• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Using pore-solid fractal dimension to estimate residual LNAPLs saturation in sandy aquifers: A column experiment

Sun Lin Wang Shuai-wei Guo Cai-juan Shi Chan Su Wei-chao

Sun L, Wang SW, Guo CJ, et al. 2022. Using pore-solid fractal dimension to estimate residual LNAPLs saturation in sandy aquifers: A column experiment. Journal of Groundwater Science and Engineering, 10(1): 87-98 doi:  10.19637/j.cnki.2305-7068.2022.01.008
Citation: Sun L, Wang SW, Guo CJ, et al. 2022. Using pore-solid fractal dimension to estimate residual LNAPLs saturation in sandy aquifers: A column experiment. Journal of Groundwater Science and Engineering, 10(1): 87-98 doi:  10.19637/j.cnki.2305-7068.2022.01.008

doi: 10.19637/j.cnki.2305-7068.2022.01.008

Using pore-solid fractal dimension to estimate residual LNAPLs saturation in sandy aquifers: A column experiment

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Occurrence status of NAPLs in aquifers

    Figure  2.  Schematic diagram of soil column simulation test device

    Figure  3.  Scatter plot of NAPLs-CODcr

    Figure  4.  The log-log plot of lg(W/W0) and lg(Ri/Rmax) for each soil column

    Figure  5.  The best fitting curve of D-SR

    Figure  6.  Relationship between pore structure parameters and fractal dimension

    NOTES:(a) porosity - fractal dimension, (b) permeability coefficient - fractal dimension, (c) particle size variation coefficient - fractal dimension, (d) coarse grain content - fractal dimension, (e) medium sand content - Fractal dimension, (f) fine sand content - fractal dimension

    Figure  7.  Relationship between medium structure parameters and residual saturation of LNAPLs

    NOTES: (a) porosity - residual saturation, (b) permeability coefficient - residual saturation, (c) particle size variation coefficient - residual saturation, (d) coarse grain content - residual saturation, (e) medium sand content - residual saturation, (f) fine sand content - residual saturation.

    Figure  8.  Schematic diagram of pore structure of sand medium

    NOTES: 1-connected pores, 2-roars, 3-dead pores, 4-microcapillary pores, 5-particles, 6-isolated pores

    Figure  9.  The best fitting curve of fine sand content and D and SR

    NOTES: (a) fine sand content - fractal dimension, (b) fine sand content - residual saturation

    Table  4.   Key results

    Treatment1-11-22-12-23-13-24-14-2
    $ D $ Line 1 2.44 2.41 2.59 2.55 2.73 2.69 2.71 2.73
    Line 2 2.08 2.07 2.17 2.19 2.19 2.12 2.18 2.20
    Mean 2.26 2.24 2.38 2.37 2.46 2.41 2.45 2.47
    $ {S_R} $ (%)
    Residual saturation
    8.14 9.12 10.33 7.34 10.58 7.90 12.34 12.14
    $ {n_0} $ (%)
    Porosity
    46.45 44.91 47.90 47.18 51.09 50.70 49.06 48.46
    K(m/d)
    Permeability coefficient
    79.16 50.85 41.91 61.36 27.35 39.82 37.04 46.51
    $ {R_{Coarse - sand}} $
    Coarse sand (%)
    51.52 43.05 21.44 7.73
    $ {R_{Medium - sand}} $
    Medium sand (%)
    22.52 21.91 14.76 6.19
    $ {R_{Fine - sand}} $
    Fine sand (%)
    25.96 35.04 63.8 86.09
    $ RS{D_{sand}} $
    RSD of sand content (%)
    47.53 32.02 79.79 137.06
    NOTE:$ RS{D}_{sand}=\dfrac{SD({R}_{Coarse-sand},{R}_{Medium-sand},{R}_{Fine-sand})}{Average({R}_{Coarse-sand},{R}_{Medium-sand},{R}_{Fine-sand})}\times 100 $.
    下载: 导出CSV

    Table  1.   Particle ratio scheme of soil column medium

    TreatmentT1T2T3T4
    NO. 1-1 1-2 2-1 2-2 3-1 3-2 4-1 4-2
    下载: 导出CSV

    Table  2.   the observed results of the three permeability coefficients before the end of the residual LNAPLs formation experiment

    1-11-22-12-23-13-24-14-2
    Third from last 80.08 54.05 39.8 53.72 27.75 51.68 37.88 40.58
    Second from last 79.83 41.84 40.37 66.06 27.3 31.2 36.23 45.89
    Last 77.58 56.65 45.55 64.3 26.99 36.57 37.01 53.05
    RSD% 6 16 8 11 1 27 2 13
    下载: 导出CSV

    Table  3.   Volume of samples and particle size

    NO.Volume (cm3)Accumulated in particle size $ \dfrac{W}{{{W_0}}} $(%)
    $ {V_{soil}} $$ {V_{sand}} $$ {V_{oil}} $0.03-0.3 mm0.3-0.4 mm0.4-0.5 mm0.5-0.65 mm0.65-0.8 mm0.8-1 mm1-2 mm
    1-1 3377.20 1808.39 127.71 8.58 7.23 6.38 6.53 4.81 3.27 63.25
    1-2 3354.15 1847.72 137.35 7.97 6.88 6.09 6.40 4.74 3.46 64.46
    2-1 3384.92 1763.58 167.47 12.71 9.48 7.74 7.38 4.75 2.81 55.15
    2-2 3338.76 1763.58 115.66 13.05 9.41 7.76 7.56 5.09 3.27 53.87
    3-1 3365.69 1646.01 181.93 22.63 15.98 12.57 11.39 6.76 3.33 27.35
    3-2 3338.76 1646.01 133.73 19.82 15.68 12.81 12.01 7.40 3.90 28.39
    4-1 3323.38 1692.96 201.20 24.24 19.97 16.46 15.37 9.22 4.40 10.35
    4-2 3338.76 1720.87 196.39 24.86 19.93 16.39 15.24 9.00 4.02 10.56
    下载: 导出CSV

    Table  5.   Parameter relationship statistics and physical significance

    Structural parametersFractal dimensionResidual saturationSignificance
    Coarse sand content Negative correlation Negative correlation The smaller the pores, the larger the fractal dimension and the larger the residual saturation
    Medium sand content Negative correlation Negative correlation The smaller the pores, the larger the fractal dimension and the larger the residual saturation
    Fine sand content Positive correlation Positive correlation The smaller the pores, the larger the fractal dimension and the larger the residual saturation
    Coefficient of particle size variation Positive correlation Positive correlation The stronger the heterogeneity, the larger the fractal dimension and the larger the residual saturation.
    Porosity Positive correlation / The more pores, the larger the fractal dimension, but the change of residual saturation is not obvious
    Permeability
    coefficient
    Negative correlation / The worse the pore connectivity is, the larger the fractal dimension is, but the residual saturation does not change significantly
    NOTE: / means no relationship
    下载: 导出CSV
  • Celia MA, Reeves PC, Ferrand LA. 1995. Recent advances in pore scale models for multiphase flow in porous media. Reviews of Geophysics, 33(S2): 1049-1057. doi:  10.1029/95RG00248
    Cheng Y, Zhu J. 2021. Significance of mass–concentration relation on the contaminant source depletion in the nonaqueous phase liquid (NAPL) contaminated zone. Transport in Porous Media, 137(2): 399-416. (in Chinese) doi:  10.1007/s11242-021-01567-5
    Cheng Z, Wu JC, Xu HX, et al. 2014. Migration of DNAPL under the action of lens and surfactant. China Environmental Science, 34(11): 2888-2896. (in Chinese) doi:  10.3969/j.issn.1000-6923.2014.11.028
    Costa A. 2006. Permeability‐porosity relationship: A reexamination of the Kozeny‐Carman equation based on a fractal pore‐space geometry assumption. Geophysical research letters, 33(2): L02318. doi:  10.1029/2005GL025134
    Ezeh CG. 2019. Novel ideas for enhanced oil recovery and oil spill remediation in porous media. Tulane University School of Science and Engineering.
    Feng XD, Zhang Y, Ma YF, et al. 2019. Research status of NAPLs seepage characteristics and models in porous media. Journal of Shandong University of Technology (Natural Science Edition), 33(04): 15-18+23. (in Chinese) doi:  10.13367/j.cnki.sdgc.2019.04.003
    Forsyth PA, Shao BY. 1991. Numerical simulation of gas venting for NAPL site remediation. Advances in Water Resources, 14(6): 354-367. doi:  10.1016/0309-1708(91)90022-G
    Fetter CW, Boving TB, Kreamer DK. 1999. Contaminant hydrogeology. Upper Saddle River: Prentice hall: 178-218.
    Gao F, Liu F, Chen H H. 2008. Research progress on remediation of trichloroethylene-contaminated soil and groundwater pollution source areas. Advances in Earth Science, 23(08): 39-47. (in Chinese) doi:  10.3321/j.issn:1001-8166.2008.08.005
    Guo WM, Li ZP, Jia GL, et al. 2014. Quantitative interpretation of residual oil microdistribution and study on pore microstructure changes. Science Technology and Engineering(31): 32-36. (in Chinese) doi:  10.3969/j.issn.1671-1815.2014.31.006
    Han H, Ding Z, Dong C, et al. 2018. Fractal characteristics of bulk-mudrock, washed, and kerogen samples of Chang 7 member mudrocks from the Ordos Basin, China. Journal of Petroleum Science and Engineering, 170: 592-606. (in Chinese) doi:  10.1016/j.petrol.2018.07.004
    Hayden N, Diebold J, Farrell C, et al. 2006. Characterization and removal of DNAPL from sand and clay layered media. Journal of Contaminant Hydrology, 86(1/2): 53-71. doi:  10.1016/j.jconhyd.2006.02.008
    Hou ZY, Wang Y, Lu WX. 2019. An alternative model for multiphase flow simulation for groundwater DNAPLs pollution remediation. China Environmental Science, 39(7): 2913-2920. (in Chinese) doi:  10.3969/j.issn.1000-6923.2019.07.027
    Hunt JR, Sitar N, Udell KS. 1988. Nonaqueous phase liquid transport and cleanup: 1. Analysis of mechanisms. Water Resources Research, 24(8): 1247-1258. doi:  10.1029/WR024i008p01247
    Jia FS, Shen PP, Li KW. Fractal characteristics and application of sandstone pore structure. Fault Block Oil and Gas Field, 1995, 02(1): 16-21. (in Chinese).
    Kacem M, Esrael D, Boeije CS, et al. 2019. Multiphase flow model for NAPL infiltration in both the unsaturated and saturated zones. Journal of Environmental Engineering, 145(11): 04019072. doi:  10.1061/(ASCE)EE.1943-7870.0001586
    Karaoglu AG, Copty NK, Akyol NH, et al. 2019. Experiments and sensitivity coefficients analysis for multiphase flow model calibration of enhanced DNAPL dissolution. Journal of contaminant hydrology, 225: 103515. doi:  10.1016/j.jconhyd.2019.103515
    Kemblowski MW, Wen JC. 1993. Contaminant spreading in stratified soils with fractal permeability distribution. Water resources research, 29(2): 419-425. doi:  10.1029/92WR01861
    Khasi S, Ramezanzadeh M, Ghazanfari MH. 2020. Experimentally based pore network modeling of NAPL dissolution process in heterogeneous porous media. Journal of contaminant hydrology, 228: 103565. doi:  10.1016/j.jconhyd.2019.103565
    Le YX, Wang CJ. 2004. Using fractal conditional simulation and streamline model to predict the distribution of remaining oil and gas saturation. Natural Gas Geoscience, 15(1): 42-46. (in Chinese) doi:  10.3969/j.issn.1672-1926.2004.01.008
    Lei G, Mo S, Dong Z, et al. 2018. Theoretical and experimental study on stress-dependency of oil–water relative permeability in fractal porous media. Fractals, 26(02): 1840010. (in Chinese) doi:  10.1142/S0218348X18400108
    Li HY, Du XM, Yang B, et al. 2013. Capillary fingering morphology and fractal characterization of NAPLs fluids in porous media. Environmental Science (10): 334-341. (in Chinese)
    Li ZF, He SL, Yang WX, et al. 2006. Microphysical simulation of water flooding experiment and research on fractal characteristics of residual oil distribution. Journal of China University of Petroleum (Natural Science Edition), (03): 75-79, 84. (in Chinese).
    Liu HY, Tian ZY, Xu ZY. 2017. Quantitative evaluation of pore structure of carbonate reservoirs based on fractal characteristics. Lithologic Reservoirs, (5): 97-105. (in Chinese).
    Mackay D, Shiu WY, Maijanen A, et al. 1991. Dissolution of non-aqueous phase liquids in groundwater. Journal of Contaminant Hydrology, 8(1): 23-42. doi:  10.1016/0169-7722(91)90007-N
    Mackay DM, Cherry JA. 1989. Groundwater contamination: pump-and-treat remediation. Environmental Science & Technology, 23(6): 630-636. doi:  10.1021/es00064a001
    Mateas DJ, Tick GR, Carroll KC. 2017. In situ stabilization of NAPL contaminant source-zones as a remediation technique to reduce mass discharge and flux to groundwater. Journal of contaminant hydrology, 204: 40-56. doi:  10.1016/j.jconhyd.2017.07.007
    Mukhopadhyay S, Cushman JH. 1998. Diffusive transport of volatile pollutants in nonaqueous-phase liquid contaminated soil: A fractal model. Transport in porous media, 30(2): 125-154. doi:  10.1023/A:1006554303400
    Neuman SP. 1995. On advective transport in fractal permeability and velocity fields. Water Resources Research, 31(6): 1455-1460. doi:  10.1029/95WR00426
    Patmonoaji A, Muharrik M, Hu Y, et al. 2020. Three-dimensional fingering structures in immiscible flow at the crossover from viscous to capillary fingering. International Journal of Multiphase Flow, 122: 103147. doi:  10.1016/j.ijmultiphaseflow.2019.103147
    Ramezanzadeh M, Khasi S, Fatemi M, et al. 2020. Remediation of trapped DNAPL enhanced by SDS surfactant and silica nanoparticles in heterogeneous porous media: Experimental data and empirical models. Environmental Science and Pollution Research, 27(3): 2658-2669. doi:  10.1007/s11356-019-07194-4
    Rane K S, Goual L, Zhang B. 2020. Graphene wuantum dots for the mobilization and solubilization of nonaqueous phase liquids in natural porous media. ACS Applied Nano Materials, 3(11): 10691-10701. doi:  10.1021/acsanm.0c01937
    Saripalli KP, Rao PSC, Annable MD. 1998. Determination of specific NAPL-water interfacial areas of residual NAPLs in porous media using the interfacial tracers technique. Journal of contaminant hydrology, 30(3-4): 375-391. doi:  10.1016/S0169-7722(97)00052-1
    Soto MAA, Lenhard R, Chang HK, et al. 2019. Determination of specific LNAPL volumes in soils having a multimodal pore-size distribution. Journal of environmental management, 237: 576-584. doi:  10.1016/j.jenvman.2019.02.077
    Wang X, Lanning LM, Ford RM. 2016. Enhanced retention of chemotactic bacteria in a pore network with residual NAPL contamination. Environmental science & technology, 50(1): 165-172. doi:  10.1021/acs.est.5b03872
    White MD, Oostrom M, Lenhard RJ. 2004. A practical model for mobile, residual, and entrapped NAPL in water‐wet porous media. Groundwater, 42(5): 734-746. doi:  10.1111/j.1745-6584.2004.tb02727.x
    Wiedemeier, Todd H. 1999. Natural attenuation of fuels and chlorinated solvents in the subsurface. New York: John Wiley.
    Yang K, Xu SY. 2009. Research on microscopic residual oil experimental method. Fault block oil and gas fields, 16(4). (in Chinese) Doi: CNKI: SUN: DKYT.0.2009-04-026.
    Yu BM. 2003. Research progress on fractal analysis of transport properties in porous media. Advances in Mechanics, 33(3): 333-346. (in Chinese) doi:  10.3321/j.issn:1000-0992.2003.03.005
    Zhang GH, Ren XJ. 2011. Fractal characteristics of pore structure in low-permeability reservoirs and its influence on water flooding efficiency. Petroleum Geology and Oilfield Development in Daqing, 30(2): 94-99. (in Chinese) doi:  10.3969/J.ISSN.1000-3754.2011.02.019
    Zhang FC, Kang SZ. 2007. Research progress on the migration of non-aqueous fluids in porous media. Journal of Soil Sciences(04): 170-177. (in Chinese)
    Zhang XG, Zhang T, Lin CY. 2013. Pore structure evaluation of low permeability reservoirs based on pore fractal characteristics. Lithologic Reservoirs, 25(6): 40-45. (in Chinese)
    Zhao YS, Han HH, Chi ZF, et al. 2018. Study on the effect of permeability difference on the migration of pollutants in low-permeability lenses. China Environmental Science, 38(12): 4559-4565. (in Chinese) doi:  10.3969/j.issn.1000-6923.2018.12.021
  • [1] Peng-yu Shi, Jian-jun Liu, Yi-jie Zong, Kai-qing Teng, Yu-ming Huang, Liang Xiao2023:  Analytical solution for Non-Darcian effect on transient confined-unconfined flow in a confined aquifer, Journal of Groundwater Science and Engineering, 11, 365-378. doi: 10.26599/JGSE.2023.9280029
    [2] Chen She-ming, Liu Hong-wei, Liu Fu-tian, Miao Jin-jie, Guo Xu, Zhang Zhou, Jiang Wan-jun2022:  Using time series analysis to assess tidal effect on coastal groundwater level in Southern Laizhou Bay, China, Journal of Groundwater Science and Engineering, 10, 292-301. doi: 10.19637/j.cnki.2305-7068.2022.03.007
    [3] Yu Chu, Wu Li-jie, Zhang Yi-long, Wang Xiu-ya, Wang Zhan-chuan, Zhang Zhou2022:  Effect of groundwater on the ecological water environment of typical inland lakes in the Inner Mongolian Plateau, Journal of Groundwater Science and Engineering, 10, 353-366. doi: 10.19637/j.cnki.2305-7068.2022.04.004
    [4] Yi-jie Zong, Li-hua Chen, Jian-jun Liu, Yue-hui Liu, Yong-xin Xu, Fu-wan Gan, Liang Xiao2022:  Analytical solutions for constant-rate test in bounded confined aquifers with non-Darcian effect, Journal of Groundwater Science and Engineering, 10, 311-321. doi: 10.19637/j.cnki.2305-7068.2022.04.001
    [5] Liu Ya-ci, Zhang Zhao-ji, Zhao Xin-yi, Wen Meng-tuo, Cao Sheng-wei, Li Ya-song2021:  Arsenic contamination caused by roxarsone transformation with spatiotemporal variation of microbial community structure in a column experiment, Journal of Groundwater Science and Engineering, 9, 304-316. doi: 10.19637/j.cnki.2305-7068.2021.04.004
    [6] Gao Fei, Liu Feng, Wang Hua-jun2021:  Numerical modelling of the dynamic process of oil displacement by water in sandstone reservoirs with random pore structures, Journal of Groundwater Science and Engineering, 9, 233-244. doi: 10.19637/j.cnki.2305-7068.2021.03.006
    [7] Xi Yu-fei, Zhao Ya-bo, DA Yuen2021:  Geothermal structure revealed by curie isothermal surface under Guangdong Province, China, Journal of Groundwater Science and Engineering, 9, 114-120. doi: 10.19637/j.cnki.2305-7068.2021.02.003
    [8] Rabiranjan Prusty, Trinath Biswal2020:  Physico-chemical, bacteriological and health hazard effect analysis of the water in Taladanda Canal, Paradip area, Odisha, India, Journal of Groundwater Science and Engineering, 8, 338-348. doi: 10.19637/j.cnki.2305-7068.2020.04.004
    [9] MENG Yong-hui, WANG Ji-ning, YU De-Jie, ZHANG Li-xia, FENG Zai-min, YAN Tang, ZHOU Yong2019:  Effect of saltwater intrusion on groundwater environment in Weihe River downstream, Shandong Province, China, Journal of Groundwater Science and Engineering, 7, 245-252. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.005
    [10] SONG Ang, LIANG Yue-ming, LI Qiang2018:  Influence of precipitation on bacterial structure in a typical karst spring, SW China, Journal of Groundwater Science and Engineering, 6, 193-204. doi: 10.19637/j.cnki.2305-7068.2018.03.005
    [11] LI Man, ZHANG Wei, HE Yu-jiang, WANG Gui-ling2017:  Research on the effect of straw mulching on the soil moisture by field experiment in the piedmont plain of the Taihang Mountains, Journal of Groundwater Science and Engineering, 5, 286-295.
    [12] SHANG Man-ting, LIU Pei-gui, LEI Chao, LIU Ming-chao, WU Liang2017:  Effect of climate change on the trends of evaporation of phreatic water from bare soil in Huaibei Plain, China, Journal of Groundwater Science and Engineering, 5, 213-221.
    [13] TONG Shao-qing, DONG Yan-hui, ZHANG Qian, SONG Fan2017:  Visualizing complex pore structure and fluid flow in porous media using 3D printing technology and LBM simulation, Journal of Groundwater Science and Engineering, 5, 254-265.
    [14] LU Yao-ru, ZHANG Wei, LIU Qi, YANG Min, ZHANG Feng-e2016:  Building a scientific and ecological earth–on an important field of geo-science: Geo-environment and construction engineering effect, Journal of Groundwater Science and Engineering, 4, 259-278.
    [15] Xiu-yan WANG, Yu-hong FEI2014:  Environmental Effect Caused by Over-exploitation of Deep Groundwater in North China, Journal of Groundwater Science and Engineering, 2, 12-20.
    [16] HE Hong, GUO Hong-bin, LIU Hong-yun2014:  Analysis of effect of water construction in different phases on groundwater environment, Journal of Groundwater Science and Engineering, 2, 54-59.
    [17] Changli Liu, Yun Zhang, Chao Song, Hongbing Hou2013:  Effect of Farmyard Manure Application on Dissolution of Carbonate Rocks and Its Eco-environmental Impact, Journal of Groundwater Science and Engineering, 1, 60-69.
    [18] Shi-jie Xie, Qiang Zhang, Yu-chong Qiu2013:  Simulation and Prediction of the Fluorides Migration in a Tailing Pond Using Modflow, Journal of Groundwater Science and Engineering, 1, 33-39.
  • 加载中
图(9) / 表ll (5)
计量
  • 文章访问数:  480
  • HTML全文浏览量:  178
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-12
  • 录用日期:  2022-01-19
  • 网络出版日期:  2022-03-24
  • 刊出日期:  2022-03-15

目录

    /

    返回文章
    返回