• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effective groundwater level recovery from mining reduction: Case study of Baoding and Shijiazhuang Plain area

Tian Nan Chen Yue Wen-geng Cao En-lin Mu Yang Ou Zhen-sheng Lin Wei Kang

Nan T, Yue C, Cao WG, et al. 2023. Effective groundwater level recovery from mining reduction: Case study of Baoding and Shijiazhuang Plain area. Journal of Groundwater Science and Engineering, 11(3): 278-293 doi:  10.26599/JGSE.2023.9280023
Citation: Nan T, Yue C, Cao WG, et al. 2023. Effective groundwater level recovery from mining reduction: Case study of Baoding and Shijiazhuang Plain area. Journal of Groundwater Science and Engineering, 11(3): 278-293 doi:  10.26599/JGSE.2023.9280023

doi: 10.26599/JGSE.2023.9280023

Effective groundwater level recovery from mining reduction: Case study of Baoding and Shijiazhuang Plain area

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Location of the study area

    Figure  2.  Research framework employed in this study

    Figure  3.  Schematic diagram of random forest

    Figure  4.  Fitting effect of groundwater flow field in Baoding and Shijiazhuang Plain

    Figure  5.  Comparison of change in annual effective mining reduction and coefficient of recharge variation (β), effective recovery of water level and contribution of water level recovery by reduction of mining (λ) in Baoding and Shijiazhuang Plains

    Figure  6.  Trends in effects of mining reduction in Baoding and Shijiazhuang Plains (a. Baoding; b. Shijiazhuang)

    Figure  7.  Trends in the contribution of water level restoration from mining reduction in Baoding and Shijiazhuang Plains

    Figure  8.  Comparison of the contribution of feature elements to water level changes in Baoding and Shijiazhuang Plain Area

    Table  1.   List of the feature variable dataset

    Cone of depression feature variable data set
    Class Indicator Source characteristic
    Meteorological factors Precipitation Statistical data Accumulative
    Evaporation Statistical data Accumulative
    Topographical factors Terrain slope Remote
    sensing data
    Distributive
    Surface elevation Remote
    sensing data
    Distributive
    Anthropogenic factors River
    recharge
    Statistical data Accumulative
    Mining volume Statistical data Accumulative
    Aquifer hydraulic properties Permeability
    coefficient
    Empirical
    parameter
    Distributive
    Specific yield Empirical
    parameter
    Distributive
    Labeled data
    Content Classification type
    Water level: Rise or not Yes (1)
    No (0)
    下载: 导出CSV

    Table  2.   List of parameters for calculating and evaluating the effect of water level recovery from mining reduction in Baoding Plain

    Evaluation area Area
    / km2
    Specific yield 2015 baseline recharge volume
    / 104 m3
    2015 mining volume
    / 104 m3
    2016 mining volume
    / 104 m3
    2017 mining volume
    / 104 m3
    2018 mining volume
    / 104 m3
    Plain area in Laishui County 263 0.20 18 423.13 7 495.30 7 042.9 6 806.9 5 968.3
    Plain area in Yi County 190 0.18 34 126.67 11 551.00 1 0651 10 265 4 613
    Zhuozhou 742 0.05 10 204.25 17 700.00 16 900 16 307 15 337
    Dingxing County 707 0.08 8 875.71 17 218.00 16 756 16 462 15 688
    Gaobeidian 672 0.08 10 058.09 12 034.00 11 644 11 276 10 714
    Tang County 252 0.08 16 833.70 7 835.00 7 228 6 850 6 460
    Shunping County 236 0.07 10 608.58 12 646.50 11 750 11 150 10 430
    Mancheng district 294 0.10 10 681.52 8 700.00 8 100 7 690 7 011
    Xushui district 727 0.08 8 991.97 13 628.00 12 535 12 640 10 320.2
    Rongcheng County 316 0.10 3 546.99 7 950.00 7 502 7 306 /
    Baoding Downtown Area 315 0.15 3 407.75 5 845.85 4 325 4 684 4 631.8
    Qingyuan district 863 0.14 11 139.53 20 510.00 19 339.43 18 232 17 055
    Anxin County 726 0.10 9 459.80 8 186.00 7 711.01 7 613.03 /
    Quyang County 427 0.10 17 272.07 3 965.00 3 630 3 520 3 300
    Wangdu County 374 0.08 6 055.51 10 144.45 9 422.38 8 792 8 178
    Anguo 486 0.10 5 915.52 13 920.00 13 025 12 364 11 138.3
    Boye County 340 0.08 3 994.77 8 522.00 7 840 7 393 6 953
    Li County 644 0.10 8 759.29 9 100.00 8 420 7 900 7 242
    Gaoyang County 487 0.08 5 634.43 8 100.00 7 550 7 003 6 620
    Xiong County 524 0.05 6 244.85 8 578.00 7 986 7 901 /
    Whole city 9585 0.10 210 234.11 213 629.10 199 357.72 192 154.93 151 659.6
    下载: 导出CSV

    Table  3.   List of parameters for calculating and evaluating the effect of water level recovery from mining reduction in Shijiazhuang Plain

    Evaluation area Area/km2 Specific yield 2015 baseline recharge volume/
    104 m3
    2015 mining volume
    / 104 m3
    2016 mining volume
    / 104 m3
    2017 mining volume
    / 104 m3
    2018 mining volume
    / 104 m3
    Downtown Area 429.4 0.12 8 132.224519 11 356 11 271 12 147 9 005
    Xingtang 422.0 0.1 10 656.92124 6 889.25 6 940.25 7 693 7 831
    Lingshou 128.3 0.12 3 236.08211 2 900.2 2 890 340 324
    Luquan 267.7 0.12 5 032.648822 7 650 7 130.65 5 431 5 435
    Yuanshi 315.5 0.1 6 102.918782 8 262.85 5 343.1 4 259 3 810
    Gaoyi 222.0 0.1 3 609.209271 6 196.5 5 776.6 6 035 5 830
    Zhao County 675.0 0.1 11 427.86402 19 523.65 19 050.2 19 190 18 679
    Luancheng 354.0 0.1 6 742.877551 8 667.45 7 642.35 8 992 8 381
    Gaocheng 813.0 0.07 13 344.11308 26 599.05 20 242.75 0 19 915
    Jinzhou 619.0 0.1 6 196.16712 16 195.9 15 310.2 17 718 13 361
    Shenze 301.0 0.1 6 173.60483 6 836.55 6 813.6 4 298 4 216
    Wuji 500.0 0.18 8 697.156923 11 475 11 475 12 500 12 175
    Zhengding 468.0 0.1 8 096.255698 16 260.5 15 130 9 663 7 268
    Xinle 525.0 0.1 10 188.89672 14 477.2 14 108.3 15 853 14 395
    Whole city 6990.9 0.1 106 807.0573 170 759.05 155 622.25 124 119 130 625
    下载: 导出CSV

    Table  4.   Effective mining reduction and coefficients of recharge variation in the Baoding Plain from 2016 to 2018

    Evaluation Area 2016 effective recovery of
    water level/ m
    λ/ % 2017effective recovery of water level/ m λ/ % 2018 effective recovery of water level/ m λ/ %
    Plain area in Laishui County 0.20 1.13 0.00 100.00 0.18 89.77
    Plain area in Yi County 0.55 0.74 0.00 100.00 1.68 14.87
    Zhuozhou 0.84 14.35 0.00 0.00 0.00 100.00
    Dingxing County 0.23 0.00 0.20 15.45 0.00 100.00
    Gaobeidian 0.11 59.61 0.00 100.00 0.00 100.00
    Tang County 0.00 0.00 0.31 18.40 0.14 35.68
    Shunping County 0.00 0.00 0.93 0.00 0.45 0.00
    Mancheng district 0.22 31.27 0.06 100.00 0.11 100.00
    Xushui district 0.36 0.00 0.21 0.00 0.33 0.00
    Rongcheng County 0.40 0.00 0.29 28.24 0.00 0.00
    Baoding Downtown Area 0.84 13.56 0.00 0.00 NA NA
    Qingyuan district 0.03 0.00 0.25 10.63 0.00 100.00
    Anxin County 0.00 0.00 0.13 21.89 NA NA
    Quyang County 0.09 0.00 0.00 100.00 0.15 95.06
    Wangdu County 0.00 0.00 0.41 0.00 0.00 100.00
    Anguo 0.15 26.38 0.02 100.00 0.00 100.00
    Boye County 0.00 0.00 0.78 0.95 0.00 100.00
    Li County 0.00 0.00 0.38 12.42 0.00 0.00
    Gaoyang County 0.00 0.00 0.40 8.93 0.00 NA
    Xiong County 0.42 0.00 0.00 100.00 NA 100.00
    Whole city 0.17 8.98 0.18 16.19 0.13 57.98
    下载: 导出CSV

    Table  5.   Effective mining reduction and coefficient of recharge variation in the Shijiazhuang Plain from 2016 to 2018

    Evaluation area 2016 Effective mining reduction/ 104 m3 β 2017 Effective mining reduction/ 104 m3 β 2018 Effective mining reduction/ 104 m3 β
    Downtown Area 2377.515 849 0.80 0.00 1.26 2930.48 1.02
    Xingtang 0 1.10 0 1.14 0 1.07
    Lingshou 584.491 5118 0.80 2 398.682988 1.45 0 1.06
    Luquan 2 780.984848 0.68 0 1.39 0 1.07
    Yuanshi 4 801.894876 0.65 0 1.45 236.0331701 1.06
    Gaoyi 2 257.20428 0.68 0 1.25 0 1.06
    Zhao County 5 059.534095 0.76 0.00 1.18 0.00 1.07
    Luancheng 3 135.757728 0.72 0.00 1.37 124.85 1.06
    Gaocheng 12 671.69238 0.69 2 0242.75 1.08 0.00 1.22
    Jinzhou 4 853.347933 0.74 0.00 1.05 4224.15 1.01
    Shenze 0 1.14 3033.84 0.88 0.00 1.06
    Wuji 2 612.186442 0.77 0.00 1.17 0.00 1.06
    Zhengding 4 040.841819 0.81 4 669.576455 1.08 2 136.717389 1.04
    Xinle 2 493.067936 0.85 0.00 1.22 698.00 1.05
    Whole city 47 668.52 0.78 30 344.85 1.17 10 350.24 1.07
    下载: 导出CSV

    Table  6.   Effective water level restoration by reduction of mining and effective recovery of water level in Shijiazhuang Plain from 2016 to 2018

    Evaluation area 2016 effective restoration of water level/ m λ/ % 2017 effective restoration of water level/ m λ/ % 2018 effective restoration of water level/ m λ/ %
    Downtown Area 0.46 0.00 0.00 0.00 0.57 100.00
    Xingtang 0.00 0.00 0.00 0.00 0.00 0.00
    Lingshou 0.38 22.10 1.56 36.00 0.00 100.00
    Luquan 0.87 0.00 0.00 100.00 0.00 0.00
    Yuanshi 1.52 0.00 0.00 100.00 0.07 0.00
    Gaoyi 1.02 0.00 0.00 0.00 0.00 100.00
    Zhao County 0.75 0.00 0.00 0.00 0.00 100.00
    Luancheng 0.89 21.47 0.00 0.00 0.04 0.00
    Gaocheng 2.23 0.00 3.56 17.00 0.00 0.00
    Jinzhou 0.78 0.00 0.00 0.00 0.68 42.00
    Shenze 0.00 0.00 1.01 0.00 0.00 100.00
    Wuji 0.29 0.00 0.00 0.00 0.00 100.00
    Zhengding 0.86 0.00 1.00 0.00 0.46 71.00
    Xinle 0.47 5.42 0.00 0.00 0.13 117.00
    Whole city 0.79 1.97 0.50 22.00 0.17 76.00
    下载: 导出CSV

    Table  7.   Comparison of 2016 water level restoration calculation results and simulation results in Baoding Plain

    Evaluation area 2016 effective water level restoration/ m 2016 restoration calculated by model/ m
    Plain area in Laishui County 0.20 0.070
    Plain area in Yi County 0.55 0.100
    Zhuozhou 0.84 0.660
    Dingxing County 0.23 0.170
    Gaobeidian 0.11 0.180
    Tang County 0.00 0.070
    Shunping County 0.00 0.050
    Mancheng district 0.22 0.180
    Xushui district 0.36 0.290
    Rongcheng County 0.40 0.330
    Baoding Downtown Area 0.84 0.650
    Qingyuan district 0.03 0.020
    Anxin County 0.00 0.002
    Quyang County 0.09 0.001
    Wangdu County 0.00 0.001
    Anguo 0.15 0.000
    Boye County 0.00 0.000
    Li County 0.00 0.000
    Gaoyang County 0.00 0.000
    Xiong County 0.42 0.390
    Whole city 0.17 0.150
    下载: 导出CSV
  • Ashaolu E, Omotosho O. 2015. Assessment of static water level and overburden pattern for sustainable groundwater development and management in Ilorin City, Nigeria. Malaysian Journal of Society and Space, 11: 1−11.
    Breiman L. 2001. Random forests. Machine Language, 45(1): 5−32. DOI: 10.1023/A:1010933404324.
    Cao WG, Yang HF, Gao YY, et al. 2020. Prediction of groundwater quality evolution in the Baoding Plain of the SNWDP benefited regions. Journal of Hydraulic Engineering, 51(8): 924−935. (in Chinese) DOI: 10.13243/j.cnki.slxb.20200035.
    Chen F, Hou J, Y LL, et al. 2016. Analysis of groundwater overdraft treatment in China. Water Conservancy Planning and Design, 11: 3−7. (in Chinese) DOI: 10.3969/j.issn.1672-2469.2016.11.002.
    Chi GY, Su XS, Lyu H, et al. 2021. Simulating the shallow groundwater level response to artificial recharge and storage in the plain area of the Daqing River Basin, China. Sustainability, 13(10): 5626. DOI: 10.3390/su13105626.
    Ding YY, Chen F, Li YY, et al. 2020. Compiling background and ideas of the action plan for comprehensive treatment of groundwater over-exploitation in North China. China Water Resources, (13): 22−25. (in Chinese) DOI: 10.3969/j.issn.1000-1123.2020.13.016.
    Hu LT, Xu ZX, Huang WD. 2016. Development of a river-groundwater interaction model and its application to a catchment in Northwestern China. Journal of Hydrology, 543: 483−500. DOI: 10.1016/j.jhydrol.2016.10.028.
    Hua SS, Zheng CM. 2018, Study on the dynamic change of land water reserves in China under the urbanization and climate change. China City Environmental Science Society Annual Conference of Science and Technology. (in Chinese)
    Ji ZJ, Cui YL, Zhang SQ, et al. 2021. Evaluation of the impact of ecological water supplement on groundwater restoration based on numerical simulation: A case study in the section of Yongding River, Beijing plain. Water, 13(21): 3059. DOI: 10.3390/w13213059.
    Jia SF, Li YY, Lyu AF, et al. 2016. Estimation of excess pumping of shallow groundwater aquifer in Haihe Plain. South-to-North Water Transfers and Water Science & Technology, 14(4): 1−7,71. (in Chinese) DOI: 10.13476/j.cnki.nsbdqk.2016.04.001.
    Jing H, HE X, Cao GL, Zheng CM, et al. 2018. Numerical simulation and sensitivity analysis of underground water pressure in North China Plain. 2018 proceedings of the Chinese Academy of Environmental Sciences Annual Meeting of Science and Technology (Vol. third). (in Chinese)
    Kitanidis PK. 2015. Persistent questions of heterogeneity, uncertainty, and scale in subsurface flow and transport. Water Resources Research, 51(8): 5888−5904. DOI: 10.1002/2015wr017639.
    Koch J, Berger H, Henriksen HJ, et al. 2019. Modelling of the shallow water table at high spatial resolution using random forests. Hydrology and Earth System Sciences, 23(11): 4603−4619. DOI: 10.5194/hess-23-4603-2019.
    Lai DR, Qin HH, Wan W, et al. 2018. Scenario analysis on water resources utilization of the North China Plain based on MIKE SHE model. Journal of Water Resources and Water Engineering, 29(5): 60−67. (in Chinese) DOI: 10.11705/j.issn.1672-643X.2018.05.10.
    Li H, Ding YY, Li YY, et al. 2019. Analysis of status quo and problems of water conservation in China in new situation. South-to-North Water Transfers and Water Science & Technology, 17(1): 202−208. (in Chinese) DOI: 10.13476/j.cnki.nsbdqk.2019.0027.
    Li LL, Zhou ZC, Shao JL, et al. 2021. Advances in groundwater numerical simulation in deep geological disposal of high-level radioactive waste. Hydrogeology & Engineering Geology, 48(6): 13−23. (in Chinese) DOI: 10.16030/j.cnki.issn.1000-3665.202010061.
    Liang XZ. 2022. Extreme rainfall slows the global economy. Nature, 601(7892): 193−194. DOI: 10.1038/d41586-021-03783-x.
    Liu Q, Gui DW, Zhang L, et al. 2022. Simulation of regional groundwater levels in arid regions using interpretable machine learning models. Science of the Total Environment, 831: 154902. DOI: 10.1016/j.scitotenv.2022.154902.
    Liu ZF, Wang LL, Lin HX. 2015. Optimization of underground water pressure alternative water source scheme in receiving water area of South to North Water Diversion Project in Jining. Water Conservancy Planning and Design, 2: 31−34. (in Chinese) DOI: 10.3969/j.issn.1672-2469.2015.02.011.
    Lunzer JJ. 2019. Using groundwater modeling to assess groundwater and stream connectivity in a river restoration application. M. S. thesis. Montana Tech of The University of Montana.
    Ma Sh. 2019. Study on underground water pressure recovery plan and effect in Tianjin plain area. M. S. thesis. Tianjin: Tianjin Agricultural University. (in Chinese)
    Ma YJ. 2016. Exploitation and protection of groundwater resources in the North China Plain. Natural Science (Abstract), 4: 467−641. (in Chinese)
    Ministry of Water Resources of Baoding City. Baoding water resources bulletin 2016-2018.
    Ministry of Water Resources of Shijiazhuang City. Shijiazhuang water resources bulletin 2016-2018.
    Nan T, Cao WG. 2023. Effect of ecological water supplement on groundwater restoration in the Yongding River based on multi-model linkage. Water, 15(2): 374. DOI: 10.3390/w15020374.
    Shao JL, Li L, Cui YL, et al. 2013. Groundwater flow simulation and its application in groundwater resource evaluation in the North China plain, China. Acta Geologica Sinica—English Edition, 87(1): 243−253. DOI: 10.1111/1755-6724.12045.
    Wakode HB, Baier K, Jha R, et al. 2018. Impact of urbanization on groundwater recharge and urban water balance for the city of Hyderabad, India. International Soil and Water Conservation Research, 6(1): 51−62. DOI: 10.1016/j.iswcr.2017.10.003.
    Wang DC. 1986. Foundation of hydrogeology. Beijing: Geology Press Geological Publishing House.
    Wang SQ, Shao JL, Song XF, et al. 2008. Application of MODFLOW and geographic information system to groundwater flow simulation in North China Plain, China. Environmental Geology, 55(7): 1449−1462. DOI: 10.1007/s00254-007-1095-x.
    Wang XH, Liu TL, Zheng XL, et al. 2018. Short-term prediction of groundwater level using improved random forest regression with a combination of random features. Applied Water Science, 8(5): 125. DOI: 10.1007/s13201-018-0742-6.
    Xu Y, Gong H, Chen B, et al. 2021. Long-term and seasonal variation in groundwater storage in the north china plain based on grace. International Journal of Applied Earth Observation and Geoinformation, 104: 102560. DOI: 10.19637/j.cnki.2305-7068.2022.02.002.
    Zhang ML, Hu LT, Yao LL, et al. 2018. Numerical studies on the influences of the South-to-North Water Transfer Project on groundwater level changes in the Beijing Plain, China. Hydrological Processes, 32(12): 1858−1873. DOI: 10.1002/hyp.13125.
  • [1] Hanane Mebarki, Noureddine Maref, Mohammed El-Amine Dris2024:  Modelling the monthly hydrological balance using Soil and Water Assessment Tool (SWAT) model: A case study of the Wadi Mina upstream watershed, Journal of Groundwater Science and Engineering, 12, 161-177. doi: 10.26599/JGSE.2024.9280013
    [2] Parisa Kazerani, Ali Naghi Ziaei, Kamran Davari2023:  Determining safe yield and mapping water level zoning in groundwater resources of the Neishabour Plain, Journal of Groundwater Science and Engineering, 11, 47-54. doi: 10.26599/JGSE.2023.9280005
    [3] Yang Hui-feng, Meng Rui-fang, Bao Xi-lin, Cao Wen-geng, Li Ze-yan, Xu Bu-yun2022:  Assessment of water level threshold for groundwater restoration and over-exploitation remediation the Beijing-Tianjin-Hebei Plain, Journal of Groundwater Science and Engineering, 10, 113-127. doi: 10.19637/j.cnki.2305-7068.2022.02.002
    [4] Nasiri Shima, Ansari Hossein, Ziaei Ali Naghi2022:  Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models : A case study of Samalqan plain in Iran, Journal of Groundwater Science and Engineering, 10, 44-56. doi: 10.19637/j.cnki.2305-7068.2022.01.005
    [5] Abebe Wondmagegn Taye2022:  Evaluation of groundwater resource potential by using water balance model: A case of Upper Gilgel Gibe Watershed, Ethiopia, Journal of Groundwater Science and Engineering, 10, 209-222. doi: 10.19637/j.cnki.2305-7068.2022.03.001
    [6] Zhang Han, Chen Zong-yu, Tang Chang-yuan2021:  Quantifying groundwater recharge and discharge for the middle reach of Heihe River of China using isotope mass balance method, Journal of Groundwater Science and Engineering, 9, 225-232. doi: 10.19637/j.cnki.2305-7068.2021.03.005
    [7] MA Li-sha, HAN Zhan-tao, WANG Yan-yan2021:  Dispersion performance of nanoparticles in water, Journal of Groundwater Science and Engineering, 9, 37-44. doi: 10.19637/j.cnki.2305-7068.2021.01.004
    [8] YIN Xiao-lin, GAO Yuan-yuan, WU Hai-ping, ZHAO Xue-ming2020:  Water-saving potential evaluation of water-receiving regions in Shandong province on the East Route of the South-to-North Water Transfer Project of China, Journal of Groundwater Science and Engineering, 8, 287-297. doi: 10.19637/j.cnki.2305-7068.2020.03.009
    [9] Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip2020:  Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand, Journal of Groundwater Science and Engineering, 8, 10-19. doi: 10.19637/j.cnki.2305-7068.2020.01.002
    [10] SONG Chao, HAN Gui-lin, WANG Pan, SHI Ying-chun, HE Ze2017:  Hydrochemical and isotope characteristics of spring water discharging from Qiushe Loess Section in Lingtai, northwestern China and their implication to groundwater recharge, Journal of Groundwater Science and Engineering, 5, 364-373.
    [11] WANG Ying, CHEN Zong-yu2016:  Responses of groundwater system to water development in northern China, Journal of Groundwater Science and Engineering, 4, 69-80.
    [12] MA Luan, WANG Guang-cai, SHI Zhe-ming, GUO Yu-ying, XU Qing-yu, HUANG Xu-juan2016:  Simulation of groundwater level recovery in abandoned mines, Fengfeng coalfield, China, Journal of Groundwater Science and Engineering, 4, 344-353.
    [13] WANG Hong-ke, GUO Jiao, SHI Ying-chun2015:  Type of major water hazards and study of countermeasures in Shennan Mining Area, Journal of Groundwater Science and Engineering, 3, 70-76.
    [14] GONG Xiao-ping, JIANG Guang-hui, CHEN Chang-jie, GUO Xiao-jiao, ZHANG Hua-sheng2015:  Specific yield of phreatic variation zone in karst aquifer with the method of water level analysis, Journal of Groundwater Science and Engineering, 3, 192-201.
    [15] LIU Kai, SUN Ying,  LI Yu, LIU Jiu-rong, LIU Ying-chao2014:  Zonation for exploitation and utilization of geothermal water in Beijing, Journal of Groundwater Science and Engineering, 2, 94-104.
    [16] Le SONG, Yan-pei CHENG2014:  Optimization Research of Water-Soil Resources in Huanghua, Journal of Groundwater Science and Engineering, 2, 86-94.
    [17] GE Li-qiang, CHENG Yan-pei, YUE Chen2014:  Study of water resources for crop utilization in China from the perspective of Virtual Water, Journal of Groundwater Science and Engineering, 2, 67-75.
    [18] HAN Kang-qin, LIU Jian, HAN Lei-lei, HAN Wen-ling, ZHANG Yun-xiao2014:  Prediction of Impacts Caused by South-to-North Water Diversion on Underground Water Level in Shijiazhuang, Journal of Groundwater Science and Engineering, 2, 27-33.
    [19] Cheng Yanpei, Ma Renhui2013:  Analysis of Water Resource Demands: Based on the Hydrological Unit, Journal of Groundwater Science and Engineering, 1, 48-59.
    [20] Do Van Binh2013:  Source and Formation of the Arsenic in Ground Water in Hanoi , Vietnam, Journal of Groundwater Science and Engineering, 1, 102-108.
  • 加载中
图(8) / 表ll (7)
计量
  • 文章访问数:  274
  • HTML全文浏览量:  154
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-12
  • 录用日期:  2023-05-09
  • 网络出版日期:  2023-09-15
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回