• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transformation of ammonium nitrogen and response characteristics of nitrifying functional genes in tannery sludge contaminated soil

Kong Xiang-ke Zhang Zi-xuan Wang Ping Wang Yan-yan Zhang Zhao-ji Han Zhan-tao Ma Li-sha

Kong XK, Zhang ZX, Wang P, et al. 2022. Transformation of ammonium nitrogen and response characteristics of nitrifying functional genes in tannery sludge contaminated soil. Journal of Groundwater Science and Engineering, 10(3): 223-232 doi:  10.19637/j.cnki.2305-7068.2022.03.002
Citation: Kong XK, Zhang ZX, Wang P, et al. 2022. Transformation of ammonium nitrogen and response characteristics of nitrifying functional genes in tannery sludge contaminated soil. Journal of Groundwater Science and Engineering, 10(3): 223-232 doi:  10.19637/j.cnki.2305-7068.2022.03.002

doi: 10.19637/j.cnki.2305-7068.2022.03.002

Transformation of ammonium nitrogen and response characteristics of nitrifying functional genes in tannery sludge contaminated soil

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Transformation of ammonium nitrogen in contaminated silt soil and fine sand under different pollution loads

    (A:FW1;B:SW1;C:FW2;D:SW2;E:FW3;F:SW3)

    Figure  2.  Richness characteristics of amoA and nxrA genes in silt soil under different pollution loads

    (A: amoA;B: nxrA; different lowercases indicate significant differences between the data (P < 0.05))

    Figure  3.  Richness characteristics of amoA and nxrA genes in silt soil and fine sand under low pollution load

    (A: amoA;B: nxrA; different lowercases indicate significant differences between the data (P < 0.05))

    Figure  4.  Transformation of ammonia nitrogen in contaminated silt soil under anaerobic condition

    (A: OFW1; B: OFW2; C: OFW3)

    Figure  5.  Genes richness characteristics of amoA and nxrA under different redox condition

    (A: amoA;B: nxrA; different lowercases indicate significant differences between the data (P < 0.05))

    Figure  6.  S-growth fitting curve of nitrate accumulation process under different environmental condition

    (A: pollution load; B: soil texture; C: redox condition)

    Table  1.   Basic physical and chemical properties of the tannery sludge and soil

    TypeTOC(%)pHCEC(mol/kg)Fe2O3(%)Cr(III)(mg/kg)NH4+-N(mg/kg)NO3-N(mg/kg)
    Silt soil0.177.6113.66.133520<5
    Fine Sand0.097.259.753.481712<5
    Tannery Sludge14.37.67--3080016500500
    下载: 导出CSV

    Table  2.   Culture conditions of tannery sludge contaminated soils

    TypeSampleCulture conditionSampleCulture condition
    Tannery contaminated-Silt soilFW1Aerobic, Sludge addition 15%OFW1Anaerobic, Sludge addition 15%
    FW2Aerobic, Sludge addition 30%OFW2Anaerobic, Sludge addition 30%
    FW3Aerobic, Sludge addition 50%OFW3Anaerobic, Sludge addition 50%
    Tannery contaminated-Fine SandSW1Aerobic, Sludge addition 15%
    SW2Aerobic, Sludge addition 30%
    SW3Aerobic, Sludge addition 50%
    下载: 导出CSV

    Table  3.   Quantitative PCR primer and reaction procedure

    Objective GenesSegment SiteSarterSequence(5’-3’)Reaction procedure / Condition
    amoA491AmoA-1FGGGGTTTCTACTGGTGGT95°C for 3 min × 1cycle
    AmoA-2RCCCCTCKGSAAAGCCTTCTTC95°C for 30 s,56°C for 30 s,72°C for 40 s×35cycles
    nxrA324F1norACAGACCGACGTGTGCGAAAG95°C for 3 min × 1cycle
    R1norATCYACAAGGAACGGAAGGTC95°C for 30 s,56°C for 30 s,72°C for 40 s×35cycles
    下载: 导出CSV

    Table  4.   Sigmodial fitting parameters of nitrate accumulation process under different environment conditions

    Reaction ConditionA1A2t0
    (d)
    A2-A1
    (mg/kg)
    (A2-A1)/(4dt)
    (mg/kg·d)
    R2
    FW10.45180.0937.79179.6412.720.988
    FW211.01387.4239.23376.4132.560.999
    FW31.21761.8951.71760.6834.390.997
    SW21.39307.4347.83306.0415.610.966
    OFW20.54145.6849.71145.145.870.999
    下载: 导出CSV
  • An LR, Bian WX, Liu BH, et al. 2021. Advances in the effects of environmental stress on ammonia-oxidizing communities. Chinese Journal of Applied and Environmental Biology, 27(3): 8. (in Chinese) doi:  10.19675/j.cnki.1006-687x.2020.03005
    Araujo ASF, de Melo WJ, Araujo FF, et al. 2020. Long-term effect of composted tannery sludge on soil chemical and biological parameters. Environmental Science and Pollution Research, 27: 41885−41892. doi:  10.1007/s11356-020-10173-9
    Daims H, Lebedeva E, Pjevac P, et al. 2015. Complete nitrification by nitrospira bacteria. Nature, 528 (7583): 504−509. doi:  10.1038/nature16461
    Guo SS, Wu H, Tian YQ, et al. 2021. Migration and fate of characteristic pollutants migration from an abandoned tannery in soil and groundwater by experiment and numerical simulation. Chemosphere, 271(8): 129552. doi:  10.1016/j.chemosphere.2021.129552
    Han KQ, Duan RS, Jia LL, et al. 2014. Analysis on present status of underground water pollution in Shijiazhuang and its prevention measures. Journal of Groundwater Science and Engineering, 2(1): 44−48.
    He JZ, Shen JP, Zhang LM, et al. 2012. A review of ammonia-oxidizing bacteria and archaea in Chinese soils. Front Microbiology, 3(296): 296. (in Chinese) doi:  10.3389/fmicb.2012.00296
    Ke XB, Lu W, Conrad R. 2015. High oxygen concentration increases the abundance and activity of bacterial rather than archaeal nitrifiers in rice field soil. Microb Ecology, 70: 961−970. doi:  10.1007/s00248-015-0633-4
    Kong XK, Huang GX, Han ZT, et al. 2017. Vertical distribution characteristics of pollutants in a typical soil profile in the tannery sludge landfill site. South-to-North Water Transfers and Water Science & Technology, 15(06): 96-100. (in Chinese)
    Kong XK, Li CH, Wang P, et al. 2019. Soil pollution characteristics and microbial responses in a vertical profile with long-term tannery sludge contamination in Hebei, China. Int. J. Environ. Res. Public Health, 16(4): 563. doi:  10.3390/ijerph16040563
    Kong XK, Wang YY, Ma LS, et al. 2020. Leaching behaviors of chromium (III) and ammonium-nitrogen from a tannery sludge in North China: Comparison of batch and column investigations. International Journal of Environmental Research and Public Health, 17(16): 6003-6014.
    Liu G, Wang J. 2013. Long-term low DO enriches and shifts nitrifier community in activated sludge. Environmental Science & Technology, 47(10): 5109−5117. doi:  10.1021/es304647y
    Liu GH, Chen Y, Fan Q, et al. 2016. Effects of dissolved oxygen concentration on nitrogen removal and nitrifying bacterial community structure in an activated sludge system. Acta Scientiae Circumstantiae, 36(6): 8. (in Chinese) doi:  10.13671/j.hjkxxb.2015.0709
    M Barajas-Aceves, JD Rios-Berber, JL Oropeza-Mota, et al. 2014. Assessment of tannery waste in semi-arid soils under a simulated rainfall system. Soil and Sediment Contamination: An International Journal, 8(23): 954−964. doi:  10.1080/15320383.2014.896861
    Ma H, Zhou J, Hua L, et al. 2017. Chromium recovery from tannery sludge by bioleaching and its reuse in tanning process. Journal of Cleaner Production, 142: 2752-2760.
    Martines AM, Nogueira MA, Santos CA, et al. 2010. Ammonia volatilization in soil treated with tannery sludge. Bioresource Technology, 101(12): 4690−4696. doi:  10.1016/j.biortech.2010.01.104
    Mohamad JM, Xi L, Przemyslaw K, et al. 2021. Incorporation of the complete ammonia oxidation (comammox) process for modeling nitrification in suspended growth wastewater treatment systems. Journal of Environmental Management, 11(297): 113−223.
    Nakatani AS, Martines AM, Nogueira MA, et al. 2011. Changes in the genetic structure of bacteria and microbial activity in an agricultural soil amended with tannery sludge. Soil Biology and Biochemistry, 43(1): 106−114. doi:  10.1016/j.soilbio.2010.09.019
    Pantazopoulou E, Zouboulis A. 2017. Chemical toxicity and ecotoxicity evaluation of tannery sludge stabilized with ladle furnace slag. Environ Manage, 216(15): 257−262. doi:  10.1016/j.jenvman.2017.03.077
    Pettridge J, Petersen DG, Nuccio E, et al. 2013. Influence of oxic/anoxic fluctuations on ammonia oxidizers and nitrification potential in a wet tropical soil. FEMS Microbiology Ecology, 85(1): 179−194.
    Ramírez-Díaz MI, Díaz-Pérez C, Vargas E, et al. 2008. Mechanisms of bacterial resistance to chromium compounds. Biometals, 21(3): 321−332. doi:  10.1007/s10534-007-9121-8
    Rovita D, Killorn R. 2008. Heavy‐Metal Inhibition of Nitrification in Selected Iowa Soils Treated with Stay‐N 2000. Communications in Soil Science and Plant Analysis, 39(7) : 972−982.
    Sabey BR, Frederick LR. 1959. The formation of nitrate from ammonium mitrogen in soils: III. Influence of temperature and initial population of nitritying organisms on the maximum rate and delay period. Proceedings - Soil Science Society of America, 23: 462−465.
    Smolders E, Brans K, Coppens F, et al. 2001. Potential nitrification rate as a tool for screening toxicity in metal-contaminated soils. Environmental Toxicology & Chemistry, 20(11): 2469−2474.
    Wang PC. 2018. The effect of cadmium levels on nitrogen transformation in the soil—plant system and the microbial mechanism exploration. Wuhan: Huazhong Agricultural University. (in Chinese). DOI:CNKI: CDMD:1.1018.206931
    Wendeborn S. 2020. The chemistry, biology, and modulation of ammonium nitrification in soil. Angewandte Chemie International Edition, 59(6): 2182−2202. doi:  10.1002/anie.201903014
    Xu JY, Mao YP. 2019. From canonical nitrite oxidizing bacteria to complete ammonia oxidizer: Discovery and advances. Microbiology China(4): 12. (in Chinese) doi:  10.13344/j.microbiol.china.180194
    Yu H, An YJ, Jin DC, et al. 2021. Effects of chromium pollution on soil bacterial community structure and assembly processes. Environmental Science, 42(03): 1197−1204. (in Chinese) .
    Yuan QX, Wu YJ, Ai P, et al. 2007. Effects of moisture, temperature and nitrogen supply rate on NO3-N accumulation in greenhouse soil. Transactions of the Chinese Society of Agricultural Engineering(10): 192−198. (in Chinese)
    Zeng J, Gou M, Tang Y, et al. 2016. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community. Bioresource Technology, 218(12): 859−866. doi:  10.1016/j.biortech.2016.07.051
    Zheng GY, Zhou LX. 2011. Supplementation of inorganic phosphate enhancing the removal efficiency of tannery sludge-borne Cr through bioleaching. Water Research, 45(16): 5295-5301.
    Zou DA, Chi Y, Dong J, et al. 2013. Supercritical water oxidation of tannery sludge: Stabilization of chromium and destruction of organics. Chemosphere, 93(12): 1413−1418. doi:  10.1016/j.chemosphere.2013.07.009
  • [1] Xiu-bo Sun, Chang-lai Guo, Jing Zhang, Jia-quan Sun, Jian Cui, Mao-hua Liu2023:  Spatial-temporal difference between nitrate in groundwater and nitrogen in soil based on geostatistical analysis, Journal of Groundwater Science and Engineering, 11, 37-46. doi: 10.26599/JGSE.2023.9280004
    [2] Hui Li, Zhan-tao Han, Qiang Deng, Chun-xiao Ma, Xiang-ke Kong2023:  Assessing the effectiveness of nanoscale zero-valent iron particles produced by green tea for Cr(VI)-contaminated groundwater remediation, Journal of Groundwater Science and Engineering, 11, 55-67. doi: 10.26599/JGSE.2023.9280006
    [3] Wu Yan-hao, Zhou Nian-qing, Wu Zi-jun, Lu Shuai-shuai, Cai Yi2022:  Carbon, nitrogen and phosphorus coupling relationships and their influencing factors in the critical zone of Dongting Lake wetlands, China, Journal of Groundwater Science and Engineering, 10, 250-266. doi: 10.19637/j.cnki.2305-7068.2022.03.004
    [4] Liu Ya-ci, Zhang Zhao-ji, Zhao Xin-yi, Wen Meng-tuo, Cao Sheng-wei, Li Ya-song2021:  Arsenic contamination caused by roxarsone transformation with spatiotemporal variation of microbial community structure in a column experiment, Journal of Groundwater Science and Engineering, 9, 304-316. doi: 10.19637/j.cnki.2305-7068.2021.04.004
    [5] YUAN Qiao-ling, LI Zhi-ping, LI Lei-cheng, WANG Shu-li, YAO Si-yu2020:  Pharmaceuticals and personal care products transference-transformation in aquifer system, Journal of Groundwater Science and Engineering, 8, 358-365. doi: 10.19637/j.cnki.2305-7068.2020.04.006
    [6] ZHOU Nian-qing, LI Tian-shui, ZHAO Shan, ZHAO Shan, XIA Xue-min2019:  Characteristics of the main inorganic nitrogen accumulation in surface water and groundwater of wetland succession zones, Journal of Groundwater Science and Engineering, 7, 173-181. doi: 10.19637/j.cnki.2305-7068.2019.02.008
    [7] ZHAN Jiang, LI Wu-jin, LI Zhi-ping, ZHAO Gui-zhang2018:  Indoor experiment and numerical simulation study of ammonia-nitrogen migration rules in soil column, Journal of Groundwater Science and Engineering, 6, 205-219. doi: 10.19637/j.cnki.2305-7068.2018.03.006
    [8] Pezhman ROUDGARMI, Ebrahim FARAHANI2017:  Investigation of groundwater quantitative change, Tehran Province, Iran, Journal of Groundwater Science and Engineering, 5, 278-285.
    [9] Duo LI, Kang CHEN2014:  Research on Migration Features of Ammonia-Nitrogen in Shallow Groundwater of Coastal Area of Tangshan Fengnan, Journal of Groundwater Science and Engineering, 2, 39-43.
    [10] ZHANG Zhi-qiang, LI Hong-chao, WANG Yu-qing, ZHANG li-ye, WANG Ying2014:  Application of Visual MODFLOW to simulation of migration in Cr6+ contaminated site, Journal of Groundwater Science and Engineering, 2, 28-35.
    [11] Liang ZHU, Wei-dong KANG, Ji-chao SUN, Jing-tao LIU2014:  Quantitative Calculation of Groundwater Vulnerability Assessment Based on Quantification Theory III, Journal of Groundwater Science and Engineering, 2, 78-85.
  • 加载中
图(6) / 表ll (4)
计量
  • 文章访问数:  587
  • HTML全文浏览量:  253
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-16
  • 录用日期:  2022-06-06
  • 刊出日期:  2022-09-15

目录

    /

    返回文章
    返回