Application of GIS based analytical hierarchy process and multicriteria decision analysis methods to identify groundwater potential zones in Jedeb Watershed, Ethiopia
-
Abstract: The hydrogeological situation of the study area requires the identification of groundwater potential. Remote sensing and satellite data have proven to be reliable tools for understanding various factors that affect groundwater occurrence and movement. This study employed weighted overlay analysis based on satellite imagery and secondary data to create a thematic map for characterizing groundwater potentials in the study area located within Abbay Basin, Ethiopia. Remote sensing (RS) and GIS-based Fuzzy-Analytical Hierarchy Process methods were utilized to classify groundwater potential (GWP) zones into five categories: Very good, good, moderate, poor, and very poor. The central and eastern parts of the study area were identified as having high (33.186%) and very high (2.351%) groundwater potentials, while the western part exhibited poor and very poor potential areas. The groundwater potential map delineated higher and moderate potentials, suitable for installing shallow and production bores. This research demonstrates the effectiveness of RS and GIS techniques for delineating groundwater potential zones, which can aid in the planning and management of groundwater resources. The research findings have the potential to contribute to the formulation of improved groundwater management programs in the study area.
-
Table 1. Different values of N, Saaty's ratio index (Abdalla et al. 2020; Allafta and Opp, 2021; Jabbar et al. 2019; Savita et al. 2018; Teja and Singh, 2019)
N 1 2 3 4 5 6 7 8 9 10 11 12 RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 Table 2. Rate and ranks of drainage density
Drainage density / km/km2 Rank Area / km2 Percent / % 0–0.698 Very low 23.103 26.659 0.698–1.56 Low 22.500 25.963 1.56–2.39 Moderate 19.591 22.606 2.39–3.36 High 151.453 17.476 3.36–6.858 Very high 63.240 7.297 Table 3. Rank and rate of slope layer
Slope in degrees Condition Rank Area / km2 Percent / % 0–4.272 Flat Very Good 166.65 19.23 4.272–8.312 2 Gentle Good 266.69 30.77 8.312–15.672 Medium Moderate 284.40 32.82 15.672–30.571 Steep Poor 133.67 15.42 30.571–69.865 Highly steep Very poor 15.23 1.76 Table 4. Geomorphologic description and rate of the layer (FAO)
Geomorphology Landforms Area / km2 Percent / % High to mountainous relief hills Volcanic land form 203.229 6 3.66 Moderately dissected plateaux, plateaux with hills abd rolling to hilly plateau 324.154 0.99 Plains and low plateaux with hills, moderately dissected sideslopes and dissected plains 8.1512 95.35 Moderately dissected plateaux, plateaux with hills and rolling to hilly plateau Residual land form 298.872 8 Moderate to high relief hills and severely dissected side slopes and plateaux 0.464 8 Seasonal wetland and seasonally waterlogged land Alluvial land form 31.703 2 Table 5. Rank and rate of geology layer
Geology Rank Area / km2 Percent / % PreCambrian Low 1.048 0.12 Cretaceous-Jurassic Moderate 126.86 14.64 Tertiary extrusive and intrusive High 738.671 85.24 Table 6. Rate and rank of lineament density theme
Lineament density / km/km2 Rank Area / km2 Percent / % 0–0.322 Very low 439.341 50.695 0.32185–0.88 Low 146.745 16.933 0.88–1.32 Moderate 235.726 27.200 1.32–1.77 High 29.220 3.372 1.77–2.74 Very high 15.603 1.800 Table 7. Rate and ranks of RF layer
Rainfall / mm Rank Area / km2 Percent / % 1190–1280 Very Poor 75.575 8.721 1280–1370 Poor 151.312 17.460 1380–1460 Moderate 403.333 46.540 1460–1550 Good 178.135 20.555 1550–1640 Very good 58.275 6.724 Table 8. Area coverage and rate of LU/LC
Land use type Rank Area / km2 Percent / % Water body Very high 0.797 0.092 Forest High 43.785 5.052 Grassland Moderate 29.571 3.412 Agricultural land Moderate 642.777 74.170 Shurbland Moderate 26.674 3.078 Builtup Area Very poor 122.838 14.174 Bareland Very Poor 0.181 0.021 Table 9. Soil type rank and rate
Soil type Soil group Area / km2 Percent / % Ranks Chromic Cambisols Cambisols 29.9648 3.46 Chromic Luvisols Luvisols 112.8032 13.02 Moderate Chromic Vertisols Vertisols 92.0356 10.62 Poor Dystric Nitosols Nitosols 3.6436 0.42 Very high Eutric Fluvisols Fluvisols 0.5336 0.06 Very high Eutric Nitosols Nitosols 138.4196 15.97 Very high Lithosols Lithosols 19.082 2.20 High Orthic Acrisols Acrisols 4.4128 0.51 Poor Pellic Vertisols Vertisols 465.6804 53.74 Poor Table 10. The relative weight of each thematic layers
Matrix R Ge Sl Geom Dd LULC Ld S Weight / % R 1 3 3 3 5 5 5 7 33.09 Ge 0.33 1 3 1 3 5 5 5 20.39 Sl 0.33 0.33 1 3 1 3 3 5 13.97 Geom 0.33 1 0.33 1 1 2 5 3 11.35 Dd 0.2 0.33 1 1 1 1 2 3 8.24 LULC 0.2 0.2 0.33 0.5 1 1 1 3 5.69 Ld 0.2 0.2 0.33 0.2 0.5 1 1 1 4.06 S 0.143 0.2 0.2 0.33 0.33 0.33 1 1 3.20 Table 11. Rank and area coverage of groundwater potential zones
Classes Rank Area / km2 GWP weighted area / % 1 Very poor potential 35.516 4.112 2 Poor potential 141.197 16.347 3 Moderate potential 380.087 44.005 4 High potential 286.637 33.186 5 Very high potential 20.303 2.351 Total 866.63 100 -
Abdalla F, Moubark K, Abdelkareem M. 2020. Groundwater potential mapping using GIS, linear weighted combination techniques and geochemical processes identification, west of the Qena area, Upper Egypt. Journal of Taibah University for Science. DOI: 10.1080/16583655.2020.1822646. Abudeif AM, Abdel Moneim AA, Farrag AF. 2015. Multicriteria decision analysis based on analytic hierarchy process in GIS environment for siting nuclear power plant in Egypt. Annals of Nuclear Energy, 75: 682−692. DOI: 10.1016/j.anucene.2014.09.024. Adeyeye OA, Ikpokonte EA, Arabi SA. 2019. GIS-based groundwater potential mapping within Dengi area, North Central Nigeria. Egyptian Journal of Remote Sensing and Space Science, 22(2): 175−181. DOI: 10.1016/j.ejrs.2018.04.003. Ajay Kumar V, Mondal NC, Ahmed S. 2020. Identification of groundwater potential zones using RS, GIS and AHP techniques: A case study in a part of Deccan Volcanic Province (DVP), Maharashtra, India. Journal of the Indian Society of Remote Sensing, 48(3): 497−511. DOI: 10.1007/s12524-019-01086-3. Allafta H, Opp C Patra S. 2021. Identification of groundwater potential zones using remote sensing and GIS techniques : A case study of the Shatt Al-Arab Basin. Remote Sensing, 13(1): 112. DOI: 10.3390/rs13010112. Arulbalaji P, Padmalal D, Sreelash K. 2019. GIS and AHP techniques based delineation of groundwater potential zones: A case study from Southern Western Ghats, India. Scientific Reports, 9(1): 1−17. DOI: 10.1038/s41598-019-38567-x. Arya S, Subramani T, Karunanidhi D. 2020. Delineation of groundwater potential zones and recommendation of artificial recharge structures for augmentation of groundwater resources in Vattamalaikarai Basin, South India. Environmental Earth Sciences, 79(5): 102. DOI: 10.1007/s12665-020-8832-9. Atmaja RRS, Putra DPE, Setijadji LD. 2019. Delineation of groundwater potential zones using remote sensing, GIS, and AHP techniques in southern region of Banjarnegara, Central Java, Indonesia. Sixth Geoinformation Science Symposium, 192-202. DOI: 10.1117/12.2548473. Berhanu KG, Hatiye SD. 2020. Identification of groundwater potential zones using proxy sata: Case study of Megech Watershed, Ethiopia. Journal of Hydrology: Regional Studies, 28(February): 100676. DOI: 10.1016/j.ejrh.2020.100676. Biswas S, Mukhopadhyay BP, Bera A. 2020. Delineating groundwater potential zones of agriculture dominated landscapes using GIS based AHP techniques: A case study from Uttar Dinajpur district, West Bengal. Environmental Earth Sciences, 79(12): 302. DOI: 10.1007/s12665-020-09053-9. Das B, Pal SC, Malik S, et al. 2019. Modeling groundwater potential zones of Puruliya district, West Bengal, India using remote sensing and GIS techniques. Geology, Ecology, and Landscapes, 3(3): 223−237. DOI: 10.1080/24749508.2018.1555740. Das S, Pardeshi SD. 2018. Integration of different influencing factors in GIS to delineate groundwater potential areas using IF and FR techniques: A study of Pravara basin, Maharashtra, India. Applied Water Science, 8(7): 1−16. DOI: 10.1007/s13201-018-0848-x. Deepa S, Venkateswaran S, Ayyandurai R, et al. 2016. Groundwater recharge potential zones mapping in upper Manimuktha Sub Basin Vellar River Tamil Nadu India using GIS and remote sensing techniques. Modeling Earth Systems and Environment, 2(3): 1−13. DOI: 10.1007/s40808-016-0192-9. Duan HJ, Deng ZD, Deng FF, et al. 2016. Assessment of groundwater potential based on multicriteria decision making model and decision tree algorithms. Mathematical Problems in Engineering, 2016: 1−12. DOI: 10.1155/2016/2064575. Ettazarini S, El Jakani M. 2020. Mapping of groundwater potentiality in fractured aquifers using remote sensing and GIS techniques: The case of Tafraoute region, Morocco. Environmental Earth Sciences, 79(5): 105. DOI: 10.1007/s12665-020-8848-1. Fildes SG, Clark IF, Somaratne NM, et al. 2020. Mapping groundwater potential zones using remote sensing and geographical information systems in a fractured rock setting, Southern Flinders Ranges, South Australia. Journal of Earth System Science, 129(1): 160. DOI: 10.1007/s12040-020-01420-1. Gelagay HS, Minale AS. 2016. Soil loss estimation using GIS and Remote sensing techniques: A case of Koga watershed, Northwestern Ethiopia. International Soil and Water Conservation Research, 4(2): 126−136. DOI: 10.1016/j.iswcr.2016.01.002. Hammouri N, El-naqa A, Barakat M. 2012. An integrated approach to groundwater exploration using remote sensing and geographic information system. Journal of Water Resource and Proteciton, 4(9): 717−724. DOI: 10.4236/jwarp.2012.49081. Haque SM, Kannaujiya S, Taloor AK, et al. 2020. Identification of groundwater resource zone in the active tectonic region of Himalaya through earth observatory techniques. Groundwater for Sustainable Development, 10: 100337. DOI: 10.1016/j.gsd.2020.100337. Ikegwuonu ES, Balogun DO, Agunloye O, et al. 2021. Geospatial assessment of groundwater potential in Jos south local government area of Plateau State, Nigeria. International Jouranl of Engineering Research and Technology, 10(3): 27−38. Jabbar FK, Grote K, Tucker RE. 2019. A novel approach for assessing watershed susceptibility using weighted overlay and analytical hierarchy process ( AHP ) methodology : A case study in Eagle Creek Watershed, USA. Environmental Science and Pollution Research, 26: 31981−31997. DOI: 10.1007/s11356-019-06355-9. Janarthanan G, Thirukumaran V. 2020. Mapping of groundwater potential zones in Pulampatti Watershed, Dharmapuri District – a geospatial approach. Indian Journal of Natural Sciences, 12(66): 1−9. Kassahun N, Mohamed M. 2018. Groundwater potential assessment and characterization of Genale-Dawa River Basin. Open Journal of Modern Hydrology, 08(04): 126−144. DOI: 10.4236/ojmh.2018.84010. Kavidha R, Elangovan K. 2012. Assessment of groundwater potential zones in erode district, tamil nadu, by using gis techniques. Pollution Research, 31(2): 161−167. Kindie AT, Enku T, Moges MA. 2019. Spatial analysis of groundwater potential using GIS based multi criteria dcision analysis method in Lake Tana Basin, Ethiopia (Vol. 2). International Conference on Advances of Science and Technology. Cham: Springer, 2019: 439−456. DOI: 10.1007/978-3-030-15357-1_37. Pande CB, Moharir KN, Panneerselvam B, et al. 2021. Delineation of groundwater potential zones for sustainable development and planning using analytical hierarchy process (AHP), and MIF techniques. Applied Water Science, 11(12): 1−20. DOI: 10.1007/s13201-021-01522-1. Province B, Kaewdum N, Chotpantarat S. 2021. Mapping potential zones for groundwater recharge using a GIS technique in the Lower Khwae Hanuman Sub-Basin area. Prachin, 9: 1−16. DOI: 10.3389/feart.2021.717313. Rajasekhar M, Sudarsana Raju G, Sreenivasulu Y, et al. 2019. Delineation of groundwater potential zones in semi-arid region of Jilledubanderu River Basin, Anantapur District, Andhra Pradesh, India using fuzzy logic, AHP and integrated fuzzy-AHP approaches. HydroResearch, 2: 97−108. DOI: 10.1016/j.hydres.2019.11.006. Saha A, Patil M, Karwariya S, et al. 2018. Identification of potential sites for water harvesting structures using geospatial techniques and multi-criteria decision analysis. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, XLII-5: 329−334. DOI: 10.5194/ISPRS-ARCHIVES-XLII-5-329-2018. Saranya T, Saravanan S. 2020. Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamilnadu, India. Modeling Earth Systems and Environment, 6(2): 1105−1122. DOI: 10.1007/s40808-020-00744-7. Savita RS, Mittal HK, Satishkumar U, et al. 2018. Delineation of groundwater potential zones using remote sensing and GIS techniques in Kanakanala Reservoir Subwatershed, Karnataka, India. International Journal of Current Microbiology and Applied Sciences, 7(1): 273−288. DOI: 10.20546/ijcmas.2018.701.030. Shadeed SM, Judeh TG, Almasri MN. 2019. Developing GIS-based water poverty and rainwater harvesting suitability maps for domestic use in the Dead Sea region(West Bank, Palestine). Hydrogeology and Earth System Science, 23(3): 1581−1592. DOI: 10.5194/hess-23-1581-2019. Shao ZF, Huq ME, Cai BW, et al. 2020. Integrated remote sensing and GIS approach using Fuzzy-AHP to delineate and identify groundwater potential zones in semi-arid Shanxi Province, China. Environmental Modelling and Software, 134: 104868. DOI: 10.1016/j.envsoft.2020.104868. Sivakumar V, Vinay LY, Reddy K. 2019. Identification of groundwater potential zones using gis and remote sensing. International Journal of Pure and Applied Mathematics, 119(17): 3195-3210. Suryabhagavan K. 2017. Application of remote sensing and GIS for groundwater potential zones identification in Bata river basin, Himachal Pradesh, India. Journal of Geomatics, 11(1): 66−76. Takorabt HZS. et al. 2018. Determining the role of lineaments in underground hydrodynamics using Landsat 7 ETM + data, case of the Chott El Gharbi Basin (western Algeria). Arabian Journal of Geosciences, 11(4): 76. DOI: 10.1007/s12517-018-3412-y. Teja KS, Singh D. 2019. Identification of groundwater potential zones using remote sensing and GIS, case study: Mangalagiri mandal. International Journal of Recent Technology and Engineering, 7(6): 860−864. Thapa R, Gupta S, Guin S, et al. 2018. Sensitivity analysis and mapping the potential groundwater vulnerability zones in Birbhum district, India: A comparative approach between vulnerability models. Water Science, 32(1): 44−66. DOI: 10.1016/j.wsj.2018.02.003. Yeh HF, Cheng YS, Lin HI, et al. 2016. Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustainable Environment Research, 26(1): 33−43. DOI: 10.1016/j.serj.2015.09.005.