• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Factors driving surface deformations in plain area of eastern Zhengzhou City, China

Zi-jun Zhuo Dun-yu Lv Shu-ran Meng Jian-yu Zhang Song-bo Liu Cui-ling Wang

Zhuo ZJ, Lv DY, Meng SR, et al. 2023. Factors driving surface deformations in plain area of eastern Zhengzhou City, China. Journal of Groundwater Science and Engineering, 11(4): 347-364 doi:  10.26599/JGSE.2023.9280028
Citation: Zhuo ZJ, Lv DY, Meng SR, et al. 2023. Factors driving surface deformations in plain area of eastern Zhengzhou City, China. Journal of Groundwater Science and Engineering, 11(4): 347-364 doi:  10.26599/JGSE.2023.9280028

doi: 10.26599/JGSE.2023.9280028

Factors driving surface deformations in plain area of eastern Zhengzhou City, China

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Geographic location of the study area and the scope of Sentinel-1A images

    Figure  2.  Hydrogeological cross sections

    Notes:(Qha1: Holocene alluvium; Qp3a1: Upper Pleistocene alluvium; Qp2a1: Middle Pleistocene alluvium; Qp1a1+1: Lower Pleistocene alluvium; N1: Upper section of the Neogene)

    Figure  3.  Spatial and temporal baselines of Sentinel-1A images

    Figure  4.  Distribution of leveling measurement points, PS points, and benchmark of the leveling measurement

    Figure  5.  Verification results of InSAR monitoring

    Figure  6.  Spatial distribution of surface deformations rate in the study area

    Figure  7.  Groundwater exploitation in the study area

    Figure  8.  Elevation contours of groundwater level and cumulative deformation amplitude in the study area in 2019

    Figure  9.  Spatial distribution of cohesive soil thickness and cumulative deformation amplitude

    Figure  10.  Land use types in the study area during 2010‒2019 (1: Construction land; 2: Cultivated land; 3: Water body; 4: Grassland; 5: Forest land)

    Figure  11.  Evolutionary relationships between construction land and zones with land subsidence based on equal-fan analysis

    Figure  12.  Spatial distribution of driving factors

    Figure  13.  Detection results of driving factor interaction

    Note: # indicates the two-factor enhancement type, * indicates the non-linear enhancement type

    Table  1.   Data types, description, and sources

    Data typeData descriptionData resources
    Satellite images Sentinel-1A satellite images (January 2018‒March 2020) ESA European Space Agency (https://viewer.esaworldcover.org/worldcover)
    Geographical information data Land use data (resolution: 30 m, date: 2011‒2019) GeoData Institute (Yang and Huang, 2021)(https://essd.copernicus.org/articles/13/3907/2021/)
    Digital elevation model (resolution: 30 m) Resource and Environment Science and Data Center of CAS (https://www.resdc.cn)
    Vector data of urban road network and buildings (resolution: 30 m) Open Street Map website (https://www.openstreetmap.org)
    Geological environment data Cohesive soil thickness Urban geological survey program Geological safety inspection and risk assessment sampling of Zhengzhou
    Groundwater level monitoring data (date: January 2018‒March 2020)
    Leveling data (date: January 2018-March 2020)
    下载: 导出CSV

    Table  2.   The interaction types and corresponding criteria

    CriterionInteraction type
    q(X1∩X2)<Min(q(X1),q(X2))Nonlinear weakening
    Min(q(X1),q(X2))<q(X1∩X2)<Max(q(X1),q(X2))Nonlinear weakening of a single factor
    q(X1∩X2)> Max(q(X1),q(X2))Enhancement of two factors
    q(X1∩X2)=q(X1)+q(X2)Independent
    q(X1∩X2)>q(X1)+q(X2)Nonlinear enhancement
    下载: 导出CSV

    Table  3.   Criteria for developmental degrees of surface deformations

    Surface deformation gradingSevereModerateWeakSlight
    Deformation rate/mm·a−1<−18−8 to −180 to −8>0
    Cumulative deformation amplitude/mm<−30−30 to −20−10 to 0>0
    *Note: for surface deformation rates and cumulative deformation amplitude, “+” denotes land uplift and “−” denotes land subsidence.
    下载: 导出CSV

    Table  4.   Statistics of surface deformation rates in the study area

    StatisticsDeformation rate/mm·a−1Cumulative deformation amplitude/mm
    Stage I: January 2018 to February 2019Stage II: January 2019 to March 2020
    Minimum−37.1−33.82−40.36
    Maximum+8+7.29+8.71
    Average−5.66−4.84−5.01
    下载: 导出CSV

    Table  5.   Statistics of changes in the area of zones with different developmental degrees of surface deformations from January 2018 to March 2020

    Developmental degree of surface deformations /mm·a−1Stage Ⅰ: January 2018 to February 2019Stage Ⅱ: February 2019 to March 2020January 2018 to March 2020
    Area
    /km2
    Proportion
    /%
    Area
    /km2
    Proportion
    /%
    Area
    /km2
    Proportion
    /%
    Severe (< −18)16.240.7426.341.2021.240.97
    Moderate (−8 to −18)337.5915.38432.4219.70385.0717.54
    Weak (0 to −8)1,225.2555.821,086.5349.501,155.8152.66
    Slight (>0 )615.9228.06649.7229.60632.8828.83
    下载: 导出CSV

    Table  6.   Statistics of the increased area of construction land and the area of zones with different cumulative deformation amplitudes from January 2018 to March 2020

    DirectionIncreased area of construction land /km2Area of a zone with different cumulative deformation amplitudes/km²DirectionIncreased area of construction land /km2Area of zones with a cumulative deformation amplitude /km²
    > −30−20 to −300 to −10Total> 3020 to 300 to 10Total
    N 23.4 4.098 12.294 24.588 40.98 S 34.8 3.884 11.652 23.304 38.84
    NNE 29.75 5.565 16.695 33.39 55.65 SSW 34.53 4.463 13.389 26.778 44.63
    NE 50.67 28.753 31.255 22.502 82.51 SW 28.26 1.101 3.303 6.606 11.01
    NEE 115.46 263.1 131.55 131.55 438.5 SWW 28.85 0.793 2.379 4.758 7.93
    E 123.91 114.10 190.17 76.068 380.3 W 27.96 2.756 8.268 16.536 27.56
    SEE 98.88 33.527 100.581 201.162 335.2 NWW 22.4 4.451 13.353 26.706 44.51
    SE 66.5 7.674 23.022 46.044 76.74 NW 45.56 28.648 55.944 51.888 136.48
    SSE 37.51 1.361 4.083 8.166 13.61 NNW 25.72 5.454 16.362 32.724 54.54
    下载: 导出CSV

    Table  7.   Driving factors selected for the geographical detector model

    TypeDriving factorIndicator introduction
    Urban contribution Building density (X1) Reflecting building loads and the intensity of engineering activity
    Road density (X2)
    Groundwater exploitation Groundwater level in the first aquifer group (X3) Reflecting the intensity of the groundwater exploitation in the study area
    Groundwater level in the second aquifer group (X4)
    Lithology Cohesive soil thickness of the first aquifer group (X5) Reflecting the elastic and plastic deformation capacities of soil mass
    Cohesive soil thickness of the second aquifer group (X6)
    下载: 导出CSV

    Table  8.   Detection results of driving factors

    Driving factorX1X2X3X4X5X6
    Value q0.0067**0.0983**0.2674**0.5382**0.0396**0.0713
    Value p0.000.000.000.000.000.00
    Note: ** denotes the significant enhancement of the interpretation degree of a driving factor.
    下载: 导出CSV
  • Chen BB, Gong LH, Chen Y, et al. 2020. Land subsidence and its relation with groundwater aquifers in Beijing Plain of China. The Science of the Total Environment, 735: 139111. DOI: 10.1016/j.scitotenv.2020.139111.
    Chen M, Tomas R, Li ZH, et al. 2016. Imaging land subsidence induced by groundwater extraction in Beijing (China) using satellite radar interferometry. Remote Sensing, 8(6): 468. DOI: 10.3390/rs8060468.
    Cheng R, Zhu L, Zhou JH, et al. 2021. Spatio-Temporal heterogeneity and driving factors of land subsidence in middle lower part of Chaobai River alluvial fan. Journal of Jilin University (Earth Science Edition), 51(4): 1182−1192. (in Chinese) DOI: 10.13278/j.cnkijjuese.20200047.
    Chen Y, Chen S, Li J, et al. High precision extraction of surface deformation information based on principal component spatiotemporal analysis and time-series InSAR: Taking Xuzhou as an Example. Journal of Geo-information Science, 1−16. (in Chinese)
    Ciampalini A, Raspini F, Solari L, et al. 2016. PSInSAR analysis in the Pisa Urban Area (Italy): A case study of subsidence related to stratigraphical factors and urbanization. Remote Sensing, 8(6): 120. DOI: 10.3390/rs802012.
    Dong SC, Samsonov S, Yin HW, et al. 2018. Two-dimensional ground deformation monitoring in Shanghai based on SBAS and MSBAS InSAR methods. Journal of Earth Science, 29(4): 960−968. DOI: 10.1007/s12583-017-0955-x.
    Ferretti A, Prati C, Rocca F, et al. 2000. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38(5): 2202−2212. DOI: 10.1109/36.868878.
    Ferretti A, Prati C, Rocca F, et al. 2001. Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1): 8−20. DOI: 10.1109/36.898661.
    Guo HP, Bai JB, Zhang YQ, et al. 2017. The evolution characteristics and mechanism of the land subsidence in typical areas of the North China Plain. Geology in China, 44(6): 1115−1127. (in Chinese) DOI: 10.12029/gc20170606.
    Guan L, Tang W, Dai HY, et al. Monitoring ground subsidence in Zhengzhou City based on SBAS-InSAR technology. Beijing Surveying and Mapping, 33(4): 462-467. (in Chinese)
    Guo XH, Li JX. 2007. The necessity of land subsidence monitoring in Zhengzhou City. The Chinese Journal of Geolocical Hazard and Control, 18(1): 147−148. (in Chinese) DOI: 10.16031/.cnki.issn.1003-8035.2007.01.035.
    Jia SM, Wang HG, Zhao SS, et al. 2007. A tentative study of the mechanism of land subsidence in Beijing. City Geology, 2(1): 20−26. (in Chinese) DOI: 10.3969/j.issn.1007-1903.2007.01.005.
    Lei KC, Luo Y, Chen BB, et al. 2016. Distribution characteristics and influence factors of land subsidence in Beijing area. Geology in China, 43(6): 2216−2228. (in Chinese) DOI: 10.12029/gc20160628.
    Lei KC, Ma FS, Luo Y, et al. 2022. Main subsidence layers and deformation characteristics in Being Plain at present in. Journal of Engineering Geology, 30(2): 442−458. (in Chinese) DOI: 10.13544/i.cnki.jeg.2021-0238.
    Li GE, Zhou YH. 2017. Study on fusion methods of InSAR, Leveling and GPS data. Bulletin of Surveying and Mapping, 486(9): 78−82. (in Chinese) DOI: 10.13474/j.cnki.11-2246.2017.0292.
    Li HH, Hou ZD, Li SJ, et al. 2022. Analysis of characteristics and causes of land subsidence in Changzhou by time series InSAR. Journal of Geodesy and Geodynamics, 42(1): 54−58. DOI: 10.14075/j.jgg.2022.01.011.
    Li HJ, Zhang YW, Yang YQ, et al. 2018. Spatial-emporal distribution characteristics and causation analysis of land subsidence in three northern counties area of Langfang I. Science Technology and Engineering, 18(11): 23−30. (in Chinese) DOI: 10.3969/j.issn.1671-1815.2018.11.003.
    Liu HW, Du D, Xu JB, et al. 2018. Characteristics and affecting factors of land subsidence identification based on PSInSAR measures in Shandong Peninsula Blue-Yellowy Overlapping Economic Zone. Geology in China, 45(6): 1116−1127. (in Chinese) DOI: 10.12029/gc20180603.
    Liu P, Li Q, Li Z, et al. 2016. Anatomy of subsidence in Tianjin from time series InSAR. Remote Sensing, 8(3): 266. DOI: 10.3390/rs8030266.
    Liu YY, Yan X, Liu B, et al. 2022. Characterizing spatiotemporal patterns of land subsidence after the South-to-North Water Diversion Project based on Sentinel-1 InSAR observations in the Eastern Beijing Plain. Remote Sensing, 14(5810): 5810. DOI: 10.3390/rs14225810.
    Motagh M, Shamshiri R, Haghighi HM, et al. 2017. Quantifying groundwater exploitation induced subsidence in the Rafsanjan Plain, southeastern Iran, using InSAR time-series and in situ measurements. Engineering Geology, 218: 134−151. DOI: 10.1016/j.enggeo.2017.01.011.
    Pan D, Wang JH, Wang BC, et al. 2020. Subsidence in Zhengzhou City study on distribution characteristics and mechanism of land. Journal of Shandong Agricultural University (Natural Science Edition), 51(4): 660−662. (in Chinese) DOI: 10.3969/iissn.1000-2324.2020.04.015.
    Peng JN. 2008. Research on GIS spatial analysis method. M. S. thesis. Ji Lin: Jilin University .
    Qu FF, Zhang Q, Lu Z, et al. 2014. Land subsidence and ground fissures in Xi'an, China 2005–2012 revealed by multi-band InSAR time-series analysis. Remote Sensing of Environment, 155: 366−376. DOI: 10.1016/j.rse.2014.09.008.
    Shi YS, Shi DH, Cao XY, et al. 2018. Impacting factors and temporal and spatial differentiation of land subsidence in Shanghai. Sustainability, 10(9): 3146. DOI: 10.3390/su10093146.
    Tomás R, Herrera G. 2010. A ground subsidence study based on DInSAR data: Calibration of soil parameters and subsidence prediction in Murcia City (Spain). Engineering Geology, 111(1): 19−30. DOI: 10.1016/j.enggeo.2009.11.004.
    Wang C, Wang YB, Zhou CD, et al. 2018. The influence of urban expansion of Tongzhou on land subsidence. Journal of Capital Normal University (Natural Science Edition), 39(4): 68−74. (in Chinese) DOI: 10.19789/j.1004-9398.2018.04.013.
    Wang JF, Xu CD. 2017. Geodetector: Principle and prospective. Acta Geographica Sinica, 72(1): 116−134. (in Chinese) DOI: 10.11821/d1xb201701010.
    Xu CJ, Zhang CY. 2009. Crustal deformation measurement and data processing. Wuhan: Wuhan University Press. (in Chinese)
    Yang HF, Meng RF, Bao XL, et al. 2022. Assessment of water level threshold for groundwater restoration and over-exploitation remediation the Beijing-Tianjin-Hebei Plain. Journal of Groundwater Science and Engineering, 10(2): 113−127. DOI: 10.19637/j.cnki.2305-7068.2022.02.002.
    Yang J, Huang X. 2021. The 30 m annual land cover and its dynamics in China from 1990 to 2019. Earth System Science Data Discussions, 13(8): 3907−3925. DOI: 10.5194/essd-13-3907-2021.
    Ye YC. 2021. Temporal and spatial characteristics analysis and prediction of ground subsidence along Zhengzhou Metro based on time series InSAR. M. S. thesis. Zheng Zhou: Zhengzhou University: 2216−2228. (in Chinese) DOI: 10.27466/d.cnki.gzzdu.2021.005288.
    Yu HR, Gong HL, Chen BB, et al. The advance and consideration of land subsidence in Beijing-Tianjin-Hebei region. Science of Surveying and Mapping, 45(4): 125-133. (in Chinese)
    Zhang Y, Liu YF, Liu Y, et al. 2022. Spatia-Temproal variation characteristics and geographic detection mechanism of land subsidence in Wuhan City from 2007 to 2019. Geomatics and Information Science of Wuhan University, 47(9): 1486−1497. (in Chinese) DOI: 10.13203/j.whugis20210143.
    Zhao YW, Wang XY, Liu CL. et al. 2020. Finite-difference model of land subsidence caused by cluster loads in Zhengzhou, China. Journal of Groundwater Science and Engineering, 8(1): 43−56. DOI: 10.19637/j.cnki.2305-7068.2020.01.005.
    Zhou CD, Gong HL, Zhang YQ, et al. 2018. Spatiotemporal evolution of land subsidence in the Beijing Plain 2003–2015 using Persistent Scatterer Interferometry (PSI) with Multi-Source SAR data. Remote Sensing, 10(4): 552. DOI: 10.3390/rs10040552.
    Zhou CF, Gong HL, Chen BB, et al. 2019. Quantifying the contribution of multiple factors to land subsidence in the Beijing Plain, China with machine learning technology. Geomorphology, 335: 48−61. DOI: 10.1016/j.geomorph.2019.03.017.
  • [1] Parvaiz Ahmad Ganie, Ravindra Posti, Garima, Kishor Kunal, Nityanand Pandey, Pramod Kumar Pandey2024:  Morphometric analysis and hydrological implications of the Himalayan River Basin, Goriganga, India, using Remote Sensing and GIS techniques, Journal of Groundwater Science and Engineering, 12, 360-386. doi: 10.26599/JGSE.2024.9280028
    [2] Tian-lun Zhai, Qian-qian Zhang, Long Wang, Hui-wei Wang2024:  Temporal and spatial variations hydrochemical components and driving factors in Baiyangdian Lake in the Northern Plain of China, Journal of Groundwater Science and Engineering, 12, 293-308. doi: 10.26599/JGSE.2024.9280022
    [3] Dun Wang, Li-xin Pei, Li-zhong Zhang, Xi-wen Li, Ze-heng Chen, Yue-hu Zhou2023:  Water resource utilization characteristics and driving factors in the Hainan Island, Journal of Groundwater Science and Engineering, 11, 191-206. doi: 10.26599/JGSE.2023.9280017
    [4] Temesgen Mekuriaw Manderso, Yitbarek Andualem Mekonnen, Tadege Aragaw Worku2023:  Application of GIS based analytical hierarchy process and multicriteria decision analysis methods to identify groundwater potential zones in Jedeb Watershed, Ethiopia, Journal of Groundwater Science and Engineering, 11, 221-236. doi: 10.26599/JGSE.2023.9280019
    [5] Xiu-bo Sun, Chang-lai Guo, Jing Zhang, Jia-quan Sun, Jian Cui, Mao-hua Liu2023:  Spatial-temporal difference between nitrate in groundwater and nitrogen in soil based on geostatistical analysis, Journal of Groundwater Science and Engineering, 11, 37-46. doi: 10.26599/JGSE.2023.9280004
    [6] Dr Muthamilselvan A, Anamika Sekar, Emmanuel Ignatius2022:  Identification of groundwater potential in hard rock aquifer systems using Remote Sensing, GIS and Magnetic Survey in Veppanthattai, Perambalur, Tamilnadu, Journal of Groundwater Science and Engineering, 10, 367-380. doi: 10.19637/j.cnki.2305-7068.2022.04.005
    [7] Niway Wondesen Fikade, Molla Dagnachew Daniel, Lohani Tarun Kumar2022:  Holistic approach of GIS based Multi-Criteria Decision Analysis (MCDA) and WetSpass models to evaluate groundwater potential in Gelana watershed of Ethiopia, Journal of Groundwater Science and Engineering, 10, 138-152. doi: 10.19637/j.cnki.2305-7068.2022.02.004
    [8] GUI Chun-lei, WANG Zhen-xing, MA Rong, ZUO Xue-feng2021:  Aquifer hydraulic conductivity prediction via coupling model of MCMC-ANN, Journal of Groundwater Science and Engineering, 9, 1-11. doi: 10.19637/j.cnki.2305-7068.2021.01.001
    [9] ZHOU Hao, WU Yong, HUANG Feng, TANG Xue-fang2021:  Experimental simulation and dynamic model analysis of Cadmium (Cd) release in soil affected by rainfall leaching in a coal-mining area, Journal of Groundwater Science and Engineering, 9, 65-72. doi: 10.19637/j.cnki.2305-7068.2021.01.006
    [10] Abdelhakim LAHJOUJ, Abdellah EL HMAIDI, Karima BOUHAFA2020:  Spatial and statistical assessment of nitrate contamination in groundwater: Case of Sais Basin, Morocco, Journal of Groundwater Science and Engineering, 8, 143-157. doi: 10.19637/j.cnki.2305-7068.2020.02.006
    [11] Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip2020:  Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand, Journal of Groundwater Science and Engineering, 8, 10-19. doi: 10.19637/j.cnki.2305-7068.2020.01.002
    [12] Bahrami Mehdi, Khaksar Elmira, Khaksar Elahe2020:  Spatial variation assessment of groundwater quality using multivariate statistical analysis(Case Study: Fasa Plain, Iran), Journal of Groundwater Science and Engineering, 8, 230-243. doi: 10.19637/j.cnki.2305-7068.2020.03.004
    [13] Negar Fathi, Mohammad Bagher Rahnama, Mohammad Zounemat Kermani2020:  Spatial analysis of groundwater quality for drinking purpose in Sirjan Plain, Iran by fuzzy logic in GIS, Journal of Groundwater Science and Engineering, 8, 67-78. doi: 10.19637/j.cnki.2305-7068.2020.01.007
    [14] T K G P Ranasinghe, R U K Piyadasa2019:  Visualizing the spatial water quality of Bentota, Sri Lanka in the presence of seawater intrusion, Journal of Groundwater Science and Engineering, 7, 340-353. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.005
    [15] Nouayti Abderrahime, Khattach Driss, Hilali Mohamed, Nouayti Nordine2019:  Mapping potential areas for groundwater storage in the High Guir Basin (Morocco):Contribution of remote sensing and geographic information system, Journal of Groundwater Science and Engineering, 7, 309-322. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.002
    [16] JIANG Ti-sheng, QU Ci-xiao, WANG Ming-yu, SUN Yan-wei, HU Bo, CHU Jun-yao2017:  Analysis on temporal and spatial variations of groundwater hydrochemical characteristics in the past decade in southern plain of Beijing, China, Journal of Groundwater Science and Engineering, 5, 235-248.
    [17] WANG Ji-ning, MENG Yong-hui2016:  Characteristics analysis and model prediction of sea-salt water intrusion in lower reaches of the Weihe River, Shandong Province, China, Journal of Groundwater Science and Engineering, 4, 149-156.
    [18] GUO Li-jun, YAN Ya-ya, GUO Li-na, MA Jin-long, LV Ming-yu2016:  GIS-based spatial and temporal changes of land occupation caused by mining activities-a study in eastern part of Hubei Province, Journal of Groundwater Science and Engineering, 4, 60-68.
    [19] LIU Jun, CHENG Jian-mei, JIANG Fang-yuan2015:  Methodological study of coastal geological hazard assessment based on GIS, Journal of Groundwater Science and Engineering, 3, 77-85.
    [20] Feng-long Zhang, Fu-li Qi, Shou-cheng Lu, Yong-li Li2013:  Analysis of the Water Factor with the Major Environmental Issues in the Sanjiang Plain, Journal of Groundwater Science and Engineering, 1, 28-32.
  • 加载中
图(13) / 表ll (8)
计量
  • 文章访问数:  944
  • HTML全文浏览量:  383
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-30
  • 录用日期:  2023-05-10
  • 网络出版日期:  2023-12-10
  • 刊出日期:  2023-12-31

目录

    /

    返回文章
    返回