• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Estimating aquifer transmissivity using Dar-Zarrouk parameters to delineate groundwater potential zones in Alluri Seetharama Raju District, Andhra Pradesh, India

Bakuru Anandagajapathi Raju Palavai Venkateswara Rao Mangalampalli Subrahmanyam

Raju BA, Rao PV, Subrahmanyam M. 2023. Estimating aquifer transmissivity using Dar-Zarrouk parameters to delineate groundwater potential zones in Alluri Seetharama Raju District, Andhra Pradesh, India. Journal of Groundwater Science and Engineering, 11(2): 116-132 doi:  10.26599/JGSE.2023.9280011
Citation: Raju BA, Rao PV, Subrahmanyam M. 2023. Estimating aquifer transmissivity using Dar-Zarrouk parameters to delineate groundwater potential zones in Alluri Seetharama Raju District, Andhra Pradesh, India. Journal of Groundwater Science and Engineering, 11(2): 116-132 doi:  10.26599/JGSE.2023.9280011

doi: 10.26599/JGSE.2023.9280011

Estimating aquifer transmissivity using Dar-Zarrouk parameters to delineate groundwater potential zones in Alluri Seetharama Raju District, Andhra Pradesh, India

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Geology map of the study area

    Figure  2.  Geomorphology and lineaments map of the study area with VES locations

    Figure  3.  Vertical electrical resistivity sounding curves obtained from the study area

    Figure  4.  Spatial distribution maps of (a) Aquifer thickness, and (b) Basement depth in the study area

    Figure  5.  Spatial distribution maps of (a) Total longitudinal conductance (b) Total transverse resistance (c) Longitudinal resistivity (d) Transverse resistivity (e) Coefficient of anisotropy of the study area

    Figure  6.  Spatial distribution map of aquifer transmissivity (Tr) of the study area

    Figure  7.  Map of potential groundwater locations based on aquifer transmissivity values

    Table  1.   Stratigraphic succession of geological formations in the study area

    Geological formationCharacteristics
    MigmatitesHard, Foliated rocks
    Charnockites (Basic, Acid, and intermediate)Hard, Massive rocks
    KhondalitesHard, Foliated rocks
    下载: 导出CSV

    Table  2.   Classification of lineaments (Sitharam et al. 2006; Venkateswara et al. 2021)

    No.Type of the lineamentLength of the lineamentNo. Lineaments identified in the area
    1Medium10–100 km-
    2Minor2–10 km16
    3Micro<2 km06
    下载: 导出CSV

    Table  3.   Rating of the protective capacity of aquifers (After Oladapo and Akintorinwa, 2007)

    Total longitudinal conductance (Siemens)Protective capacity rating
    > 10Excellent
    5–10Very good
    0.7–4.9Good
    0.2–0.69Moderate
    0.1–0.19Weak
    <0.1Poor
    下载: 导出CSV

    Table  4.   Interpreted layer parameters from VES data in the study area

    VES codeLatitude degreesLongitude degreesTrue resistivityThicknessTotal
    thickness
    /m
    RMS
    error
    /%
    ρ 1
    /Ω·m
    ρ 2
    /Ω·m
    ρ 3
    /Ω·m
    ρ 4
    /Ω·m
    ρ 5
    /Ω·m
    h 1
    /m
    h 2
    /m
    h 3
    /m

    h 4
    /m
    OP1 18.08010 82.66956 34.0 22.9 194 2.60 21.30 23.90 0.539
    OP4 18.03600 82.70123 81.8 350.0 495 1.06 6.39 7.45 0.485
    OP5 18.06773 82.66445 18.8 39.3 308 3.18 25.30 28.48 0.789
    OP7 18.09249 82.67175 11.8 38.1 307 1.59 6.16 7.75 0.951
    OP8 18.09381 82.67082 178.0 134.0 636 0.75 5.41 6.16 0.432
    OP9 18.18840 82.69879 176.0 402.0 1 075 1.19 5.87 7.06 0.759
    OP10 18.08856 82.67734 10.3 67.8 6.90 6.90 0.436
    OP13 18.06907 82.69553 19.0 44.0 2.34 2.34 0.831
    OP14 18.04630 82.69276 148.0 25.5 125 1.40 23.10 24.50 0.921
    OP16 18.09164 82.67108 49.9 9.83 1 818 5.57 3.52 9.09 1.060
    OP17 18.09029 82.67393 109.0 425.0 18.50 18.50 0.971
    OP18 18.12948 82.63722 229.0 361.0 148 0.89 7.03 7.92 0.535
    OP19 18.12851 82.62985 365.0 121.0 89.2 188 0.75 4.69 31.00 36.44 0.719
    OP20 18.09574 82.67031 154.0 42.8 392 0.75 30.70 31.45 1.180
    OP21 18.09642 82.67066 82.1 47.7 183 0.90 17.00 17.9 0.938
    OP22 18.08095 82.66179 15.3 40.0 1 423 1.36 6.66 8.02 1.540
    OP23 18.07507 82.65756 18.7 41.3 180 1.35 6.98 8.33 0.909
    OP24 18.12571 82.64424 74.2 30.6 64.4 2.38 10.20 12.58 0.581
    OP25 18.12466 82.64470 70.1 35.9 150 4.81 16.00 20.81 0.741
    OP26 18.07412 82.65808 20.6 133.0 2.43 2.43 1.020
    OP27 18.10106 82.67337 357.0 55.9 478 1.28 15.70 16.98 1.990
    OP28 18.10011 82.67347 329.0 55.9 473 1.24 18.80 20.04 0.728
    P1 18.08917 82.58722 165.0 63.79 934 5.41 13.50 18.91 1.460
    P2 18.09028 82.65444 177.0 25.6 14 755 3.59 8.12 11.71 4.340
    P3 18.09056 82.63889 70.4 145.3 209 3.16 23.10 26.26 0.522
    P4 18.09110 82.64111 122.0 39.5 313 10.80 28.90 39.70 1.220
    P5 18.09110 82.63944 91.7 49.6 4051 10.90 25.10 36.00 0.635
    P6 18.09389 82.67363 102.0 38.0 1 558 11.40 16.50 27.90 0.711
    P7 18.09911 82.64000 89.2 45.3 214 1.97 5.08 7.05 0.752
    P8 18.09389 82.65410 36.3 199.0 6.37 6.37 1.870
    P9 18.09667 82.60694 9.76 3000 27.40 27.40 1.220
    P10 18.09667 82.59083 30.0 8.20 276 1.30 19.00 20.30 2.050
    P11 18.09306 82.59472 143.0 9.00 450 1.40 10.00 11.40 1.590
    P12 18.09389 82.59444 14.2 41.0 9.11 2 000 1.50 2.58 11.10 15.18 0.869
    P13 18.06806 82.59970 12.7 6.55 17.7 3 201 1.54 3.87 19.50 24.91 1.600
    P14 18.08417 82.59917 13.4 30.8 101 10.80 7.78 18.58 0.894
    P15 18.08000 82.60722 94.7 21.3 132 1.75 18.00 19.75 1.780
    P16 18.08028 82.60639 6.23 16.3 1591 9.52 4.25 13.77 1.910
    P17 18.07833 82.60389 14.5 39.4 109 9.91 21.10 31.01 0.631
    P18 18.07972 82.60361 11.8 8787 16.10 16.10 1.040
    P19 18.06806 82.59972 123.0 24.5 3 000 1.20 16.20 17.40 2.240
    P20 18.06917 82.60694 17.7 31.4 432 3.21 22.20 25.41 1.030
    P21 18.06806 82.59972 5.63 3000 11.50 11.50 1.900
    P22 18.09639 82.59667 5.59 20.6 3 480 7.36 7.55 14.91 3.630
    P23 18.07056 82.67139 19.2 8.33 581 1.69 23.50 25.19 1.440
    P24 18.07111 82.67194 18.8 8.25 2390 1.81 30.90 32.71 1.450
    P25 18.09361 82.68692 68.7 14.2 761 1.50 10.50 12.00 1.430
    P26 18.09333 82.68889 82.0 15.4 17.2 19.2 885 1.56 1.79 3.06 10.80 17.21 0.616
    P27 18.09667 82.68611 5.58 13.0 593 3.61 40.00 43.61 0.545
    P28 18.09778 82.68556 6.87 14.7 6.8 1 284 3.28 2.01 21.20 26.49 1.460
    P29 18.09806 82.68583 6.74 13.0 1 284 5.93 29.80 35.73 1.000
    P30 18.09778 82.68639 6.36 10.3 3 232 6.97 30.70 37.67 1.070
    P31 18.10056 82.69083 5.19 37.2 131 5.18 29.10 34.28 0.532
    P32 18.09972 82.69111 5.02 84.8 5.60 5.60 2.220
    P33 18.07612 82.67821 9.31 12.0 652 1.78 59.40 61.18 2.160
    P34 18.08182 82.68410 6.26 27.2 7.09 3161 2.80 4.27 17.20 24.27 2.020
    P35 18.07611 82.67806 6.18 62.9 17.50 17.50 1.560
    P36 18.07861 82.67694 5.89 60.0 12.50 12.50 1.450
    P37 18.07722 82.67861 5.36 18.3 890 15.20 2.66 17.86 2.620
    P38 18.07722 82.67822 5.34 25.6 890 14.70 59.20 73.90 2.440
    P39 18.09056 82.66750 178.0 43.3 13 105 2.14 22.00 24.14 3.000
    P40 18.09028 82.66670 44.9 21.9 161 1.50 8.55 10.05 1.870
    P41 18.10944 82.68010 7.14 124.0 11.80 11.80 1.440
    P42 18.11083 82.68018 6.91 129.0 10.70 10.70 2.200
    P43 18.10472 82.64667 190.0 19.5 6 000 1.20 18.00 19.20 2.190
    P44 18.10500 82.64778 93.6 34.3 203 1.50 5.39 6.89 2.230
    P45 18.10472 82.61220 152.0 13.8 1 278 1.00 6.70 7.70 2.120
    P46 18.10500 82.65222 54.4 82.8 9 659 4.13 32.90 37.03 0.721
    P47 18.14111 82.69000 59.4 103.0 714 3.10 26.20 29.30 0.617
    P48 18.14440 82.69000 87.5 31.0 97.3 1.50 8.57 10.07 0.350
    P49 18.14111 82.69000 107.0 46.6 96.5 665 1.50 2.55 22.20 26.25 1.110
    P50 18.09528 82.67220 94.7 50.0 3 144 1.92 29.10 31.02 1.360
    下载: 导出CSV

    Table  5.   Resistivity range of subsurface layers (After Venkateswara et al. 2019b)

    NoResistivity (Ω·m)Formation
    1<10Clayey sand/highly weathered/highly saturated formation
    210–60Weathered formations
    361–150Semi-weathered/fractured formation
    4> 150Hard rock
    下载: 导出CSV

    Table  6.   Secondary geoelectrical parameters and transmissivity values

    VES
    code
    Latitude degreesLongitude degreesLongitudinal
    conductance

    (S)/siemens
    Transverse
    resistance (T)/Ωm2
    Anisotropy
    (λ)
    Longitudinal
    resistivity
    (ρl)/Ω·m
    Transverse
    resistivity
    (ρt)/Ω·m
    Aquifer transmissivity
    (Tr)/m2/d
    OP118.0801082.669561.01576.171.0123.7424.11523.91
    OP418.0360082.701230.032323.211.14238.66311.84180.34
    OP518.0677382.664450.811054.071.0335.0337.01337.46
    OP718.0924982.671750.30253.461.1226.1432.7086.16
    OP818.0938182.670820.04858.441.00138.16139.3635.50
    OP918.1884082.698790.022569.181.05330.47363.9145.36
    OP1018.0885682.677340.6771.071.0010.3010.30302.75
    OP1318.0690782.695530.1244.461.0019.0019.0058.00
    OP1418.0463082.692760.92796.251.1026.7732.50588.14
    OP1618.0916482.671080.47312.541.3319.3534.3863.07
    OP1718.0902982.673930.172016.501.00109.00109.0089.87
    OP1818.1294882.637220.022741.641.01339.04346.1767.66
    OP1918.1285182.629850.393606.441.0393.8398.97236.81
    OP2018.0957482.670310.721429.461.0243.5545.45388.07
    OP2118.0964282.670660.37884.791.0148.7349.43194.80
    OP2218.0809582.661790.26287.211.0731.4035.8188.86
    OP2318.0750782.657560.24313.521.0434.5437.6491.19
    OP2418.1257182.644240.37488.721.0634.4338.85253.77
    OP2518.1246682.644700.51911.581.0440.4643.80347.62
    OP2618.0741282.658080.1250.061.0020.6020.6055.85
    OP2718.1010682.673370.281334.591.1559.7078.60216.24
    OP2818.1001182.673470.341458.881.1158.9372.80236.38
    P118.0891782.587220.241753.821.0977.3792.75220.16
    P218.0902882.654440.34843.301.4434.7072.02618.20
    P318.0905682.638890.203578.891.03128.81136.2991.52
    P418.0911082.641110.822459.151.1348.4061.94779.60
    P518.0911082.639440.622244.491.0457.6162.35458.22
    P618.0938982.673630.551789.801.1251.1064.15611.49
    P718.0991182.640000.13405.851.0552.5257.5798.73
    P818.0938982.654100.18231.231.0036.3036.3086.31
    P918.0966782.606942.81267.421.009.769.761264.15
    P1018.0966782.590832.36194.801.068.609.601289.37
    P1118.0930682.594721.12290.201.5810.1725.461604.52
    P1218.0938982.594441.39228.201.1710.9415.031232.45
    P1318.0680682.599701.81390.061.0713.7315.66583.50
    P1418.0841782.599171.06384.341.0917.5520.69197.08
    P1518.0800082.607220.86549.131.1022.8727.80574.35
    P1618.0802882.606391.79128.581.107.709.34225.57
    P1718.0783382.603891.22975.041.1125.4431.44310.62
    P1818.0797282.603611.36189.981.0011.8011.80622.27
    P1918.0680682.599720.67544.501.1025.9331.29434.52
    P2018.0691782.606940.89753.901.0228.6029.67372.42
    P2118.0680682.599722.0464.751.005.635.63886.42
    P2218.0963982.596671.68196.671.228.8613.19219.43
    P2318.0705682.671392.91228.201.028.669.061465.24
    P2418.0711182.671943.84288.951.028.518.831890.23
    P2518.0936182.686920.76252.151.1515.7621.01577.46
    P2618.0933382.688890.73674.971.2923.6539.22862.81
    P2718.0966782.686113.72540.141.0311.7112.391467.18
    P2818.0977882.685563.73196.241.027.107.411865.21
    P2918.0980682.685833.17427.371.0311.2611.961160.85
    P3018.0977882.686394.08360.541.029.249.571535.85
    P3118.1005682.690831.781109.401.3019.2532.36394.94
    P3218.0997282.691111.1228.111.005.025.02480.38
    P3318.0761282.678215.14729.371.0011.9011.922312.66
    P3418.0818282.684103.03255.621.158.0110.532241.18
    P3518.0761182.678062.83108.151.006.186.181236.57
    P3618.0786182.676942.1273.631.005.895.89923.76
    P3718.0772282.678612.98130.151.105.997.291959.43
    P3818.0772282.678225.071594.021.2214.5921.571168.54
    P3918.0905682.667500.521333.521.0946.4155.24353.98
    P4018.0902882.666700.42254.601.0323.7125.33252.37
    P4118.1094482.680101.6584.251.007.147.14728.73
    P4218.1108382.680181.5573.941.006.916.91681.29
    P4318.1047282.646670.93579.001.2120.6630.16718.29
    P4418.1050082.647780.17325.281.0939.7947.21135.47
    P4518.1047282.612200.49244.461.4215.6531.75591.63
    P4618.1050082.652220.472948.791.0178.2479.63223.59
    P4718.1411182.690000.312882.741.0195.5898.39143.34
    P4818.1444082.690000.29396.921.0734.3039.42201.00
    P4918.1411182.690000.302421.631.0287.8592.25136.58
    P5018.0952882.672200.601636.821.0151.5052.77329.02
    下载: 导出CSV

    Table  7.   Aquifer classification based on the transmissivity values (Offodile, 1983; Venkateswara et al. 2022)

    Transmissivity (Tr)
    /m2/d
    Classification of aquifersNo of sounding points based on Tr value
    >500Good potential31
    50–500Moderate potential39
    5–50Low potential02
    0.5–5Very low potential-
    <0.5Negligible potential-
    下载: 导出CSV
  • Ammar AI, Kruse SE. 2016. Resistivity soundings and VLF profiles for siting groundwater wells in a fractured basement aquifer in the Arabian shield, Saudi Arabia. Journal of African Earth Sciences, 116: 5667. DOI: 10.1016/j.jafrearsci.2015.12.020.
    Anandagajapathi RB, Venkateswara RP, Subrahmanyam M. 2020. Integration of GIS and remote sensing in groundwater investigations: A case study from Visakhapatnam District, India. Journal of India Geophysics Union, 24(5): 50−63.
    Ankidawa B, Ishaku J, Hassan A. 2019. Estimation of aquifer transmissivity using Dar-Zarrouk parameters derived from resistivity soundings on the floodplain of river Dadin kowa, Gombe state, Northeastern Nigeria. Computer Engineering Physics Model, 1(4): 36−52. DOI: 10.22115/cepm.2018.129584.1024.
    Anudu GK, Onuba LN, Ufondu LS. 2011. Geo-electric sounding for groundwater exploration in the crystalline basement terrain around onipe and adjoining areas, Southwestern Nigeria. Journal of Applied Technology in Environmental Sanitation, 1: 343−354.
    Atakpo EA. 2013. Aquifer vulnerability investigation using geo-electric method in parts of sapele local government area of delta state, Nigeria. Nigerian Journal of Basic Application Science, 21(1): 11−19. DOI: 10.4314/njbas.v21i1.2.
    Awni T, Batayneh. 2013. The estimation and significance of Dar-Zarrouk parameters in the exploration of quality affecting the Gulf of Aqaba coastal aquifer systems. Journal of Coast Conservation, 17: 623−635. DOI: 10.1007/S11852-013-02614.
    Ayolabi EA, Folorunso AF, Oloruntola MO. 2010. Constraining causes of structural failure using electrical resistivity tomography (ERT): A case study of Lagos, Southwestern, Nigeria. Mineral Wealth, 156(4): 7−18. DOI: 10.3997/2214-4609-pdb.175.SAGEEP109.
    Bobachev A. 2003. Resistivity sounding interpretation IPI2WIN: Version 3.0. 1, A7. 01. 03. Moscow State University.
    CGWB. 2019. Groundwater brochure Visakhapatnam district, Andhra Pradesh, central ground water board, Ministry of water resources, government of India.
    Danso SY, Ma Y. 2023. Geospatial techniques for groundwater potential zones delineation in a coastal municipality, Ghana. The Egyptian Journal of Remote Sensing and Space Science, 26(1): 75−84. DOI: https://doi.org/10.1016/j.ejrs.2022.12.004.
    Deng QJ, Wei LI, Zhu QJ, et al. 2020. An analysis of the characteristics of water storage structure and the practice of groundwater exploration in the basalt area of ​​Zhangbei County, Bashang, Hebei Province. Geological Bulletin of China, 39(12): 1899−1907.
    Dor N, Syafalni S, Abustan I, et al. 2011. Verification of surface-groundwater connectivity in an irrigation canal using geophysical, water balance and stable isotope approaches. Water Resource Manage, 25: 2837–2853.
    Elango L. 2014. Hydraulic conductivity issues, determinations and application. Croatia Environmental Processes, 1: 613−616. DOI: 10.1007/s40710-000337.
    Fashae OA, Tijani MN, Talabi AO, et al. 2014. Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: An integrated GIS and remote sensing approach. Journal of Applied Water Science, 4: 19–38.
    GSI. 2001. District resource map, geological survey of India. Visakhapatnam district, Andhra Pradesh, India.
    Gumilar UN, Andi AN, Pulung AP, et al. 2023. Analysis of groundwater potential zones using Dar-Zarrouk parameters in Pangkalpinang city, Indonesia. Environment, Development and Sustainability, 25: 1876−1898. DOI: 10.1007/s10668-021-02103-7.
    Gupta G, Patil SN, Padmane ST, et al. 2015. Geoelectric investigation to delineate groundwater potential and recharge zones in Suki river basin, north Maharashtra. Journal of Earth System Science, 124(7): 1487−1501. DOI: 10.1007/s12040-015-0615-4.
    Gupta G, Vinit CE, Saumen M. 2012. Geo-electrical investigation for potential groundwater zones in parts of Ratnagiri and Kolhapur districts, Maharashtra. Journal of India Geophysics Union, 9(1): 27−38.
    Hamzah U, Samudin AR, Malim EP. 2007. Groundwater investigation in Kuala Selang or using vertical electric sounding (VES) surveys. Environmental Geology, 51: 1349–1359.
    Heigold PC, Gilkeson RH, Cartwright K, et al. 1979. Aquifer transmissivity from surficial electrical methods. Ground Water, 17(4): 338−345. DOI: 10.1111/J.1745-6584.1979.Tb03326.X.
    Kang X, Shi X, Deng Y, et al. 2018. Coupled hydro-geophysical inversion of DNAPL source zone architecture and permeability field in a 3D heterogeneous sandbox by assimilation time-lapse cross-borehole electrical resistivity data via ensemble kalman filtering. Journal of Hydrology, 567: 149−164. DOI: 10.1016/J.JhydrOl.2018.10.019.
    Kumar TJR, Balasubramanian A, Kumar RS, et al. 2016. Assessment of groundwater potential based on aquifer properties of hard rock terrain in the Chittar–Uppodai watershed, Tamil Nadu, India. Applied Water Science, 6: 179−186. DOI: 10.1007/s13201-014-0216-4.
    Loke MH, Chambers JE, Rucker DF, et al. 2013. Recent developments in the direct-current geo-electrical imaging method. Journal of Applied Geophysics, 95: 135−156. DOI: 10.1016/J.Japp.geo.2013.02.017.
    Maillet R. 1947. The fundamental equations of electrical prospecting. Geophysics, 12(4): 529−556. DOI: 10.1190/1.1437342.
    Maja B, Andrej S, Ivan KC, et al. 2020. Characterization of aquifers in metamorphic rocks by combined use of electrical resistivity tomography and monitoring of spring hydrodynamics. Geosciences, 10: 137. DOI: 10.3390/Geosciences10040137.
    Obiora DN, Ibuot JC, George JN. 2016. Evaluation of aquifer potential, geo-electric and hydraulic parameters in Ezza north, southeastern Nigeria, using geo-electric sounding. International Journal of Environmental Science and Technology, 13: 435−444. DOI: 10.1007/S13762-015-0886-Y.
    Offodile MI. 1983. The occurrence and exploitation of groundwater in Nigeria basement complex. Journal of Mining Geology, 20(3): 131−146.
    Oladapo MI, Akintorinwa OJ. 2007. Hydrogeophysical study of Ogbese southwestern Nigeria. Global Journal of Pure Applied Science, 13(1): 55–61.
    Olasehinde, PI, Bayewu OO. 2011. Evaluation of electrical resistivity anisotropy in Geological mapping: A case study of Odo area, west central Nigeria. African Journal of Environmental Science and Technology, 5(7): 553−566. DOI: 10.4314/ajest.v5i7.72045.
    Orellana E, Mooney HM. 1966. Master curves for Schlumberger arrangement. Madrid, P. 34.
    Oteri AU. 1981. Geo-electric investigation of saline contamination of chalk aquifer by mine drainage water at Tilmanstone, England. Geoexploration, 19(3): 179–192.
    Rustadi, Darmawan IGB, Haerudin N, et al. 2022. Groundwater exploration using integrated geophysics method in hard rock terrains in Mount Betung Western Bandar Lampung, Indonesia. Journal of Groundwater Science and Engineering, 10(1): 10−18. DOI: 10.19637/j.cnki.2305-7068.2022.01.002.
    Sathiyamoorthy M, Madhavi G. 2018. Delineation of groundwater potential and recharge zone using electrical resistivity method around Veeranam Tank, Tamil Nadu, India. Journal of the Institution of Engineers (India), Series A 99.4 (2018): 637-645.
    Seker UE, Efe S. 2023. Comparative economic analysis of air conditioning system with groundwater source heat pump in general-purpose buildings: A case study for kayseri. Renewable Energy, 204: 372−381.
    Shailaja G, Gupta G, Suneetha N, et al. 2019. Assessment of aquifer zones and its protection via second-order geo-electric indices in parts of drought-prone region of deccan volcanic province, Maharashtra, India. Journal of Earth System Science, 128: 78.
    Singh S, Gautam PK, Kumar P, et al. 2021. Delineating the characteristics of saline water intrusion in the coastal aquifers of Tamil Nadu, India by analyzing the Dar-Zarrouk parameters. Contributions to Geophysics and Geodesy, 51(2): 141-163.
    Singh CL, Singh SN. 1970. Some geo-electrical investigations for potential groundwater in part of Azamgrah area of UP. Pure and Applied Geophysics, 82: 270–85.
    Sitharam TG, Anbazhagan P, Ganesha Raj K. 2006. Use of remote sensing and seismotectonic parameters for seismic hazard analysis of Bangalore. Natural Hazards and Earth System Science, 6: 927–939.
    Sitharam TG, Anbazhagan P. 2007. Seismic hazard analysis for the Bangalore region. Natural Hazards, 40: 261−278.
    Sri N, Singhal DC. 1981. Estimation of aquifer transmissivity from Dar-Zarrouk parameters in porous media. Journal of Hydrology, 50: 393−399. DOI: 10.1016/0022-1694(81)90082-2.
    Subramanian TS, Marykutty A. 2019. Computation of aquifer parameters using geo-electrical techniques for the north Chennai coastal aquifer. Indian Journal of Geo Marine Sciences, 48: 1298-1306. https://doi.org/10.1007/s10668-021-02103-7
    Subrahmanyam M, Venkateswara Rao P. 2017a. A note on the advantages of converting schlumberger VES data into radial dipole VES data. Journal of Geophysics, 28(4): 248−257.
    Subrahmanyam M, Venkateswara RP. 2017b. Delineation of groundwater potential zones using geo-electrical surveys in SSW part of Yeleru river basin, East Godavari District, Andhra Pradesh. Journal of Indian Geophysics Union, 21(6): 465−473.
    Suneetha NG, Gupta G, Shailaja G, et al. 2021. Spatial behavior of the Dar-Zarrouk parameters for exploration and differentiation of water bodies aquifers in parts of konkan coast of Maharashtra, India. Journal of Coastal Conservation, 25: 11. DOI: 10.1007/S11852-021-00807-6.
    Todd KD. 1980. Groundwater Hydrology, Third Ed. New York, John Wiley and Sons: 636.
    Venkateswara RP, Subrahmanyam M, Ratnakar D. 2019a. Performance evaluation of different interpretation techniques of vertical electrical sounding data. Journal of Indian Geophysics Union, 23(1): 55−68.
    Venkateswara RP, Subrahmanyam M, Ramdas P. 2019b. Delineation of groundwater potential zones in hard rock basement terrains of EastGodavari District, Andhra Pradesh, India. Journal of Indian Geophysics Union, 23(5): 408−419.
    Venkateswara RP, Mangalampalli S, Bakuru AR. 2021. Groundwater exploration in hard rock terrains of East Godavari District, Andhra Pradesh, India using AHP and WIO analyses together with geoelectrical surveys. AIMS Geosciences, 7(2): 243−266. DOI: 10.3934/geosci.2021015.
    Venkateswara RP, Mangalampalli S, Bakuru AR. 2022. Investigation of groundwater potential zones in hard rock terrains along EGMB, India, using remote sensing, geoelectrical and hydrological parameters. Acta Geophysica,
    Zohdy AAR. 1965. The auxiliary point method of electrical sounding interpretation and its relationship to the Dar-Zarrouk parameters. Geophysics, 30: 644−660. DOI: 10.1190/1.1439636.
    Zohdy AAR, Eaton GP, Mabey DR. 1974. Application of surface geophysics to groundwater investigations, US Geology Survey. Technology Water Resource Investigation: 116.
    Zohdy AAR. 1989. A new method for the automatic interpretation of Schlumberger and Wenner sounding curves. Geophysics, 54: 245−253. DOI: 10.1190/1.1442648.
  • [1] Stephen Pitchaimani V, Narayanan MSS, Abishek RS, Aswin SK, Jerin Joe RJ2024:  Delineation of groundwater potential zones using remote sensing and Geographic Information Systems (GIS) in Kadaladi region, Southern India, Journal of Groundwater Science and Engineering, 12, 147-160. doi: 10.26599/JGSE.2024.9280012
    [2] Temesgen Mekuriaw Manderso, Yitbarek Andualem Mekonnen, Tadege Aragaw Worku2023:  Application of GIS based analytical hierarchy process and multicriteria decision analysis methods to identify groundwater potential zones in Jedeb Watershed, Ethiopia, Journal of Groundwater Science and Engineering, 11, 221-236. doi: 10.26599/JGSE.2023.9280019
    [3] Edmealem Temesgen, Demelash Wendmagegnehu Goshime, Destaw Akili2023:  Determination of groundwater potential distribution in Kulfo-Hare watershed through integration of GIS, remote sensing, and AHP in Southern Ethiopia, Journal of Groundwater Science and Engineering, 11, 249-262. doi: 10.26599/JGSE.2023.9280021
    [4] Daniel Nnaemeka Obiora, Johnson Cletus Ibuot2023:  Electrical geophysical evaluation of susceptibility to flooding in University of Nigeria, Nsukka main campus and its environs, Southeastern Nigeria, Journal of Groundwater Science and Engineering, 11, 422-434. doi: 10.26599/JGSE.2023.9280033
    [5] Niway Wondesen Fikade, Molla Dagnachew Daniel, Lohani Tarun Kumar2022:  Holistic approach of GIS based Multi-Criteria Decision Analysis (MCDA) and WetSpass models to evaluate groundwater potential in Gelana watershed of Ethiopia, Journal of Groundwater Science and Engineering, 10, 138-152. doi: 10.19637/j.cnki.2305-7068.2022.02.004
    [6] Abebe Wondmagegn Taye2022:  Evaluation of groundwater resource potential by using water balance model: A case of Upper Gilgel Gibe Watershed, Ethiopia, Journal of Groundwater Science and Engineering, 10, 209-222. doi: 10.19637/j.cnki.2305-7068.2022.03.001
    [7] Dr Muthamilselvan A, Anamika Sekar, Emmanuel Ignatius2022:  Identification of groundwater potential in hard rock aquifer systems using Remote Sensing, GIS and Magnetic Survey in Veppanthattai, Perambalur, Tamilnadu, Journal of Groundwater Science and Engineering, 10, 367-380. doi: 10.19637/j.cnki.2305-7068.2022.04.005
    [8] Ma Xin, Wen Dong-guang, Yang Guo-dong, Li Xu-feng, Diao Yu-jie, Dong Hai-hai, Cao Wei, Yin Shu-guo, Zhang Yan-mei2021:  Potential assessment of CO2 geological storage based on injection scenario simulation: A case study in eastern Junggar Basin, Journal of Groundwater Science and Engineering, 9, 279-291. doi: 10.19637/j.cnki.2305-7068.2021.04.002
    [9] Cherif Kessar, Yamina Benkesmia, Bilal Blissag, Lahsen Wahib Kébir2021:  Delineation of groundwater potential zones in Wadi Saida Watershed of NW-Algeria using remote sensing, geographic information system-based AHP techniques and geostatistical analysis, Journal of Groundwater Science and Engineering, 9, 45-64. doi: 10.19637/j.cnki.2305-7068.2021.01.005
    [10] Juandi Muhammad, Nur Islami2021:  Prediction criteria for groundwater potential zones in Kemuning District, Indonesia using the integration of geoelectrical and physical parameters, Journal of Groundwater Science and Engineering, 9, 12-19. doi: 10.19637/j.cnki.2305-7068.2021.01.002
    [11] SONG Hong-wei, XIA Fan, MU Hai-dong, WANG Wei-qiang, SHANG Ming-sen2020:  Study on detecting spatial distribution availability in mine goafs by ultra-high density electrical method, Journal of Groundwater Science and Engineering, 8, 281-286. doi: 10.19637/j.cnki.2305-7068.2020.03.008
    [12] Dinagarapandi Pandi, Saravanan Kothandaraman, Mohan Kuppusamy2020:  Delineation of potential groundwater zones based on multicriteria decision making technique, Journal of Groundwater Science and Engineering, 8, 180-194. doi: 10.19637/j.cnki.2305-7068.2020.02.009
    [13] Fatima Zahra FAQIHI, Anasse BENSLIMANE, Abderrahim LAHRACH, Mohamed CHIBOUT, Mohamed EL MOKHTAR2020:  Recognition of the hydrogeological potential using electrical sounding in the KhemissetTiflet region, Morocco, Journal of Groundwater Science and Engineering, 8, 172-179. doi: 10.19637/j.cnki.2305-7068.2020.02.008
    [14] Qaisar Mehmood, Muhammad Arshad, Muhammad Rizwan, Shanawar Hamid, Waqas Mehmood, Muhammad Ansir Muneer, Muhammad Irfan, Lubna Anjum2020:  Integration of geoelectric and hydrochemical approaches for delineation of groundwater potential zones in alluvial aquifer, Journal of Groundwater Science and Engineering, 8, 366-380. doi: 10.19637/j.cnki.2305-7068.2020.04.007
    [15] SOSI Benjamin, BARONGO Justus, GETABU Albert, MAOBE Samson2019:  Electrical-hydraulic conductivity model for a weathered-fractured aquifer system of Olbanita, Lower Baringo Basin, Kenya Rift, Journal of Groundwater Science and Engineering, 7, 360-372. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.007
    [16] SADIKI Moulay Lhassan, EL MANSOURI Bouabid, BENSEDDIK Badr, CHAO Jamal, KILI Malika, EL MEZOUARY Lhoussaine2019:  Improvement of groundwater resources potential by artificial recharge technique: A case study of Charf El Akab aquifer in the Tangier region, Morocco, Journal of Groundwater Science and Engineering, 7, 224-236. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.003
    [17] Nouayti Abderrahime, Khattach Driss, Hilali Mohamed, Nouayti Nordine2019:  Mapping potential areas for groundwater storage in the High Guir Basin (Morocco):Contribution of remote sensing and geographic information system, Journal of Groundwater Science and Engineering, 7, 309-322. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.002
    [18] LIU Yu, CHENG Yan-pei, GE Li-qiang2018:  Analysis on exploitation status, potential and strategy of groundwater resources in the five countries of Central Asia, Journal of Groundwater Science and Engineering, 6, 49-57. doi: 10.19637/j.cnki.2305-7068.2018.01.006
    [19] WU Ting-wen, WANG Li-huan, YANG Xiang-kui2017:  Evaluation of groundwater potential and eco-geological environment quality in Sanjiang Plain of Heilongjiang Province, Journal of Groundwater Science and Engineering, 5, 193-201.
    [20] LIU Min, NIE Zhen-long, WANG Jin-zhe, WANG Li-fang, TIAN Yan-liang2016:  An assessment of the carrying capacity of groundwater resources in North China Plain region–Analysis of potential for development, Journal of Groundwater Science and Engineering, 4, 174-187.
  • 加载中
图(7) / 表ll (7)
计量
  • 文章访问数:  627
  • HTML全文浏览量:  317
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-20
  • 录用日期:  2023-03-30
  • 网络出版日期:  2023-06-15
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回