• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Geoelectrical survey over perched aquifers in the northern part of Upper Sakarya River Basin, Türkiye

Ertekin Can Ulugergerli Emin U

Ertekin C, Ulugergerli EU. 2022. Geoelectrical survey over perched aquifers in the northern part of Upper Sakarya River Basin, Türkiye. Journal of Groundwater Science and Engineering, 10(4): 335-352 doi:  10.19637/j.cnki.2305-7068.2022.04.003
Citation: Ertekin C, Ulugergerli EU. 2022. Geoelectrical survey over perched aquifers in the northern part of Upper Sakarya River Basin, Türkiye. Journal of Groundwater Science and Engineering, 10(4): 335-352 doi:  10.19637/j.cnki.2305-7068.2022.04.003

doi: 10.19637/j.cnki.2305-7068.2022.04.003

Geoelectrical survey over perched aquifers in the northern part of Upper Sakarya River Basin, Türkiye

More Information
    Corresponding author: emin@comu.edu.tr
  • ①TİGEM 2012. Anadolu Tarım İşletmesi Hidrojeolojik ve Jeofizik Etüt Raporu (in Turkish), 73.
  • ②URL1 2019. https://github.com/fatiando (AD 19.11.2019)
  • ③URL2 2019. https://github.com/gimli-org/gimli (AD 19.11.2019)
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
    ①TİGEM 2012. Anadolu Tarım İşletmesi Hidrojeolojik ve Jeofizik Etüt Raporu (in Turkish), 73.
    ②URL1 2019. https://github.com/fatiando (AD 19.11.2019)
    ③URL2 2019. https://github.com/gimli-org/gimli (AD 19.11.2019)
    注释:
  • Figure  1.  The global location and Tectono-stratigraphic terranes of Anatolia (Türkiye) and the surface geology of the study site and the survey site (the geophysical survey site) with the arrangement of VES stations (gray dots in the survey site) (compiled from MTA (1964), SRTM Elevation Data of 1 arc-second from EARTHDATA (2021) and Zürcher et al. (2010).

    Notes: Stratigraphic names of the rocks are as follows: Mzi (İnönü Marbel), Mzs (Sarıkavak formation), Mzsm (Marble member), JKdp (Dağküplü Peridotite), Kdm (Dağküplü mélange), Tmplp1 (Conglomerate-sandstone member), Tmplp2 (Claystone-marn-tuff member), Tet (Topkaya granitoid), Qal (Alluvium). The map was compiled from Akbaş et al. (2011), Emre et al. (2013, 2018), GMVDE (2016) and SRTM Elevation Data of 1 arc-second from EARTHDATA (2021). The figure uses Universal Transverse Mercator projection with WGS 84 datum in 36 Northern Hemisphere Zone.

    Figure  2.  The regional hydrogeology map of Türkiye compiled from IHME (2021) and the hydrogeology map of the Upper Sakarya River Basin compiled from IHME (2021) and Esen (1978).

    Notes: The map only displays the high and local groundwater aquifers with no groundwater occurrence settings. The study site, the survey site (the geophysical survey site) and the local groundwater level map are on the figure. The figure uses Universal Transverse Mercator projection with WGS 84 datum in 36 Northern Hemisphere Zone.

    Figure  3.  The hydrogeology map of the study site (the geophysical survey site) compiled from Akbaş et al. (2011), Emre et al. (2013, 2018) and IHME (2021).

    Notes: The yellow lines indicate boundaries of the outcropped rocks. The abbreviations on the figure reveal the stratigraphic names of the rocks in Fig. 1. The figure uses Universal Transverse Mercator projection with WGS 84 datum in 36 Northern Hemisphere Zone.

    Figure  4.  The groundwater level map in meters above mean sea level (MSL) close to the survey site (the geophysical survey site) and the two main groundwater flow directions are visible and separated with the groundwater divide.

    Notes: The map was prepared with the groundwater depth data in Table 1 compiled from TİGEM (2012) and DSİ Data Archive (the data obtained by personal communication). The upper figure uses Universal Transverse Mercator projection with WGS 84 datum in 36 Northern Hemisphere Zone. The lower figure is the graph of measured groundwater level data in meters above MSL vs. estimated groundwater level values produced by the Minimum Curvature method (Briggs, 1974). The gray line is the 1:1 line. The measured data and well numbers were labeled with red dots.

    Figure  5.  A sample DCRM survey setting for VES points along a profile

    Figure  6.  a) Synthetic model with finite length prism. Solid line profile for observable data. See text for dashed lines. b) 2D inversion result of synthetic data. The white box is the location of the prism.

    Figure  7.  1D inversion result of VES at PP6

    Figure  8.  a) Stitched presentation of 1D Occam’s inversion result along the 5th station for each profile. b) Stitched presentation of 1D Occam’s inversion result along the Profile P

    9.  The 2D sections are the recovered resistivity vs. depth beneath each profile

    Figure  10.  Level map at 75 m from all profiles

    Table  1.   The wells with their hydraulic test data close to the survey site

    Well NoDrilling dateDepth (m)Static level (m)Dynamic level (m)Flow (lt/sn)
    W-1a2009150222540
    W-2a20091502830.530
    W-4a2009156243133
    W-5a200916130.5606
    W-6a2009152121753
    28676bn/a14419.33n/an/a
    33116bn/a1022.81n/an/a
    33118bn/a19727.51n/an/a
    41440bn/a20015.81n/an/a
    4375319bn/a924.96n/an/a
    Notes: The data compiled from TİGEM (2012) and General Directorate of State Hydraulic Works Data Archive by personal communication and the well locations are shown in Fig. 2 and Fig. 4.
    n/a (no answer or no information verified)
    a The groundwater depth from 2009, not including any season or duration
    b The groundwater depth given as an arithmetic mean from 2009. By doing so, the data could be reduced to represent those from 2009 and handled to map with the data outlined in the first five columns
    下载: 导出CSV

    Table  2.   Profile names, distance between first and last station and number of stations

    Profile NamePHPJPKPLPMPNPPPRPS
    Length360032002800240020001600160020002000
    # of stations1098765566
    下载: 导出CSV

    Table  3.   Variation of misfit values in 2D inversion

    ProfilesPHPJPKPLPMPNPPPRPS
    Initial misfit7.80557.0324.23375.32245.30854.10866.01789.22516.8185
    Final misfit0.09560.05360.06290.04800.04400.02830.034280.17340.2197
    Iteration100100100100861001009974
    下载: 导出CSV
  • Akbaş B, Akdeniz N, Aksay A, et al. 2011. 1:1 250 000 scale geological map of Turkey. General Directorate of Mineral Research and Exploration Publication: Ankara−Turkey.
    Araffa SA, Mohamadin MI, Saleh Sabet H, et al. 2019. Geophysical interpretation for groundwater exploration around Hurghada area, Egypt. Journal of Astronomy and Geophysics, 8(1): 171−179. doi:  10.1080/20909977.2019.1647389
    Awotoye KS, Selemo AO. 2006. Design and construction of a resistivity meter for shallow investigation. Nigerian Journal of Physics, 18(2): 261−270. doi:  10.4314/njphy.v18i2.38113
    Bhattacharya BB, Shalivahan S. 2016. Geoelectric methods: Theory and application. McGraw-Hill Education. ISBN: 9789339221379
    Boubaya D. 2017. Combining resistivity and aeromagnetic geophysical surveys for groundwater exploration in the Maghnia plain of Algeria. Journal of Geological Research: 1309053.
    Briggs IC. 1974. Machine contouring using minimum curvature. Geophysics, 39(1): 39−48. doi:  10.1190/1.1440410
    Clark JA, Page R. 2011. Inexpensive geophysical instruments supporting groundwater exploration in developing nations. Journal of Water Resource and Protection, 3(10): 768. doi:  10.4236/jwarp.2011.310087
    Constable SC, Parker RL, Constable CG. 1987. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3): 289−300. doi:  10.1190/1.1442303
    EARTHDATA. 2021. SRTM Elevation Data of 1 arc-second. (A.D. 19.08.2021)
    Ekinci YL, Demirci A. 2008. A damped least-squares inversion program for the interpretation of Schlumberger sounding curves. Journal of Applied Sciences, 8(22): 4070−4078. doi:  10.3923/jas.2008.4070.4078
    Emre Ö, Duman TY, Özalp S, et al. 2013. Active fault map of Turkey with explanatory text. General Directorate of Mineral Research and Exploration Special Publication Series: 30.
    Emre Ö, Duman TY, Özalp S, et al. 2018. Active fault database of Turkey. Bulletin of Earthquake Engineering, 16(8): 3229−3275. doi:  10.1007/s10518-016-0041-2
    Esen E. 1978. Hydrogeological Investigation Report of Yukarı Sakarya Basin (in Turkish), General Directorate of State Hydraulic Works, 147, Ankara, Turkey
    Fitts CR. 2013. Groundwater Science (2nd edn). Elsevier.
    Florsch N, Muhlach F. 2017. Everyday applied geophysics 1: Electrical methods. Elsevier.
    Freeze RA, Cherry JA. 1979. Groundwater. Prentice-Hall Inc. Eaglewood Cliffs, New Jersey. ISBN: 0133653129
    Fretwell JD, Stewart MT. 1981. Resistivity study of a coastal karst terrain, Florida. Ground Water, 19: 156−162. doi:  10.1111/j.1745-6584.1981.tb03454.x
    Gallardo LA, Meju MA. 2007. Joint two-dimensional cross-gradient imaging of magnetotelluric and seismic traveltime data for structural and lithological classification. Geophysical Journal International, 169(3): 1261−1272. doi:  10.1111/j.1365-246X.2007.03366.x
    GMVDE 2016. Geoscience Map Viewer and Drawing Editor Version 2.9, (AD 19.08.2021)
    Igboama WN, Ugwu NU. 2011. Fabrication of resistivity meter and its evaluation. American Journal of Scientific and Industrial Research, 2(5): 713−717. doi:  10.5251/ajsir.2011.2.5.713.717
    IHME. 2021. International Hydrogeological Map of Europe 1: 1 500 000 scale. (AD 19.08.2021).
    Jones AG. 1983. On the equivalence of the “Niblett” and “Bostick” transformations in the magnetotelluric method. Journal of Geophysics, 53(1): 72−73.
    Kanar F, Kandemir Ö. 2018. 1: 100 000 Scaled Turkey Geological Map Series Eskişehir-İ25 Sheet (in Turkish), General Directorate of Mineral Research and Exploration Publication, Ankara, Turkey.
    Lee CH. 1915. The determination of safe yield of underground reservoirs of the closed-basin type. Transactions of the American Society of Civil Engineers, 98: 148−218.
    Loke MH, Barker RD. 1996a. Rapid least-squares inversion of apparent resistivity pseudo sections by a quasi-Newton method. Geophysical Prospecting, 44(1): 131−152. doi:  10.1111/j.1365-2478.1996.tb00142.x
    Loke MH, Barker RD. 1996b. Practical techniques for 3D resistivity surveys and data inversion. Geophysical prospecting, 44(3): 499−523. doi:  10.1111/j.1365-2478.1996.tb00162.x
    Maliva RG. 2016. Aquifer characterization techniques. Berlin: Springer. ISBN: 978-3-319-32137-0
    Meju MA. 1994. Geophysical Data Analysis: Understanding Inverse Problem Theory and Practice: SEG Course Notes Series, 6: Tulsa: SEG.
    Meju MA. 2002. Geoelectromagnetic exploration for natural resources: Models, case studies and challenges. Surveys in Geophysics, 23(2−3): 133−206. doi:  10.1023/A:1015052419222
    Menke W. 1989. Geophysical data analysis: Discrete inverse theory. Academic press.
    Mikailu A, Abdullahi I, Sani MG, et al. 2015. Development of Digital Resistivity Meter. Advances in Physics Theories and Applications, 42. ISSN 2224-719X
    MTA. 1964. The general directorate of mineral research and exploration. Geological map of Turkey (1:500 000 scale). Ankara: Turkey.
    Nwankwo LI. 2011. 2D resistivity survey for groundwater exploration in a hard rock terrain: A case study of MAGDAS observatory, UNILORIN, Nigeria. Journal of Asian Earth Sciences, 4(1): 46−53. doi:  10.3923/ajes.2011.46.53
    Okay AI, Tüysüz O. 1999. Tethyan sutures of northern Turkey. Geological Society, London, Special Publications. 156(1): 475-515.
    Okay AI. 2011. Tavşanli Zone: The northern subducted margin of the Anatolide-Tauride block. Bulletin of the Mineral Research and Exploration, 142: 191−211.
    Oldenburg DW, Li Y. 1999. Estimating depth of investigation in dc resistivity and IP surveys. Geophysics, 64(2): 403−416. doi:  10.1190/1.1444545
    Olorunfemi MO, Fasuyi SA. 1993. Aquifer types and the geoelectric/hydrogeologic characteristics of part of the central basement terrain of Nigeria (Niger State). Journal of African Earth Sciences (and the Middle East), 16(3): 309−317. doi:  10.1016/0899-5362(93)90051-Q
    Özürlan G, Candansayar ME, Şahin HM. 2006. Deep resistivity structure of Dikili-Bergama region, West Anatolia, revealed by two dimensional inversion of vertical electrical sounding data. Geophysical Prospecting, 54: 187−197. doi:  10.1111/j.1365-2478.2006.00525.x
    Palacky GJ. 1987. Clay mapping using electromagnetic methods. First Break, 5(8): 295−306. doi:  10.3997/1365-2397.1987015
    Rijo L, Pelton WH, Feitosa EC, et al. 1977. Interpretation of apparent resistivity data from Apodi Valley, Rio Grande DoNorte, Brazil. Geophysics, 42: 811−822. doi:  10.1190/1.1440749
    Roy A, Apparao A. 1971. Depth of investigation in direct current methods. Geophysics, 36(5): 943−959. doi:  10.1190/1.1440226
    Saad R, Nawawi MNM, Mohamad ET. 2012. Groundwater detection in alluvium using 2-D electrical resistivity tomography (ERT). Electronic Journal of Geotechnical Engineering, 17: 369−376.
    Sasaki Y, Meju MA. 2006. A multidimensional horizontal-loop controlled-source electromagnetic inversion method and its use to characterize heterogeneity in aquiferous fractured crystalline rocks. Geophysical Journal International, 166(1): 59−66. doi:  10.1111/j.1365-246X.2006.02957.x
    Shaaban FF. 2001. Vertical electrical soundings for groundwater investigation in northwestern Egypt: A case study in a coastal area. Journal of African Earth Sciences, 33(3−4): 673−686. doi:  10.1016/S0899-5362(01)00092-6
    Surfer. 2020. Contouring, gridding, and 3D surface mapping software (Software Version 18), Golden Software, Colorado, USA
    Swartz JH. 1937. Resistivity studies of some salt-water boundaries in the Hawaiian Islands. Eos, Transactions American Geophysical Union, 18(2): 387-393. doi:  10.1029/TR018i002p00387
    Swartz JH. 1939. Resistivity studies of some salt-water boundaries in the Hawaiian Islands Part II. Eos, Transactions American Geophysical Union, 20: 292. doi:  10.1029/TR020i003p00292
    Szalai S, Novák A, Szarka, L. 2009. Depth of investigation and vertical resolution of surface geoelectric arrays. Journal of Environmental and Engineering Geophysics, 14(1): 15−23. doi:  10.2113/JEEG14.1.15
    Telford WM, Geldart LP, Sheriff RE (editors). 1990. Applied Geophysics. Cambridge, UK: University Press.
    Ulugergerli EU. 2017. Marine effects on vertical electrical soundings along shorelines. Turkish Journal of Earth Sciences, 26(1): 57−72. doi:  10.3906/yer-1610-10
    USGS. 2021. https://www.usgs.gov/special-topic/water-science-school/science/groundwater-decline-and-depletion?qt-science_center_objects=0#qt-science_center_objects. Accessed 06/07/2021
    Vedanti N, Srivastava RP, Sagode J, et al. 2005. An efficient 1D Occam’s inversion algorithm using analytically computed first-and second-order derivatives for DC resistivity soundings. Computers and Geosciences, 31(3): 319−328. doi:  10.1016/j.cageo.2004.10.015
    Werkema Jr DD, Atekwana E, Sauck W, et al. 1998. A versatile Windows based multi-electrode acquisition system for dc electrical methods surveys. Environmental Geosciences, 5(4): 196−206. doi:  10.1046/j.1526-0984.1998.08027.x
    Yang X, Lagmanson M. 2006. Comparison of 2D and 3D electrical resistivity imaging methods. In 19th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems (pp. cp-181). European Association of Geoscientists and Engineers.
    Zhdanov MS, Keller GV. 1994. The geoelectrical methods in geophysical exploration (Vol. 31). Elsevier Science Limited. ISBN-10: 0444896783.
    Zürcher L, Bookstrom AA, Hammarstrom JM, et al. 2010. Porphyry copper assessment of the Tethys region of western and southern Asia: U. S. Geological Survey Scientific Investigations Report 2010–5090–V, 232, and spatial data.
  • [1] Ming-nan Yang, Liang Zhu, Jing-tao Liu, Yu-xi Zhang, Bing Zhou2023:  Influence of water conservancy project on runoff in the source region of the Yellow River and wetland changes in the Lakeside Zone, China, Journal of Groundwater Science and Engineering, 11, 333-346. doi: 10.26599/JGSE.2023.9280027
    [2] Guo Jin-xing, Li Zhi-ping, Stefan Catalin2022:  Managed aquifer recharge (MAR) applications in China–achievements and challenges, Journal of Groundwater Science and Engineering, 10, 57-69. doi: 10.19637/j.cnki.2305-7068.2022.01.006
    [3] Vinay Kumar Gautam, Mahesh Kothari, P.K. Singh, S.R. Bhakar, K.K. Yadav2022:  Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan, Journal of Groundwater Science and Engineering, 10, 1-9. doi: 10.19637/j.cnki.2305-7068.2022.01.001
    [4] KHELFAOUI Hakim, DAJBRI Larbi, LAKHAL Fatima Zohra, CHAFFAI Hicham, HANI Azzedine, SAYAD Lamine2020:  Determination of the origin of mineralization and groundwater salinity in the Adrar region in the southwest of Algeria, Journal of Groundwater Science and Engineering, 8, 158-171. doi: 10.19637/j.cnki.2305-7068.2020.02.007
    [5] Abdulrahman Th Mohammad, Qassem H Jalut, Nadia L Abbas2020:  Predicting groundwater level of wells in the Diyala River Basin in eastern Iraq using artificial neural network, Journal of Groundwater Science and Engineering, 8, 87-96. doi: 10.19637/j.cnki.2305-7068.2020.01.009
    [6] Muhammad Nauman Malik, Mehdi Murtuza, Iqbal Asif, Bakar Muhammad Saifullah Abu, Brahim Aissa, Dk Nur Afiqah Jalwati Puteri, Amer Farhan Rafique2019:  Adaptive state estimation of groundwater contaminant boundary input flux in a 2-dimensional aquifer, Journal of Groundwater Science and Engineering, 7, 373-382. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.008
    [7] Pezhman ROUDGARMI, Ebrahim FARAHANI2017:  Investigation of groundwater quantitative change, Tehran Province, Iran, Journal of Groundwater Science and Engineering, 5, 278-285.
    [8] Khongsab Somphone, OunakoneKone Xayviliya2017:  Climate change and groundwater resources in Lao PDR, Journal of Groundwater Science and Engineering, 5, 53-58.
    [9] BAI Bing, CHENG Yan-pei, JIANG Zhong-cheng, ZHANG Cheng2017:  Climate change and groundwater resources in China, Journal of Groundwater Science and Engineering, 5, 44-52.
    [10] Chamroeun SOK, Sokuntheara CHOUP2017:  Climate change and groundwater resources in Cambodia, Journal of Groundwater Science and Engineering, 5, 31-43.
    [11] ZHOU Xun2017:  Arsenic distribution and source in groundwater of Yangtze River Delta economic region, China, Journal of Groundwater Science and Engineering, 5, 343-353.
    [12] Eunhee Lee, Kyoochul Ha, Nguyen Thi Minh Ngoc, Adichat Surinkum, Ramasamy Jayakumar, Yongje Kim, Kamaludin Bin Hassan2017:  Groundwater status and associated issues in the Mekong-Lancang River Basin: International collaborations to achieve sustainable groundwater resources, Journal of Groundwater Science and Engineering, 5, 1-13.
    [13] WU Jian-qiang, WU Xia-yi2016:  Geological environment impact analysis of a landfill by the Yangtze River, Journal of Groundwater Science and Engineering, 4, 96-102.
    [14] ZHANG Xiang-yang, CHEN Zong-yu, YANG Guo-min, TU Le-yi, HU Shui-ming2016:  Krypton-85 dating of shallow aquifer in Hebei Plain, Journal of Groundwater Science and Engineering, 4, 328-332.
    [15] ZHANG Chun-chao, WANG Wen-Ke, SUN Yi-bo, LI Xiang-quan,HOU Xin-wei2015:  Processes of hydrogeochemical evolution of groundwater in the Guanzhong Basin, China, Journal of Groundwater Science and Engineering, 3, 136-146.
    [16] MA Shao-bing, ZHOU Jun, LIANG Peng, SU Yao-ming2014:  Characteristics-based classification research on typical petroleum contaminants of groundwater, Journal of Groundwater Science and Engineering, 2, 41-47.
    [17] GONG Jian-shi, ZHU Chun-fang, YE Nian-jun, WANG He-sheng, ZHOU Kai-e, HOU Li-li2014:  Experimental study of impact of a certain polluted river on groundwater along river bank in Southeast China, Journal of Groundwater Science and Engineering, 2, 8-16.
    [18] Jiansheng Shi, Hongtao Liu, Zhiyuan Liu, Tieliu Chen2013:  Application of the “Accurate Control Groundwater Resources” Theory in Containment of Groundwater Resource Exhaustion Trend, Journal of Groundwater Science and Engineering, 1, 1-10.
    [19] Yan Zhang, Shuai Song, Jing Li, Fadong Li, Guangshuai Zhao, Qiang Liu2013:  Stable Isotope Composition of Rainfall, Surface Water and Groundwater along the Yellow River, Journal of Groundwater Science and Engineering, 1, 82-88.
    [20] Jingli Shao, Yali Cui, Yunzhang Zhao2013:  A Study on Infiltration and Groundwater Development in the Influent Zone of the Perched Lower Yellow River, Journal of Groundwater Science and Engineering, 1, 46-53.
  • 加载中
图(12) / 表ll (3)
计量
  • 文章访问数:  425
  • HTML全文浏览量:  153
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 录用日期:  2022-09-30
  • 网络出版日期:  2022-12-27
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回