• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of climate anomaly on rainfall, groundwater depth, and soil moisture on peatlands in South Sumatra, Indonesia

Muhammad Irfan Sri Safrina Erry Koriyanti Netty Kurniawati Khairul Saleh Iskhaq Iskandar

Irfan M, Safrina S, Koriyanti E, et al. 2023. Effects of climate anomaly on rainfall, groundwater depth, and soil moisture on peatlands in South Sumatra, Indonesia. Journal of Groundwater Science and Engineering, 11(1): 81-88 doi:  10.26599/JGSE.2023.9280008
Citation: Irfan M, Safrina S, Koriyanti E, et al. 2023. Effects of climate anomaly on rainfall, groundwater depth, and soil moisture on peatlands in South Sumatra, Indonesia. Journal of Groundwater Science and Engineering, 11(1): 81-88 doi:  10.26599/JGSE.2023.9280008

doi: 10.26599/JGSE.2023.9280008

Effects of climate anomaly on rainfall, groundwater depth, and soil moisture on peatlands in South Sumatra, Indonesia

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Map of study area

    Figure  2.  Graph of groundwater level time series at OKI-1 (a) and OKI-2 (b) locations

    Figure  3.  The relationships between groundwater level and rainfall

    Figure  4.  Soil moisture time series at OKI-1 (a) and OKI-2 (b) locations

    Figure  5.  Correlation between soil moisture and groundwater level

    Figure  6.  Graph of the relationship between soil moisture and rainfall

    Table  1.   Monthly rainfall in the period July to October 2019-2020

    OKI-1 RF (mm/month)OKI-2 RF (mm/month)
    2019 2020 2019 2020
    July 9 153.4 4.6 107.4
    August 0 95 0 100.6
    September 4.5 278.2 3.3 102
    October 14.8 262.8 19 108.5
    Total 28.3 789.4 26.9 418.5
    下载: 导出CSV

    Table  2.   Result of statistical calculation of correlation between soil moisture and groundwater level

    StationYearCorrelation Equation of GWL (x) vs SM (y)Coefficient correlation (r)
    OKI-12019y = 5.4561x + 9.80.97
    2020y = −306.92x3 − 148.2x2 + 28.622x + 46.7730.78
    OKI-22019y = −394.76x3 − 725.11x2 − 400.83x − 44.3870.92
    2020y = 2638.9x2 + 2145.2x + 460.990.71
    下载: 导出CSV
  • Adinugroho WC, Imanuddin R, Krisnawati H, et al. 2021. Exploring the potential of soil moisture maps using Sentinel Imagery as a Proxy for groundwater depths in peat. IOP Conference Series: Earth and Environmental Science, 874(1). https://doi.org/10.1088/1755-1315/874/1/012011
    Cai W, Ng B, Wang G, et al. 2022. Increased ENSO sea surface temperature variability under four IPCC emission scenarios. Nature Climate Change, 12(3): 228−231. DOI: 10.1038/s41558-022-01282-z.
    Cao T, Zheng F, Fang X. 2022. Key processes on triggering the moderate 2020/21 La Niña event as depicted by the clustering approach. Frontiers in Earth Science, 10: 1−12. DOI: 10.3389/feart.2022.822854.
    Hasudungan P, Irham I, Utami AW. 2021. The impact of el nino southern oscillation and covid-19 on the rice price dynamics in Indonesia: The vector error correction model approach. IOP Conference Series: Earth and Environmental Science, 883(1). https://doi.org/10.1088/1755-1315/883/1/012061
    Hayashi M, Jin FF, Stuecker MF. 2020. Dynamics for El Niño-La Niña asymmetry constrain equatorial-Pacific warming pattern. Nature Communications, 11(1): 1−10. DOI: 10.1038/s41467-020-17983-y.
    Hendrawan IG, Asai K, Triwahyuni A, et al. 2019. The interannual rainfall variability in Indonesia corresponding to El Niño Southern Oscillation and Indian Ocean Dipole. Acta Oceanologica Sinica, 38(7): 57−66. DOI: 10.1007/s13131-019-1457-1.
    Huang P, Zheng XT, Ying J. 2019. Disentangling the changes in the Indian Ocean dipole-related SST and rainfall variability under global warming in CMIP5 models. Journal of Climate, 32(13): 3803−3818. DOI: 10.1175/JCLI-D-18-0847.1.
    Hugron S, Guêné-Nanchen M, Roux N, et al. 2020. Plant reintroduction in restored peatlands: 80% successfully transferred – Does the remaining 20% matter? Global Ecology and Conservation, 22. https://doi.org/10.1016/j.gecco.2020.e01000
    Irfan M, Koriyanti E, Awaluddin Ariani M, et al. 2021. Determination of soil moisture reduction rate on peatlands in South Sumatera due to the 2019 extreme dry season. IOP Conference Series: Earth and Environmental Science, 713(1). https://doi.org/10.1088/1755-1315/713/1/012025
    Irfan M, Safrina E, Koriyanti E, et al. 2022. What are the dynamics of hydrometeorological parameters on peatlands during the 2019 extreme dry season? Journal of Physics: Conference Series, 2165(1). https://doi.org/10.1088/1742-6596/2165/1/012003
    Irfan M, Satya OC, Arsali Ariani M, et al. 2021. What is the rate of groundwater depth decline on peatlands in South Sumatera during the 2019 extreme dry season? Journal of Physics: Conference Series, 1816(1): 012008. https://doi.org/10.1088/1742-6596/1816/1/012008
    Irfan M. 2019. Some insight into direct observation of hydrological parameters in peatland area of the South Sumatera. International Journal of Geomate, 17(60): 124−129. DOI: 10.21660/2019.60.8176.
    Irfan M, Mardiansyah W, Ariani M, et al. 2019. Is TRMM product good proxy for gauge precipitation over peatland area of the South Sumatera? Journal of Physics: Conference Series, 1282: 012021. https://doi.org/10.1088/1742-6596/1282/1/012021
    Irfan M, Mardiansyah W, Surbakti H, et al. 2020. Spatio-temporal variability of observed ground water level at peat hydrology unit in South Sumatera. Journal of Computational and Theoretical Nanoscience, 17(2): 1414−1421. DOI: 10.1166/jctn.2020.8819.
    Ivan AH, Abdul C, Bagus P. 2020. The modelling of groundwater table management for canal blocking scenarios in sub peatland hydrological unit. International Journal of Science, Technology & Management, 1(4): 289–297. https://doi.org/10.46729/ijstm.v1i4.67
    Kirana AP, Sitanggang IS, Syaufina L. 2016. Hotspot pattern distribution in peatland area in sumatera based on spatio temporal clustering. Procedia Environmental Sciences, 33: 635−645. DOI: 10.1016/j.proenv.2016.03.118.
    Lu X, Zhang X, Li F, et al. 2021. Drainage canal impacts on smoke aerosol emissions for Indonesian peatland and non-peatland fires. Environmental Research Letters, 16(9). https://doi.org/10.1088/1748-9326/ac2011
    Mandailing PM, Mardiansyah W, Irfan M, et al. 2020. Characteristics of diurnal rainfall over peatland area of South Sumatra, Indonesia. Science and Technology Indonesia, 5(4): 136. DOI: 10.26554/sti.2020.5.4.136-141.
    Millard K, Thompson DK, Parisien MA, et al. 2018. Soil moisture monitoring in a temperate peatland using multi-sensor remote sensing and linear mixed effects. Remote Sensing, 10(6). https://doi.org/10.3390/rs10060903
    Muhammad FR, Lubis SW, Tiarni I, et al. 2019. Influence of the Indian Ocean Dipole (IOD) on convectively coupled Kelvin and Mixed Rossby-Gravity waves. IOP Conference Series: Earth and Environmental Science, 284(1). https://doi.org/10.1088/1755-1315/284/1/012012
    Purnamayani R, Tarigan SD, Sudradjat, et al. 2022. Peatland characteristics and oil palm productivity at Siak Regency, Riau Province. IOP Conference Series: Earth and Environmental Science, 950(1). https://doi.org/10.1088/1755-1315/950/1/012025
    Puryajati AD, Wirasatriya A, Maslukah L, et al. 2021. The effect of ENSO and IOD on the variability of sea surface temperature and rainfall in the Natuna Sea. IOP Conference Series: Earth and Environmental Science, 750(1): 4−12. DOI: 10.1088/1755-1315/750/1/012020.
    Putra R, Nufutomo TK, Lisafitri Y, et al. 2021. Did the 2019 fire events in South Sumatra Occur predominantly on Peatlands? IOP Conference Series: Earth and Environmental Science, 830(1): 8–12. https://doi.org/10.1088/1755-1315/830/1/012039
    Putra R, Sutriyono E, Kadir S, et al. 2019. Understanding of fire distribution in the South Sumatra peat area during the last two decades. International Journal of Geomate, 16(54): 2186−2990. DOI: 10.21660/2019.54.8243.
    Reddy PJ, Perkins-Kirkpatrick SE, Sharples JJ. 2022. Interactive influence of ENSO and IOD on contiguous heatwaves in Australia. Environmental Research Letters, 17(1). https://doi.org/10.1088/1748-9326/ac3e9a
    Sankar S, Thondithala Ramachandran A, Franck Eitel KG, et al. 2019. The influence of tropical Indian Ocean warming and Indian Ocean Dipole on the surface chlorophyll concentration in the eastern Arabian Sea. Biogeosciences Discussions (June Preprint): 1–23. https://doi.org/10.5194/bg-2019-169
    Shi W, Wang M. 2021. A biological Indian Ocean Dipole event in 2019. Scientific Reports, 11(1): 1−8. DOI: 10.1038/s41598-021-81410-5.
    Suryadi Y, Soekarno I, Humam IA. 2021. Effectiveness analysis of canal blocking in sub-peatland hydrological unit 5 and 6 kahayan sebangau, central kalimantan, indonesia. Journal of Engineering and Technological Sciences, 53(2). https://doi.org/10.5614/j.eng.technol.sci.2021.53.2.5
    Sutikno S, Rinaldi R, Putri RA, et al. 2020. Study on the impact of canal blocking on groundwater fluctuation for tropical peatland restoration. IOP Conference Series: Materials Science and Engineering, 933(1). https://doi.org/10.1088/1757-899X/933/1/012052
    Turmudi, Saharjo BH, Prasetyo LB, et al. 2019. Spatial model of peatland fire control strategies through peat maturity level approach: Case Study of the Kepulauan Meranti District. IOP Conference Series: Earth and Environmental Science, 399(1). https://doi.org/10.1088/1755-1315/399/1/012022
    Wang Y, Yang J, Chen Y, et al. 2018. Detecting the causal effect of soil moisture on precipitation using convergent cross mapping. Scientific Reports, 8(1): 1−9. DOI: 10.1038/s41598-018-30669-2.
    Widiarso B, Minardi S, Komariah K, et al. 2020. Predicting peatland groundwater table and soil moisture dynamics affected by drainage level. Sains Tanah, 17(1): 42−49. DOI: 10.20961/stjssa.v17i1.38459.
    Wijaya A, Zakiyah U, Sambah AB, et al. 2020. Spatio-temporal variability of temperature and chlorophyll-a concentration of sea surface in Bali strait, Indonesia. Biodiversitas, 21(11): 5283−5290. DOI: 10.13057/biodiv/d211132.
    Yulnafatmawita, Syahputri SD, Hermansah. 2021. Degree of peatland maturity at different land use types in Kinali, West Sumatra Indonesia. IOP Conference Series: Earth and Environmental Science, 1025. International Seminar on Tropical Peatlands. https://doi.org/10.1088/1755-1315/1025/1/012013
    Yuwati TW, Rachmanadi D, Pratiwi Turjaman M, et al. 2021. Restoration of degraded tropical peatland in indonesia: A review. Land, 10(11): 1−31. DOI: 10.3390/land10111170.
    Zheng Y, Rugenstein M, Pieper P, et al. 2022. EGUsphere - Insignificant but robust decrease of ENSO predictability in an equilibrium warmer climate, 5 (March). https://egusphere.copernicus.org/preprints/2022/egusphere-2022-89/
  • [1] Cheng-peng Ling, Qiang Zhang2024:  Exploring the groundwater response to rainfall in a translational landslide using the master recession curve method and cross-correlation function, Journal of Groundwater Science and Engineering, 12, 237-252. doi: 10.26599/JGSE.2024.9280018
    [2] Chen She-ming, Liu Hong-wei, Liu Fu-tian, Miao Jin-jie, Guo Xu, Zhang Zhou, Jiang Wan-jun2022:  Using time series analysis to assess tidal effect on coastal groundwater level in Southern Laizhou Bay, China, Journal of Groundwater Science and Engineering, 10, 292-301. doi: 10.19637/j.cnki.2305-7068.2022.03.007
    [3] ZHANG De-long, WENG Wei, ZHAO Chang-liang, XU Jun-jun, YANG Peng, HUANG Yu-wen, HU Zhen-zhong2018:  Development and application of turbodrills in hot dry rock drilling, Journal of Groundwater Science and Engineering, 6, 1-6. doi: 10.19637/j.cnki.2305-7068.2018.01.001
    [4] SUN Dong-sheng, ZHAO Wei-hua, LI A-wei, ZHANG An-bin2015:  Analysis on method for effective in-situ stress measurement in hot dry rock reservoir, Journal of Groundwater Science and Engineering, 3, 9-15.
  • 加载中
图(6) / 表ll (2)
计量
  • 文章访问数:  946
  • HTML全文浏览量:  339
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-15
  • 录用日期:  2022-12-29
  • 网络出版日期:  2023-03-20
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回