• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimizing groundwater recharge plan in North China Plain to repair shallow groundwater depression zone, China

Rui-fang Meng Hui-feng Yang Xi-lin Bao Bu-yun Xu Hua Bai Jin-cheng Li Ze-xin Liang

Meng RF, Yang HF, Bao XL, et al. 2023. Optimizing groundwater recharge plan in North China Plain to repair shallow groundwater depression zone, China. Journal of Groundwater Science and Engineering, 11(2): 133-145 doi:  10.26599/JGSE.2023.9280012
Citation: Meng RF, Yang HF, Bao XL, et al. 2023. Optimizing groundwater recharge plan in North China Plain to repair shallow groundwater depression zone, China. Journal of Groundwater Science and Engineering, 11(2): 133-145 doi:  10.26599/JGSE.2023.9280012

doi: 10.26599/JGSE.2023.9280012

Optimizing groundwater recharge plan in North China Plain to repair shallow groundwater depression zone, China

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Location Map of the North China Plain

    Figure  2.  Hydrogeological profile of the North China Plain (Zhang et al. 2009)

    Figure  3.  Recharge roadmap in the North China Plain

    Figure  4.  Groundwater deficit in shallow groundwater depression zones of the North China Plain and restoration targets

    (a) Shallow groundwater flow filed in 1984 (restoration targets); (b) shallow groundwater flow filed and deficit in 2020

    Figure  5.  Distribution of priority recharge target areas in the North China Plain

    Figure  6.  Predicted groundwater level recovery in the typical groundwater level depression zone (a) Gaoliqing-Ningbailong depression zone; (b) Feixiang-Guangping depression zone

    Table  1.   Situation of shallow groundwater depression zones in the North China Plain in 2020

    Depression zonesSize/104 km2Depth of the zone centre/m
    Gaoliqing-Ningbailong depression zone9 636.60103.19
    Xiongxian-Bazhou depression zone1 989.1462.82
    Handan Feixiang-Guangping depression zone2 035.5479.75
    Pingxiang-Quzhou depression zone356.8253.52
    Langfang Sanhe depression zone873.6338.51
    Tanghai depression zone823.1230.49
    Luannan-Leting depression zone149.2814.21
    下载: 导出CSV

    Table  2.   Deficit in shallow groundwater depression zones

    Depression zonesGroundwater level in 2020/mRestoration targets/mDeficit/108 m3
    Gaoliqing-Ningbailong depression zone−55–−105–30227.99
    Xiongxian-Bazhou depression zone−30–−51–1019.52
    Handan Feixiang-Guangping depression zone−30–2042–6046.55
    Pingxiang-Quzhou depression zone−15–025–309.45
    Langfang Sanhe depression zone−10–04–257.84
    Tanghai depression zone−10–−250–44.93
    Luannan-Leting depression zone−10–−50–20.97
    Total317.25
    下载: 导出CSV

    Table  3.   Regulation space for recharge priority target areas in the North China Plain

    Recharge priority target areasSize/km2Buried depth/mRegulation space/108 m3
    Luanhe River Alluvial-proluvial fan2 728.786–308.30
    Chaobai-Jiyun River Alluvial-proluvial fan2 107.908–3513.90
    Yongding River Alluvial-proluvial fan2 543.9915–3016.30
    Juma River Alluvial-proluvial fan927.3612–287.90
    Hutuo-Dasha River Alluvial-proluvial fan6 456.7118–57118.90
    Fuyang River Alluvial-proluvial fan923.518–414.80
    Zhanghe River Alluvial-proluvial fan1 025.0612–4810.90
    Total16 713.31181.00
    下载: 导出CSV

    Table  4.   Optimized Plan for Groundwater Recharge in the North China Plain

    Recharge
    target areas
    Depression zone repairRecharge sourceRecharge riverDeficit
    /108 m3
    Recharge infiltration rateRepair water requirements
    /108 m3
    Optimized plan
    /108 m3/a
    To be optimised plan—
    recharge volume in 2020
    /108 m3/a
    Luanhe River alluvial-proluvial fan Tanghai depression Zone, Luannan-Leting depression zone Luanhe River Source, Panjikou Reservoir, Daheiting Reservoir, Taolinkou Reservoir Luanhe River 5.90 0.70 7.38 0.56 /
    Chaobai-Jiyun River alluvial-proluvial fan Langfang Sanhe depression zone Source of South-to-North Water Diversion Project’s Central Route, Miyun Reservoir, Huairou Reservoir Chaobai River, North Canal 7.84 0.85 9.22 0.61 7.56
    Yongding River alluvial-proluvial fan Xiongxian-Bazhou depression zone Source of South-to-North Water Diversion Project’s Central Route, Guanting Reservoir Yongding River, North Juma River-Baigou River 19.52 0.495 26.56 1.77 3.46
    Juma River alluvial-proluvial fan Source of South-to-North Water Diversion Project’s Central Route, Angezhuang Reservoir South Juma River 0.57 11.18 0.75 0.88
    Hutuo-Dasha River alluvial-proluvial fan Gaoliqing-Ningbailong depression zone Source of South-to-North Water Diversion Project’s Central Route, Huangbizhuang Reservoir, Wangkuai Reservoir, Xidayang Reservoir Hutuo River, Dasha River, Tanghe River 227.99 0.80 284.99 19.00 11.43
    Fuyang River alluvial-proluvial fan Pingxiang-Quzhou depression zone Source of South-to-North Water Diversion Project’s Central Route, Zhuzhuang Reservoir Qili River-Shunshui River 9.45 0.44 21.48 1.43 2.06
    Zhanghe River alluvial-proluvial fan Handan Feixiang-Guangping depression zone Source of South-to-North Water Diversion Project’s Central Route, Yuecheng Reservoir, Dongwushi Reservoir Fuyang River,Zhanghe River, Anyang River 46.55 0.44 105.80 7.05 3.19
    Total 317.25 317.25 466.60 31.18
    下载: 导出CSV
  • Auckenthaler A, Baenninger D, Zechner E, et al. 2010. Drinking water production close to contaminant sites: A case study from the region of Basel, Switzerland. IAHS Publication, 342: 167−170.
    Azizur RM, Rernd R, Gogu RC, et al. 2012. A new spatial multi-criteria decision support tool for site selection for implementation of managed aquifer recharge. Journal of Environmental Management, 99: 61−75. DOI: 10.1016/j.jenvman.2012.01.003.
    Bouwer H. 2002. Artificial recharge of groundwater: Hydrogeology and engineering. Hydrogeology Journal, 10: 121−142. DOI: 10.1007/s10040-001-0182-4.
    Chen F, Ding YY, Tang SN, et al. 2021. Practice and effect analysis of river-lake ecological water supplement and groundwater recharge in the North China region. China Water Resources, 07: 36−39. (in Chinese)
    Cui X, Zhang B, He MX, et al. 2021. Impacts of ecological water replenishment on the hydrochemical characteristics of surface water and groundwater in Lake Baiyangdian Watershed. Journal of Lake Sciences, 33(06): 1675−1686. (in Chinese) DOI: 10.18307/2021.0606.
    Dillon PJ. 2004. Future management of aquifer recharge. Hydrogeology Journal, 13(1): 313−316. DOI: 10.1007/s10040-004-0413-6.
    Ghayoumian J, Ghermezcheshme B, Feizinia S, et al. 2005. Integrating GIS and DSS for identification of suitable for artificial recharge, case study Meimeh Basin, Isfahan, Iran. Environmental Geology, 47: 493−500. DOI: 10.1007/s00254-004-1169-y.
    He YP, Li SJ, Li Y, et al. 2019. Effect of South-to-North water transfer project on recharge and water level in Chaobai river area. Beijing Water, 03: 21−26. (in Chinese) DOI: 10.19671/j.1673-4637.2019.03.006.
    Hendricks FHJ, Kaiser HP, Kuhlmann U, et al. 2011. Operational real-time modeling with ensemble Kalman filter of variably saturated subsurface flow including stream-aquifer interaction and parameter updating. Water Resources Research, 47 (2): W02532.
    Hu LT, Guo JL, Zhang SQ, et al. 2020. Response of groundwater regime to ecological water replenishment of the Yongding River. Hydrogeology & Engineering Geology, 47(05): 5−11. (in Chinese) DOI: 10.16030/j.cnki.issn.1000-3665.202008027.
    Huo LT, Wang BX, Pan ZH, et al. 2020. Environmental impact by surface-water recharge of groundwater in Beijing Mihuaishun replenishment area-correspondence analysis. Journal of Beijing Normal University (Natural Science), 56(02): 195−203. (in Chinese) DOI: 10.12202/j.0476-0301.2020058.
    Jia WF, Yang Y, Zhao Y, et al. 2016. Simulation of the water-rock reaction in Chaobai River ground-water storage area. South-to-North Water Transfers and Water Science & Technology, 14(01): 143−148, 135. (in Chinese) DOI: 10.13476/j.cnki.nsbdqk.2016.01.024.
    Li HT, Shi P, Wu HX. 2008. Artificial recharge technology of groundwater. Natural Resource Economics of China, (03): 41−42, 45, 48. (in Chinese)
    Li WP, Wang LF, Yang HF, et al. 2020. The groundwater over-exploitation status and countermeasure suggestions of the North China Plain. China Water Resources, 13: 26−30. (in Chinese)
    Lin XY. 1984. On development and utilization of groundwater reservoir. Journal of Jilin University (Earth Science Edition), 02: 113−121. (in Chinese)
    Liu LC, Zheng FD, Li BH, et al. 2015. Experiment of groundwater quality change for simulating the South-to-North water into the Mihuaishun aquifer. Hydrogeology & Engineering Geology, 42(04): 18−22, 55. (in Chinese) DOI: 10.16030/j.cnki.issn.1000-3665.2015.04.04.
    Moeck C, Radny D, Borer P, et al. 2016. Multicomponent statistical analysis to identify flow and transport processes in a highly-complex environment. Journal of Hydrology, 542: 437−449. DOI: 10.1016/j.jhydrol.2016.09.023.
    Sarfaraz A, Annesh B, Sujith R, et al. 2021. Managed aquifer recharge implementation criteria to achieve water sustainability. Science of the Total Environment, 768: 1−19. DOI: 10.1016/J.SCITOTENV.2021.144992.
    Shi JS, Li GM, Liang X, et al. 2014. Evolution mechanism and control of groundwater in the North China Plain. Acta Geoscientica Sinica, 35(5): 527−534. (in Chinese) DOI: 10.3975/cagsb.2014.05.01.
    Sprenger C, Hartog N, Hernández M, et al. 2017. Inventory of managed aquifer recharge sites in Europe: Historical development, current situation and perspectives. Hydrogeology Journal, 25: 1909−1922. DOI: 10.1007/s10040-017-1554-8.
    Tian MZ, Zhao L, Cui WJ, et al. 2022. Control and influence of rising groundwater level on land under the background of South-to-North Water Diversion: A case study of Chaobai River groundwater system in Beijing. Geology in China. (in Chinese)
    Tian X, Meng SH, Cui XX, et al. 2021. Hydrochemical Effect of groundwater recharge in over-exploited area of Hutuo River Basin. Research of Environmental Sciences, 34(03): 629−636. (in Chinese) DOI: 10.13198/j.issn.1001-6929.2020.07.19.
    Wang Z, Fu Y, Zhu JS, et al. 2021. Effect assessment on groundwater recharge for typical rivers in North China. Journal of Jilin University (Earth Science Edition), 51(03): 843−853. (in Chinese) DOI: 10.13278/j.cnki.jjuese.20200078.
    Xiao Y, Shan R, Li S, et al. 2017. Change in groundwater resource and environment of South-to-North water recharge area of Chaobai River. Beijing Water, (04): 5−8. (in Chinese) DOI: 10.19671/j.1673-4637.2017.04.002.
    Yang HF, Cao WG, Zhi CS, et al. 2021. Evolution of groundwater level in the North China Plain in the past 40 years and suggestions on its overexploitation treatment. Geology in China, 48(04): 1142−1155. (in Chinese) DOI: 10.12029/gc20210411.
    Yang HF, Meng RF, Bao XL, et al. 2022. Assessment of water level threshold for groundwater restoration and over-exploitation remediation the Beijing-Tianjin-Hebei Plain. Journal of Groundwater Science and Engineering, 10(02): 113−127.
    Yu Y, Qi TL. 2020. Analysis on the effect of comprehensive control pilot project of groundwater supplement for groundwater over-abstraction in Northern China. Haihe Water Resources, (03): 7−9,16. (in Chinese) DOI: 10.3969/j.issn.1004-7328.2020.03.003.
    Zhang GH, Fei YH, Liu KY, et al. 2007. Groundwater potential recovery and water level variation in the Shijiazhuang water-receiving area at the central line of the south-to-north water transfer project. Geological Bulletin of China, 144(05): 583−589. (in Chinese)
    Zhang GH, Lian YL, Liu CH, et al. 2011. Situation and origin of water resources in short supply in North China Plain. Journal of Earth Sciences and Environment, 33(2): 172−176. (in Chinese)
    Zhang ZJ, Fei YH, Chen ZY, et al. 2009. Investigation and Evaluation of Sustainable Utilization of Groundwater in North China Plain. Beijing: Geological publishing house. (in Chinese)
    Zheng FD, Liu LC, Yang MQ, et al. 2012. Simulation of water-rock interaction in the injection of water from the South-to-North Diversion Project to the aquifer in the western suburb of Beijing. Hydrogeology & Engineering Geology, 39(06): 22−28. (in Chinese) DOI: 10.16030/j.cnki.issn.1000-3665.2012.06.005.
    Zhu JY, Guo HP, Li WP, et al. 2014. Relationship between land subsidence and deep groundwater yield in the North China Plain. South-to-North Water Transfers and Water Science & Technology, 12(3): 165−169. (in Chinese) DOI: 10.13476/j.cnki.nsbdqk.2014.03.036.
  • [1] Shamla Rasheed, Marykutty Abraham2024:  Conventional and futuristic approaches for the computation of groundwater recharge: A comprehensive review, Journal of Groundwater Science and Engineering, 12, 428-452. doi: 10.26599/JGSE.2024.9280027
    [2] Zhe Wang, Li-juan Wang, Jian-mei Shen, Zhen-long Nie, Le Cao, Ling-qun Meng2024:  Groundwater recharge via precipitation in the Badain Jaran Desert, China, Journal of Groundwater Science and Engineering, 12, 109-118. doi: 10.26599/JGSE.2024.9280009
    [3] Mouna Djellali, Omar Guefaïfia, Chemsedinne Fehdi, Adel Djellali, Amor Hamad2023:  Assessing the impact of artificial recharge on groundwater in an over-exploited aquifer: A case study in the Cheria Basin, North-East of Algeria, Journal of Groundwater Science and Engineering, 11, 263-277. doi: 10.26599/JGSE.2023.9280022
    [4] Guo Jin-xing, Li Zhi-ping, Stefan Catalin2022:  Managed aquifer recharge (MAR) applications in China–achievements and challenges, Journal of Groundwater Science and Engineering, 10, 57-69. doi: 10.19637/j.cnki.2305-7068.2022.01.006
    [5] Yu Chu, Wu Li-jie, Zhang Yi-long, Wang Xiu-ya, Wang Zhan-chuan, Zhang Zhou2022:  Effect of groundwater on the ecological water environment of typical inland lakes in the Inner Mongolian Plateau, Journal of Groundwater Science and Engineering, 10, 353-366. doi: 10.19637/j.cnki.2305-7068.2022.04.004
    [6] Tong Xiao-xia, Gan Rong, Gu Shu-qian, Sun Xing-le, Huang Kai-tuo, Yan Xiao-feng2022:  Stable chlorine isotopic signatures and fractionation mechanism of groundwater in Anyang, China, Journal of Groundwater Science and Engineering, 10, 393-404. doi: 10.19637/j.cnki.2305-7068.2022.04.007
    [7] Shahbaz Akhtar M, Nakashima Yoshitaka, Nishigaki Makoto2021:  Clogging mechanisms and preventive measures in artificial recharge systems, Journal of Groundwater Science and Engineering, 9, 181-201. doi: 10.19637/j.cnki.2305-7068.2021.03.002
    [8] Zhang Han, Chen Zong-yu, Tang Chang-yuan2021:  Quantifying groundwater recharge and discharge for the middle reach of Heihe River of China using isotope mass balance method, Journal of Groundwater Science and Engineering, 9, 225-232. doi: 10.19637/j.cnki.2305-7068.2021.03.005
    [9] Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip2020:  Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand, Journal of Groundwater Science and Engineering, 8, 10-19. doi: 10.19637/j.cnki.2305-7068.2020.01.002
    [10] SADIKI Moulay Lhassan, EL MANSOURI Bouabid, BENSEDDIK Badr, CHAO Jamal, KILI Malika, EL MEZOUARY Lhoussaine2019:  Improvement of groundwater resources potential by artificial recharge technique: A case study of Charf El Akab aquifer in the Tangier region, Morocco, Journal of Groundwater Science and Engineering, 7, 224-236. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.003
    [11] ZHANG Yu-qin, WANG Guang-wei, WANG Shi-qin, YUAN Rui-qiang, TANG Chang-yuan, SONG Xian-fang2018:  Hydrochemical characteristics and geochemistry evolution of groundwater in the plain area of the Lake Baiyangdian watershed, North China Plain, Journal of Groundwater Science and Engineering, 6, 220-233. doi: 10.19637/j.cnki.2305-7068.2018.03.007
    [12] SONG Chao, HAN Gui-lin, WANG Pan, SHI Ying-chun, HE Ze2017:  Hydrochemical and isotope characteristics of spring water discharging from Qiushe Loess Section in Lingtai, northwestern China and their implication to groundwater recharge, Journal of Groundwater Science and Engineering, 5, 364-373.
    [13] NAN Tian, SHAO Jing-li, CUI Ya-li2016:  Column test-based features analysis of clogging in artificial recharge of groundwater in Beijing, Journal of Groundwater Science and Engineering, 4, 88-95.
    [14] LIU Ji-chao, SHI Jian-sheng, GAO Ye-xin, REN Zhan-bing2016:  Exploration on compound water circulation system to solve water resources problems of North China Plain, Journal of Groundwater Science and Engineering, 4, 229-237.
    [15] WANG Shi-qin, SONG Xian-fang, WEI Shou-cai, SHAO Jing-li2016:  Application of HYDRUS-1D in understanding soil water movement at two typical sites in the North China Plain, Journal of Groundwater Science and Engineering, 4, 1-11.
    [16] LIU Min, NIE Zhen-long, WANG Jin-zhe, WANG Li-fang, TIAN Yan-liang2016:  An assessment of the carrying capacity of groundwater resources in North China Plain region–Analysis of potential for development, Journal of Groundwater Science and Engineering, 4, 174-187.
    [17] FEI Yu-hong, ZHANG Zhao-ji, LI Ya-song, GUO Chun-yan, TIAN Xia2015:  Quality evaluation of groundwater in the North China Plain, Journal of Groundwater Science and Engineering, 3, 306-315.
    [18] WANG Chun-xiao, ZHANG Zhao-ji, FEI Yu-hong, QIAN Yong2014:  Research on Migration Features of Salt-Fresh Water Interface on the North China Plain, Journal of Groundwater Science and Engineering, 2, 68-79.
    [19] Zhao Wang, Jiansheng Shi, Zhaoji Zhang, Yuhong Fei2013:  Organic Contamination of Soil and Goundwater in the Piedimont Plain of the Taihang Mountains, Journal of Groundwater Science and Engineering, 1, 74-81.
    [20] Yan Zhang, Shuai Song, Jing Li, Fadong Li, Guangshuai Zhao, Qiang Liu2013:  Stable Isotope Composition of Rainfall, Surface Water and Groundwater along the Yellow River, Journal of Groundwater Science and Engineering, 1, 82-88.
  • 加载中
图(6) / 表ll (4)
计量
  • 文章访问数:  980
  • HTML全文浏览量:  478
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-15
  • 录用日期:  2022-11-20
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回