ18O value of geothermal water in Guanzhong Basin

    Figure  5.  δ2H versus δ18O plot of geothermal water in Guanzhong Basin

    Figure  6.  Plots of δ18O value versus depth (a) and temperature(b) of geothermal water in Guanzhong Basin

    Figure  7.  Diagrams of δ18O value versus TDS, Sr, HCO3-, SO42-, SiO2 and Br of geothermal water in Guanzhong Basin

    Figure  8.  Relation between δ18O value of geothermal water in Guanzhong Basin and δ13C and 14C

    Figure  9.  Underground d-excess parameter (d) characteristic lines of Guanzhong Basin

    Figure  10.  Underground d-excess parameter (d) isoline of Guanzhong Basin

    Figure  11.  Hydrogen-oxygen isotope relation of geothermal water of different genetic types

    Figure  12.  Triangular chart of geothermal water in Guanzhong Basin

    Figure  13.  Classification of geothermal water storage environments in Guanzhong Basin

    Figure  14.  Four types of geothermal water storage environments in Guanzhong Basin

    Table  1.   The result of hydrogen-oxygen stable isotopes in study area

    Sample NO.DepthTemperaturepHδD/‰δ18O/‰Sample NO.DepthTemperaturepHδD/‰δ18O/‰
    Surface water q014 1 672.08 66 8.57 –79.42 –11.25
    R001 - 17.5 7.63 –61.24 –8.87 q031 2 850 88 8.22 –84.63 –9.17
    R005 - 17.5 7.38 –57.1 –8.28 q035 496.8 68.3 8.76 –84.93 –12.52
    R007 - 17.5 7.83 –66.92 –9.14 q036 573 49.6 8.66 –82.57 –11.43
    R008 - 17.5 7.53 –68.4 –9.28 q037 1 360 57 8.32 –80.02 –11.18
    R009 - 17.5 7.47 –65.1 –9.05 q039 1 500 54 8.86 –84.01 –11.4
    Outside basin q043 2 402 23.5 8.35 –87.71 –4.73
    q008 580 45 8.23 –86.51 –12.9 q045 2 700 96 8.32 –83.28 –5.12
    q041 250.27 58.2 8.02 –73.51 –10.61 q046 3 000 91 8.36 –78.1 –8.72
    q042 530 43 8.31 –78.92 –11.38 q048 1 750 69 8.15 –82.36 –7.27
    q056 648.08 33.7 8.34 –78.44 –11.51 q057 2 685.3 80 7.9 –79.57 –9.44
    Baoji bulging(BJ) q058 2 905.3 86 7.88 –81.62 –9.84
    q006   28.9 7.55 –71.46 –10.62 q060 1 450 55 7.94 –83.89 –11.46
    q009 1 462 46 8.39 –82.24 –11.9 q075 1 650 85 8.88 –85.02 –11.92
    q015 2 470 53 7.85 –85.23 –11.47 q077 2 000.2 65 8.26 –84.48 –9.34
    q028 1 602.6 51.2 8.56 –85.54 –11.65 q078 2 731.86 80 8.11 –84.74 –6.85
    q029 350.5 72 8.39 –86.34 –12.06 q079 3 479.35 112 8.39 –85.29 –3.48
    q033 450.5 64 8.87 –86.2 –12.65 q083 3 000 93 8.58 –85.64 –5.89
    q034 282 68 8.77 –88.06 –12.82 q084 3 015.9 98 8.68 –83.19 –8.05
    q071 -  29 8.27 –81.88 –11.85 q090 1 601.9 65 7.77 –84.38 –7.22
    S001 1 450 29 8.32 –70.4 –8.1 q091 1 958 69.5 8.41 –77.24 –8.81
    S002 1 114.35 39.2 8.27 –76.8 –11.5 q092 3 558 94 7.65 –84.07 –2.3
    S003 400.18 41.5 8.16 –81.8 –11.1 q094 3 355 102 7.81 –87.3 –3.48
    S004 400 41.5 8.32 –72.3 –10.6 q095 2 658 92 8.3 –81.41 –8.56
    S005 Spring 30 8.36 –69 –9.6 q096 2 003.17 52 8.64 –83.5 –11.44
    S015 1253 47 8.25 –70.8 –9.2 q097 2 211.8 81 8.15 –84.45 –10.22
    Xianli fault-step(XL) q098 2 651.7 99 8.46 –85.17 –3.65
    q030 3 050 90 7.98 –82.6 –8.08 q099 2 500   8.47 –83.5 –9.18
    q080 2 700 70 7.83 –85 –7.8 S014 1 450 40 8.23 –76.6 –11.611
    q086 2 800 90 8.28 –85.95 –10.41 Pucheng bulging(PC)
    q087 2 105.8 65 7.96 –85.07 –10.3 q016 169 29.5 8.2 –74.92 –9.79
    q088 1 901.68 53 7.65 –76.45 –10.24 q017 160 27.5 8.17 –73.22 –9.72
    q093 2 975 90 7.71 –83.9 –2.85 q018 150 27.8 8.08 –73.16 –9.77
    S008 2 787 71 8.03 –68.1 –6.7 q019 210 28.6 8.16 –72.66 –10
    S020 1 751 72 8.14 –71.6 –6 q020 300 41 7.79 –75.6 –10.25
    S022 2 471 90 7.95 –66.3 –3.8 q021 520 27 8.1 –74.16 –10.01
    S023 3 553 94 7.89 –70.6 –4.5 q022 2 000 63 8.23 –87.78 –9.87
    S024 2 000 74 8.31 –69.3 –4.4 q023 651.8 25.5 8.33 –69.47 –9.37
    S025 2 818 89 8.03 –66 –3.7 q024 270 26 8.32 –69.12 –9.72
    S028 3 500.3 120 7.96 –71 –5.3 q025 430 28 7.68 –73.06 –10.14
    S029 2 905.3 86 7.88 –71.5 –9.34 q026 2 452 75 8.16 –83.59 –7.98
    S030 2 013 80 8.15 –70.8 –9.07 q049 651.5 28 8.22 –74.11 –10.23
    Linlan bulging(LL) q050 1 050 33 8.13 –77.17 –11.26
    q027 2 625.5 63 8.34 –81.22 –9.75 q051 778.3 42 8.16 –75.99 –10.86
    q032 1 500 56 8.81 –85.01 –12.03 q073 2 600 105 7.3 –68.23 –3.69
    q038 1 772 56 8.78 –84.58 –11.61 q085 2 857.8 96 8.64 –84.09 –9.36
    q040 2 060 79 8.41 –85.85 –11.6 q089 800 35 7.74 –76.81 –10.2
    q052 854.3 49 8.68 –78.74 –11.36 Gushi depression(GS)
    q053 10.7 44.6 8.33 –72.36 –10.46 q001 2 470 71 8.41 –85.23 –7.23
    q055 2 136.9 52 8.34 –81.48 –10.54 q002 2 403 78 7.98 –85.93 –7.32
    q061 455.9 54.5 8.76 –76.4 –10.94 q003 2 341 68 8.13 –85.4 –7.67
    q062 652.8 58 8.92 –82.27 –11.74 q004 2 790 80 7.31 –72.37 –7.25
    q072 1 012.6 53 8.73 –83.25 –11.99 q007   22.1 8.16 –69.68 –10
    q076 1 985 55 8.56 –81.65 –11.34 q044 2 870 100 8 –75.41 –3.96
    q100 3 230 81 8.05 –85.14 –5.53 q059 1 669.7 61.5 8.76 –87.02 –11.92
    S006 Spring 11 - –71.3 –10.1 q069 3 258.7 63 7.94 –85.06 –7.66
    S007 Spring 43 - –69.1 –9.8 q070 3 200 101 7.5 –84.45 –2.3
    S018 460 55 - –72.9 –10.8 S009 3 008.9 100 - –54.5 –1.7
    S019 1 550 50 - –76.2 –11 S010 2451 92 - –56.4 –2.7
    Xi’an Depression(XA S011 2600 105 - –61.1 –3.21
    q005 2100 35.2 8.83 –85.01 –11.68 S012 854 49.5 - –71.9 –10.4
    q010 3 258.7 92 8.63 –85.37 –8.41 S013 1 500.3 55 - –68.9 –9.5
    q011 2 096 81.5 8 –85.43 –10.99 Qinling(QL)
    q012 2 436.5 52 8.6 –84.32 –10.94 S041 0 16 7.83 –71 –9.9
    q013 3 005 80 8.53 –83.08 –9.4 S042 0 16 7.52 –81 –11.4
    下载: 导出CSV
  • Chandrajith R, Barth JAC, Subasinghe ND, et al. 2013. Geochemical and isotope characterization of geothermal spring waters in Sri Lanka: Evidence for steeper than expected geothermal gradients. Journal of Hydrology, 476: 360-369. doi:  10.1016/j.jhydrol.2012.11.004
    Clayton RN, Steiner A. 1975. Oxygen isotope studies of the geothermal system at Wairakei, New Zealand. Geochimicaet Cosmochimica Acta, 39(8): 1179-1186. doi:  10.1016/0016-7037(75)90059-9
    Craig H. 1961. Isotopic variations in meteoric waters. Science, 133(3465): 1702-1703. doi:  10.1126/science.133.3465.1702
    Craig H. 1966. Isotopic composition and origin of the Red Sea and Salton Sea geothermal brines. Science, 154(3756): 1544-1548. doi:  10.1126/science.154.3756.1544
    Dansgaard W. 1964. Stable isotopes in precipitation. Tellus, 15(4): 436-468.
    Diamond RE, Harris C. 2000. Oxygen and hydrogen isotope geochemistry of thermal springs of the Western Cape, South Africa: Recharge at high altitude? Journal of African Earth Sciences, 31(3): 467-481.
    Dotsika E, Poutoukis D, Raco B. 2010. Fluid geochemistry of the Methana Peninsula and Loutraki geothermal area, Greece. Journal of Geochemical Exploration, 104(3): 97-104. doi:  10.1016/j.gexplo.2010.01.001
    Dotsika E. 2012. Isotope and hydrochemical assessment of the Samothraki Island geothermal area. Journal of Volcanology and Geothermal Research, 233-234: 18-26. doi:  10.1016/j.jvolgeores.2012.04.017
    Giggenbach WF, Glover RB. 1992. Tectonic regime and major processes governing the chemistry of water and gas discharges from the Rotorua geothermal field, New Zealand. Geothermics, 21(1-2): 121-140. doi:  10.1016/0375-6505(92)90073-I
    Guo Q, Pang ZH, Wang YC, et al. 2017. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in Eastern Himalayas. Applied Geochemistry, 81: 63-75. doi:  10.1016/j.apgeochem.2017.03.007
    Hu Y, Ma ZY, Yu J, et al. 2009. Estimation of the making-up temperature of geothermy water and the thermal reservoir temperature in Guanzhong Basin. Journal of Earth Sciences and Environment, 31(02): 173-176.
    Jiao T, Zpab C, YwabC, et al. 2019. Fluid geochemistry of the Cuopu high temperature geothermal system in the eastern Himalayan syntaxis with implication on its genesis. Applied Geochemistry, 110: 104422. doi:  10.1016/j.apgeochem.2019.104422
    Jiang G, Gao P, Rao S, et al. 2017. Compilation of heat flow data in the continental area of China (4th edition). Chinese journal of geophysics-chinese edition, 59(7): 2892-2910.
    Komatsu S, Okano O, Ueda A. 2021. Chemical and isotopic (H, O, S, and Sr) analyses of groundwaters in a non-volcanic region, Okayama prefecture, Japan: Implications for geothermal exploration. Geothermics, 91: 102005. doi:  10.1016/j.geothermics.2020.102005
    Li XC, Ma ZY, Zhang XL, et al. 2016. Genetic model of the Dongda geothermal field in Guanzhong Basin, Shaanxi Province. Geology in China, 43(06): 2082-2091.
    Liu F, Jin H, Mu G. 2009. Investigation and evaluation report of geothermal resources in Guanzhong Basin. Shaanxi Province. Xi’an: Shaanxi Institute of Geo-Environment Monitoring.
    Luo L, Pang ZH, Liu JX, et al. 2017. Determining the recharge sources and circulation depth of thermal waters in Xianyang geothermal fifield in Guanzhong Basin: The controlling role of Weibei Fault. Geothermics, 69: 55-64.
    Majumdar N, Majumdar RK, Mukherjee AL, et al. 2005. Seasonal variations in the isotopes of oxygen and hydrogen in geothermal waters from Bakreswar and Tantloi, Eastern India: Implications for groundwater characterization. Journal of African Earth Sciences, 25(2): 269-278.
    Majumdar N, Mukherjee AL, Majumdar RK. 2009. Mixing hydrology and chemical equilibria in Bakreswar geothermal area, Eastern India. Journal of Volcanology and Geothermal Research, 183(3): 201-212.
    Ma Y. 2007. Water-rock interaction and genesis of low-medium temperature thermal groundwater in carbonate reservoir. China University of Geosciences.
    Ma ZY, Zhang XL, He D, et al. 2016. A study of 36Cl age for the deep geothermal water in the Guanzhong Basin. Hydrogeology and Engineering Geology, 43(01): 157-163.
    Ma ZY, Fang JJ, Niu GL, et al. 2006. Classification of thermal water in Guanzhong Area, Shaanxi Province. Coal GeolExplor, 33: 54-58.
    Ma ZY, Wang XG, Su Y, et al. 2008. Oxygen and hydrogen isotope exchange and its controlling factors in subsurface geothermal waters in the central Guanzhong Basin, Shaanxi, China. Geological Bulletin of China, 27(06): 888-894.
    Pang ZH, Fan ZC, Wang JX. 1990. The study on stable oxygen and hydrogen isotopes in the Zhangzhou Basin hydrothermal system. Acta Petrol Sin, 11(04): 75-84.
    Pinti DL, Castro MC, Shoaukar-Stash O, et al. 2013. Evolution of the geothermal fluids at Los Azufres, Mexico, as traced by noble gas isotopes, δ18O, δD, δ13C and 87Sr/86Sr. Volcanology and Geothermal Research, 249: 1-11. doi:  10.1016/j.jvolgeores.2012.09.006
    Pinti D L, Shouakar-Stash O, Castro M C, et al. 2020. The bromine and chlorine isotopic composition of the mantle as revealed by deep geothermal fluids. Geochimica et Cosmochimica Acta, 276: 14-30. doi:  10.1016/j.gca.2020.02.028
    Qin DJ, Pan ZH, Turner JV, et al. 2005. Isotopes of geothermal water in Xi’an area and implications on its relation to karstic groundwater in North Mountains. Acta Petrologica Sinica, 21(05): 1489-1500.
    Richard L, Pinti D L, Helie J F, et al. 2019. Variability of deep carbon sources in Mexican geothermal fluids. Journal of Volcanology & Geothermal Research, 370(1): 1-12.
    Singh P, Mukherjee S. 2019. Chemical signature detection of groundwater and geothermal waters for evidence of crustal deformation along fault zones. Journal of Hydrology, 582(4): 124459.
    Sun HL, Ma F, Liu Z, et al. 2015. The distribution and enrichment characteristics of fluoride in geothermal active area in Tibet. China Environmental Science, 35(01): 251-259.
    Sun HL, Ma F, Lin WJ, et al. 2015. Geochemical characteristics and application of geothermal temperature scales of high-temperature geothermal fields in Tibet. GeolSci Tech Inf, 34: 171-177.
    Sun ZX, Li XL. 2001. Studies of geothermal waters in Jiangxi Province using isotope techniques. Science in China Series E: Technological Sciences, 44(1): 144-150.
    Tan H, Zhang W, Chen J, et al. 2012. Isotope and geochemical study for geothermal assessment of the Xining basin of the northeastern Tibetan Plateau. Geothermics, 42: 47-55. doi:  10.1016/j.geothermics.2012.01.001
    Wang C, Zheng M, Zhang X, et al. 2020. O, H, and Sr isotope evidence for origin and mixing processes of the Gudui geothermal system, Himalayas, China. Geoscience Frontiers, 11: 1175-1187. doi:  10.1016/j.gsf.2019.09.013
    Wang GL, Liu ZM, Lin WJ. 2004. Tectonic control of geothermal resources in the peripheral of Ordos Basin. Acta Geologica Sinica, 78(01): 44-51.
    Wang GL, Zhang W, Liang JY, et al. 2017. Evaluation of geothermal resources potentials in China. Acta Geoscientica Sinica, 38(4): 449-459.
    Wang J. 1996. Low-temperature convection geothermal system. Earth Sci Front., 3: 96-100.
    Wang JX, Huang SP. 1989. Statistical analysis of continental heat flow data from China. Chinese Science Bulletin, 34(07): 582-587.
    Yan H, Ma Z, Li T, et al. 2012. Environmental isotope hydrogeochemical characteristics and instructions of geothermal water in Xianyang Urban Area. Advanced Materials Research, 1793: 4161-4164.
    Yao TD, Xu BQ, Pu JC. 2001. Temperature changes of orbital and sub-orbital time scales recorded in the Guliya Ice Core on the Qinghai-Tibetan Plateau. Science in China (Series D), 31: 288-294.
    Zhang S. 1989. Study of the hydrogen-oxygen isotope composition characteristics of modern atmospheric precision in Shaanxi Province. Shaanxi Geology, 7: 57-66.
  • [1] Ying-nan Zhang, Yan-guang Liu, Kai Bian, Guo-qiang Zhou, Xin Wang, Mei-hua Wei2024:  Development status and prospect of underground thermal energy storage technology, Journal of Groundwater Science and Engineering, 12, 92-108. doi: 10.26599/JGSE.2024.9280008
    [2] GUI Chun-lei, WANG Zhen-xing, MA Rong, ZUO Xue-feng2021:  Aquifer hydraulic conductivity prediction via coupling model of MCMC-ANN, Journal of Groundwater Science and Engineering, 9, 1-11. doi: 10.19637/j.cnki.2305-7068.2021.01.001
    [3] Demisse Habtamu Semunigus, Ayalew Abebe Temesgen, Ayana Melkamu Teshome, Lohani Tarun Kumar2021:  Extenuating the parameters using HEC-HMS hydrological model for ungauged catchment in the central Omo-Gibe Basin of Ethiopia, Journal of Groundwater Science and Engineering, 9, 317-325. doi: 10.19637/j.cnki.2305-7068.2021.04.005
    [4] Ma Xin, Wen Dong-guang, Yang Guo-dong, Li Xu-feng, Diao Yu-jie, Dong Hai-hai, Cao Wei, Yin Shu-guo, Zhang Yan-mei2021:  Potential assessment of CO2 geological storage based on injection scenario simulation: A case study in eastern Junggar Basin, Journal of Groundwater Science and Engineering, 9, 279-291. doi: 10.19637/j.cnki.2305-7068.2021.04.002
    [5] SUN Dong, LIU Xin-ze, YANG Hai-jun, CAO Nan, ZHANG Zhi-peng, CHEN Yin-song, LI Da-meng2019:  Analysis of hydrogeolgical characteristics and water environmental impact pathway of typical shale gas exploration and development zones in Sichuan Basin, China, Journal of Groundwater Science and Engineering, 7, 195-213. doi: 10.19637/j.cnki.2305-7068.2019.03.001
    [6] SOSI Benjamin, BARONGO Justus, GETABU Albert, MAOBE Samson2019:  Electrical-hydraulic conductivity model for a weathered-fractured aquifer system of Olbanita, Lower Baringo Basin, Kenya Rift, Journal of Groundwater Science and Engineering, 7, 360-372. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.007
    [7] Nouayti Abderrahime, Khattach Driss, Hilali Mohamed, Nouayti Nordine2019:  Mapping potential areas for groundwater storage in the High Guir Basin (Morocco):Contribution of remote sensing and geographic information system, Journal of Groundwater Science and Engineering, 7, 309-322. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.002
    [8] LI Bo, LI Xue-mei2018:  Characteristics of karst groundwater system in the northern basin of Laiyuan Spring area, Journal of Groundwater Science and Engineering, 6, 261-269. doi: 10.19637/j.cnki.2305-7068.2018.04.002
    [9] HOU Guang-cai, YIN Li-he, XU Dan-dan2017:  Hydrogeology of the Ordos Basin, China, Journal of Groundwater Science and Engineering, 5, 104-115.
    [10] TAO Hong, ZHENG Miao-miao, FAN Li-min, LI Wen-li, DING Jia, LI Hui, HE Xu-bo, TAO Fu-ping2017:  Research on quality changes and influencing factors of groundwater in the Guanzhong Basin, Journal of Groundwater Science and Engineering, 5, 296-302.
    [11] LIU Ji-chao, SHI Jian-sheng, GAO Ye-xin, REN Zhan-bing2016:  Exploration on compound water circulation system to solve water resources problems of North China Plain, Journal of Groundwater Science and Engineering, 4, 229-237.
    [12] LI Duo, WEI Ai-hua2016:  Analysis of influence of the power plant ash storage yard on groundwater environment, Journal of Groundwater Science and Engineering, 4, 35-40.
    [13] WANG Ji-ning, MENG Yong-hui2016:  Characteristics analysis and model prediction of sea-salt water intrusion in lower reaches of the Weihe River, Shandong Province, China, Journal of Groundwater Science and Engineering, 4, 149-156.
    [14] LIU Feng, CUI Ya-li, SHAO Jing-li, ZHANG Ge2015:  Research on hydrogen and oxygen isotopes of paleoclimate reconstruction in Nuomuhong, Journal of Groundwater Science and Engineering, 3, 238-246.
    [15] ZHANG Chun-chao, WANG Wen-Ke, SUN Yi-bo, LI Xiang-quan,HOU Xin-wei2015:  Processes of hydrogeochemical evolution of groundwater in the Guanzhong Basin, China, Journal of Groundwater Science and Engineering, 3, 136-146.
    [16] GAO Zong-jun, ZHU Zhen-hui, LIU Xiao-di, XU Yan-lan2014:  The Formation and Model of High Fluoride Groundwater and In-situ Dispelling Fluoride Assumption in Gaomi City of Shandong Province, Journal of Groundwater Science and Engineering, 2, 34-39.
    [17] ZHANG Wei2014:  Establishment of an assessment method for site-scale suitability of CO2 geological storage, Journal of Groundwater Science and Engineering, 2, 19-25.
    [18] Qing YI, Yan-pei CHENG, Jian-kang ZHANG2014:  Analysis on the Salt Content Characteristics of Southern Saline-Alkali Soil in Datong Basin and Its Causes, Journal of Groundwater Science and Engineering, 2, 63-72.
    [19] SU Chen, XU Cheng-yun, CHEN Zong-yu, WEI wen2014:  Comparison of hydrogeological characteristics between the Sanjiang Plain and the Amur River Basin, Journal of Groundwater Science and Engineering, 2, 26-34.
    [20] Lihe Yin, Hongyun Ma, Jiaqiu Dong, Xiaoyong Wang, Ying Li2013:  Using a Particle Tracking Method to Quantify Groundwater Circulation rates: a Case Study in the Ordos Plateau, Journal of Groundwater Science and Engineering, 1, 97-101.
  • 加载中
图(14) / 表ll (1)
计量
  • 文章访问数:  486
  • HTML全文浏览量:  197
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-27
  • 录用日期:  2022-01-26
  • 网络出版日期:  2022-03-24
  • 刊出日期:  2022-03-15

目录

    /

    返回文章
    返回