• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characterization of rock thermophysical properties and factors affecting thermal conductivity−A case study of Datong Basin, China

Meng-lei Ji Shuai-chao Wei Wei Zhang Feng Liu Yu-zhong Liao Ruo-xi Yuan Xiao-xue Yan Long Li

Ji ML, Wei SC, Zhang W, et al. 2024. Characterization of rock thermophysical properties and factors affecting thermal conductivity−A case study of Datong Basin, China. Journal of Groundwater Science and Engineering, 12(1): 4-15 doi:  10.26599/JGSE.2024.9280002
Citation: Ji ML, Wei SC, Zhang W, et al. 2024. Characterization of rock thermophysical properties and factors affecting thermal conductivity−A case study of Datong Basin, China. Journal of Groundwater Science and Engineering, 12(1): 4-15 doi:  10.26599/JGSE.2024.9280002

doi: 10.26599/JGSE.2024.9280002

Characterization of rock thermophysical properties and factors affecting thermal conductivity−A case study of Datong Basin, China

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  2.  NW-SE geologic structure profile of Datong Basin (The profile position is shown in Fig. 1C, quated from Pan et al. 2022)

    Notes: 1-Archaic Sanggan Group; 2-Cambrian; 3-Ordovician; 4-Carboniferous series; 5-Permian system; 6-Lower Jurassic cohorts; 7-Yungang Group of Middle Jurassic; 8-Neogene lower member of Kezhai Formation; 9-Neogene middle section of Kezhai Formation; 10-Neogene Kezhai Formation upper member; 11-Neogene Nanyulin Formation; 12-Quaternary system; 13-Reverse fault; 14-Normal fault; 15-Thermal reservoir

    Figure  1.  Location of the study area and distribution of sampling points

    Figure  3.  Hot Disk TPS1500 thermal constant analyzer and processed sample.

    Figure  4.  Thermal conductivity box patterns of different lithologies in Datong Basin

    Notes: The serial number of horizontal coordinate is expressed respectively: 1-tuff; 2-tuffaceous breccia; 3-basalt; 4-diabase; 5-monzonitic granite; 6-granite; 7-metagranulite; 8-granulite; 9-schist; 10-gneiss; 11-marble; 12-metamorphic granite; 13-mudstone; 14-limestone; 15-siltstone; 16-shale; 17-marl; 18-sandstone; 19-pebbly sandstone; 20-dolomite; 21-Soil (dry); 22-Soil (saturated)

    Figure  5.  Box diagram of rock thermal diffusivity in Datong Basin.

    Notes: The serial number of horizontal coordinate is expressed respectively: 1-tuff; 2-tuffaceous breccia; 3-basalt; 4-diabase; 5-monzonitic granite; 6-granite; 7-granulite; 8-metagranulite; 9-schist; 10-gneiss; 11-marble; 12-metamorphic granite; 13-mudstone; 14-limestone; 15-fine sandstone; 16-shale; 17-marl; 18-sandstone; 19-pebbly sandstone; 20-dolomite

    Figure  6.  Relationship between thermal conductivity and thermal diffusivity of rock

    Figure  7.  Box diagram of specific heat capacity of rocks in Datong Basin.

    Notes: The X axis represents: 1-tuff; 2-basalt; 3-diabase; 4-monzonitic granite; 5-granite; 6-granulite; 7-metagranulite; 8-schist; 9-gneiss; 10-metamorphic granite; 11-mudstone; 12-limestone; 13-fine sandstone; 14-shale; 15-marl; 16-sandstone; 17-dolomite

    Figure  8.  Relation between thermal conductivity and temperature of rocks.

    Figure  9.  Temperature measurement curve and ground temperature gradient ladder diagram of well DR1

    Figure  10.  Relationship between thermal conductivity and temperature of CaM (Meng et al. 2022)

    Figure  11.  Relation between thermal conductivity and density of rocks.

    Figure  12.  Thermal conductivity of rocks under dry and water-saturated conditions

    Notes: The serial number of horizontal coordinate is expressed respectively: 1-schist; 2-gneiss; 3-limestone; 4-limestone; 5-sandstone; 6-monzonitic granite; 7-dolomite; 8-gneiss; 9-mudstone; 10-sandstone; 11-sandstone; 12-sandstone; 13-pebbly sandstone; 14-dolomite (The upper corner marks represent different rock samples of the same lithology)

    Table  1.   Comparison between thermal conductivity of different lithologies and other areas of North China Craton

    LithologyDatong basin W/(m·K)
    (This text)
    Ordos Basin
    W/(m·K)
    (Sun et al. 1996)
    Qingshui Basin
    W/(m·K)
    (Sun et al. 2006; Qi, 2021)
    Jizhong Depression
    W/(m·K)
    (Su, 2021; Gao, 2023)
    Mudstone2.961(1)1.984±1.032(20)1.820±0.820(18)2.350(15)
    Sandstone3.375±0.593(9)2.943±1.008(46)2.440±0.280(16)2.150
    Limestone2.968±0.676(9)3.668±1.110(10)3.350±0.490(8)3.920(9)
    Dolomite5.451±1.486(4)3.345±1.120(7)5.670(10)
    Gneiss2.632±0.663(9)1.786(1)2.590(11)
    Fine sandstone2.997(1)2.260±0.740(18)
    Granite3.120(1)2.715
    Notes: Number of samples is shown in brackets
    下载: 导出CSV

    Table  2.   Data of rock thermal conductivity at different temperatures

    Sample NumberTemperature/°C
    Lithology25°C30°C60°C90°C120°C150°C180°CReduction/%
    GLX-10Dolomite6.4605.7015.4605.1314.7274.5694.12836
    GLX-2Shale3.8733.7423.4303.4843.1402.9842.87626
    GLX-8Limestone2.9472.9472.9112.7412.6242.5392.44617
    TZX-5Metamonzonite granite3.0553.0012.9962.8922.7332.6032.55416
    DTA-6Monzonitic granite2.2642.2642.2542.2462.2092.1532.1196
    DTB-1Gneiss1.9391.8961.9001.8941.8641.8361.8216
    下载: 导出CSV

    Table  3.   Temperature correction formula of rock thermal conductivity in Datong Basin

    Sample NumberLithologyCorrection formulaR2
    GLX-10Dolomiteλ(T) = −0.0163(T−T0)+λ(T0)0.895
    GLX-2Shaleλ(T) = −0.0069(T−T0)+λ(T0)0.918
    GLX-8Limestoneλ(T) = −0.0034(T−T0)+λ(T0)0.981
    TZX-5Metamonzonite graniteλ(T) = −0.0033(T−T0)+λ(T0)0.965
    DTA-6Monzonitic graniteλ(T) = −0.0008(T−T0)+λ(T0)0.918
    DTB-1Gneissλ(T) = −0.0008(T−T0)+λ(T0)0.979
    Note: λ(T0) refers to the thermal conductivity value at room temperature and pressure.
    下载: 导出CSV
  • Cen M. 2015. Cenozoic tectonic evolution of Datong basin, northeastern margin of Ordos block. M. S. thesis. Hefei: Hefei University of Technology. (in Chinese)
    Cui JW, Hou LH, Zhu RK, et al. 2019. Thermal conductivity properties of rocks in the Chang 7 shale strata in the Ordos Basin and its implications for shale oil in situ development. Petroleum Geology & Experiment, 41(02): 280−288. (in Chinese) DOI: 10.11781/sysydz201902280.
    Feng JK, Yao HJ, Chen L, et al. 2022. Ongoing lithospheric alteration of the North China Craton revealed by surface-wave tomography and geodetic observations. Geophysical Research Letters, 49: e2022GL099403. DOI: 10.1029/2022GL099403.
    Gao P. 2015. Analysis of rock thermal physical parameters and research on multi-field thermal effect coupled model. Ph. D. thesis. Jilin: Jilin University. (in Chinese)
    Gao T. 2023. Present temperature field characteristics and influencing factors in Xiongxian geothermal field. M. S. thesis. Xian: Yangtze University. (in Chinese)
    Han Y, Bai XF, Zhang X. 2018. Discussion on geothermal resources and their exploitation and utilization mode in Shanxi Province. Geological Survey of China, 5(5): 13−20. (in Chinese) DOI: 10.19388/j.zgdzdc.2018.05.02.
    Hans-Dieter V, Rudiger S. 2003. Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Physics and Chemistry of the Earth, 28(9-11): 499−509. DOI: 10.1016/S1474-7065(03)00069-X.
    Jesse D, Merriman. 2023. A mineralogical model for thermal transport properties of rocks: Verification for low-porosity, crystalline rocks at ambient conditions. Journal of Petrology, 64: 1−30. DOI: 10.1093/petrology/egad012.
    Lei XD, Hu SB, Li J, et al. 2018. Thermal properties analysis of bedrock in Beijing. Progress in Geophysics, 33(05): 1814−1823. (in Chinese) DOI: 10.6038/pg2018BB0373.
    Li JS. 2009. Reservoir rock thermal physical property test. Journal of Daqing Petroleum Institute, 33(05): 23−26. (in Chinese) DOI: 10.3969/j.issn.2095-4107.2009.05.006.
    Li X, Zhu CQ, Qiu NS, et al. 2023. Thermal conductivity of rocks and its influencing factors in northern Songliao Basin. Acta Geoscientica Sinica, 44(01): 70−83. (in Chinese) DOI: 10.3975/cagsb.2022.092901.
    Liu AR, Xu YJ, Liu CL, et al. 2021. Geological characteristics and tectonic evolution of Datong Basin. Geoscience, 35(05): 1296−1310. (in Chinese) DOI: 10.19657/j.geoscience.1000-8527.2020.067.
    Liu F, Zhang W, Wang GL, et al. 2023. Geothermal anomalies in the Xianshuihe area: Implications for tunnel construction along the Sichuan-Tibet Railway, China. Journal of Groundwater Science and Engineering, 11(3): 237−248. DOI: 10.26599/JGSE.2023.9280020.
    Ma F, Wang GL, Sun ZX, et al. 2019. An analysis of thermal conductivity in Songliao basin based on logging parameters. Acta Geoscientica Sinica, 40(02): 350−360. (in Chinese) DOI: 10.3975/cagsb.2019.021101.
    Meng J, Li N, Dong P, et al. 2022. Effects of phonon scattering channel on abnormal thermal conductivity of CaO and CaS. Journal of Shenyang University of Technology, 44(05): 525−529. (in Chinese) DOI: 10.7688/j/issn.1000-1646.2022.05.08.
    Miao SQ, Li HP, Chen G, et al. 2013. Progress of high temperature and high pressure experimental study on the thermal conductivity of the minerals and rocks. Progress in Geophysics, 28(05): 2453−2466. (in Chinese) DOI: 10.6038/pg20130524.
    Pan LY, Meng LJ, Sun FL, et al. 2022. Geothermal geological characteristics and resource potential in the north of Datong Basin, Shanxi Province. Geology in China, 50 (6): 1632. (in Chinese)
    Qi K. 2021. Meso-Cenozoic lithospheric thermal-rheological structure and deep magmatic-thermal process in the WNCC. Ph. D. thesis. Xiaan: Northwest University. (in Chinese)
    Qiu NS. 2002. Characteristics of thermal conductivity and heat generation of rocks in basins in northwest China. Chinese Journal of Geology, (02): 196−206. (in Chinese)
    Seipold U, Huenges E. 1998. Thermal properties of gneisses and amphibolites—high pressure and high temperature investigations of ktb-rock samples. Tectonophysics, 291(1-4): 173−178. DOI: 10.1016/S0040-1951(98)00038-9.
    Seipold U. 1998. Temperature dependence of thermal transport properties of crystalline rocks a general law. Tectonophysics, 291(1-4): 161−171. DOI: 10.1016/S0040-1951(98)00037-7.
    Shi QL. 2019. Tectonic thermal evolution characteristics of the Datong Basin. M. S. thesis. Beijing: China University of Geosciences. (in Chinese)
    Song JJ, Wang GL, Xing LX, et al. 2023. Influencing factors of rock thermal conductivity and applicability evaluation of its mixing law predictive models. Geothermics, 110: 102680. DOI: 10.1016/j.geothermics.2023.102680.
    Song XQ, Jiang M, Peng Q, et al. 2019. Characteristics and influencing factors of thermal property parameters of main rock strata in Guizhou Province. Acta Geologica Sinica, 93(08): 2092−2103. (in Chinese) DOI: 10.19762/j.cnki.dizhixuebao.2019116.
    Su H. 2021. Thermal geochemical characteristics of typical geothermal fields in Jizhong Depression. M. S. thesis. Nanchang: East China University of Technology. (in Chinese)
    Sun SH, Liu SS, Wang J. 1996. Geothermal field and source rock evolution characteristics in Ordos Basin. Geotectonics and Metallogeny, (03): 255−261. (in Chinese) DOI: 10.16539/j.ddgzyckx.1996.03.008.
    Sun ZX, Zhang W, Hu BQ, et al. 2006. Features of heat flow and the geothermal field of the Qinshui Basin. Chinese Journal of Geophsics (S1): 93-98. (in Chinese)
    Tan FK. 2004. Contribution of lattice vibration to heat conduction. Journal of Minzu Normal University of Xingyi, (03): 71-73. (in Chinese)
    Tavman IH. 1996. Effective thermal conductivity of granular porous materials. International Communications in Heat and Mass Transfer, 23(2): 169−176. DOI: 10.1016/0735-1933(96)00003-6.
    Wang L, Ren Y, Deng F, et al. 2023. Study on calculation method of heat exchange capacity and thermal properties of buried pipes in the fractured rock mass-taking a project in carbonate rock area as an example. Energies, 16: 774. DOI: 10.3390/en16020774.
    Wang XJ. 2014. A brief analysis of the main thermal control structure and occurrence rule of geothermal resources in Shanxi Province. Huabei Natural Resources, 02: 85−87. (in Chinese) DOI: 10.3969/j.issn.1672-7487.2014.02.077.
    Wei SC, Liu F, Zhang W, et al. 2022. Research on the characteristics and influencing factors of terrestrial heat flow in Guizhou Province. Journal of Groundwater Science and Engineering, 10(2): 166−183. DOI: 10.19637/j.cnki.2305-7068.2022.02.006.
    Wu FY,Lin JQ,Wilde SA, et al. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 233(1): 103−119. DOI: 10.1016/j.jpgl.2005.02.019.
    Xiong J, Lin HY, Ding HS, et al. 2020. Investigation on thermal property parameters characteristics of rocks and its influence factors. Natural Gas Industry, 7(3): 298−308. DOI: 10.1016/j.ngib.2020.04.001.
    Xu YL. 2015. The study on the formation and evolution of Datong Cenozoie Down-Faulted Basin. M. S. thesis. Taiyuan: Taiyuan University of Technology. (in Chinese)
    Yang SZ, Zhang WR, Shen XJ. 1986. Saturated water test study on thermal conductivity of porous rocks. Acta Petrologica Sinica, (04): 83−91. (in Chinese) DOI: 10.1007/BF02658170.
    Yu WQ. 2021. Deep process of thinning and destruction of heterogeneity in the North China Craton: Constraints from P-wave tomography. Institute of Geology, China Earthquake Administration.
    Zhang HY. 2016. Distribution and characteristics of geothermal resources in sedimentary basins in Shanxi Province. Huabei Natural Resources, (06): 115−116. (in Chinese) DOI: 10.3969/j.issn.1672-7487.2016.06.040.
    Zhang YL. 2019. Analysis of geothermal geological conditions in the area of Liudongying of Huairen sag in Datong Basin. Ground Water, 41(05): 15-17. (in Chinese)
    Zhao YX, Yang SZ, Zhang WR, et al. 1995. Temperature pressure experiment and analysis of rock thermal conductivity. Progress in Geophysics, 01: 104−113. (in Chinese)
    Zhong YT, Kusky T, Wang L, et al. 2021. Alpine-style nappes thrust over ancient North China continental margin demonstrate large Archean horizontal plate motions. Nature Communications.
    Zhou WL. 2021. Electrical structure of geothermal area in northeast of Datong Basin. Ph. D. thesis. Wuhan: China University of Geosciences. (in Chinese)
    Zhu CQ, Chen C, Yang YB, et al. 2022. Experimental study into the factors influencing rock thermal conductivity and their significance to geothermal resource assessment. Petroleum Science Bulletin, 7(03): 321−333. (in Chinese) DOI: 10.3969/j.issn.2096-1693.2022.03.029.
    Zhu RX. 2018. Conclusion summary of the major research project "Destruction of North China Craton". Science Foundation of China, 32(3): 282−290. (in Chinese) DOI: 10.16262/j.cnki.1000-8217.2018.03.008.
  • [1] Li-juan Wang, Zhe Wang, Gao-lei Jiang, Zhen-long Nie, Jian-mei Shen, Sheng-hua Song2024:  Variations in evaporation from water surfaces along the margins of the Badain Jaran Desert over nearly 60 years and influencing factors, Journal of Groundwater Science and Engineering, 12, 253-263. doi: 10.26599/JGSE.2024.9280019
    [2] Ying-nan Zhang, Yan-guang Liu, Kai Bian, Guo-qiang Zhou, Xin Wang, Mei-hua Wei2024:  Development status and prospect of underground thermal energy storage technology, Journal of Groundwater Science and Engineering, 12, 92-108. doi: 10.26599/JGSE.2024.9280008
    [3] Qiang Liu, Xiao-dong Guo, Chang-qi Wang, Nan Lin, Hui-rong Zhang, Lin Chen, Yan Zhang2023:  Changes in groundwater resources and their influencing factors in Songnen Plain, China, Journal of Groundwater Science and Engineering, 11, 207-220. doi: 10.26599/JGSE.2023.9280018
    [4] Jia-xing Sun, Gao-fan Yue, Wei Zhang2023:  Simulation of thermal breakthrough factors affecting carbonate geothermal-to-well systems, Journal of Groundwater Science and Engineering, 11, 379-390. doi: 10.26599/JGSE.2023.9280030
    [5] Wu Yan-hao, Zhou Nian-qing, Wu Zi-jun, Lu Shuai-shuai, Cai Yi2022:  Carbon, nitrogen and phosphorus coupling relationships and their influencing factors in the critical zone of Dongting Lake wetlands, China, Journal of Groundwater Science and Engineering, 10, 250-266. doi: 10.19637/j.cnki.2305-7068.2022.03.004
    [6] Wei Shuai-chao, Liu Feng, Zhang Wei, Wang Gui-ling, Yuan Ruo-xi, Liao Yu-zhong, Yan Xiao-xue2022:  Research on the characteristics and influencing factors of terrestrial heat flow in Guizhou Province, Journal of Groundwater Science and Engineering, 10, 166-183. doi: 10.19637/j.cnki.2305-7068.2022.02.006
    [7] Dong Qiu-yao, Xiang Jiao, Song Chao, Wang Pan, Wen Hao-tian, Yan Ming-jiang2022:  Spatial distribution characteristics and main controlling factors of germanium in soil of northern Dabie Mountains, China, Journal of Groundwater Science and Engineering, 10, 381-392. doi: 10.19637/j.cnki.2305-7068.2022.04.006
    [8] GAO Ye-xin, LIU Ji-chao, FENG Xin, ZHANG Ying-ping, ZHANG Bing2019:  Experimental study on unsaturated soil water diffusivity in different soils in Hebei Piedmont Plain, Journal of Groundwater Science and Engineering, 7, 165-172. doi: 10.19637/j.cnki.2305-7068.2019.02.007
    [9] SOSI Benjamin, BARONGO Justus, GETABU Albert, MAOBE Samson2019:  Electrical-hydraulic conductivity model for a weathered-fractured aquifer system of Olbanita, Lower Baringo Basin, Kenya Rift, Journal of Groundwater Science and Engineering, 7, 360-372. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.007
    [10] ZHOU Bo, WEI Shan-ming, WANG Tao, NIE Yu-peng, WANG Chuan-qi2019:  Discussion on establishing monitoring networks for temperature fields of shallow thermal energy in Shandong, China, Journal of Groundwater Science and Engineering, 7, 86-93. doi: 10.19637/j.cnki.2305-7068.2019.01.009
    [11] CHEN Peng, CHEN Kang, GAO Ye-xin2018:  Analysis of phreatic evaporation law and influence factors of typical lithology in Hebei Plain, Journal of Groundwater Science and Engineering, 6, 270-279. doi: 10.19637/j.cnki.2305-7068.2018.04.003
    [12] TAO Hong, ZHENG Miao-miao, FAN Li-min, LI Wen-li, DING Jia, LI Hui, HE Xu-bo, TAO Fu-ping2017:  Research on quality changes and influencing factors of groundwater in the Guanzhong Basin, Journal of Groundwater Science and Engineering, 5, 296-302.
    [13] MENG Rui-fang, YANG Hui-feng, LIU Chun-lei2016:  Evaluation of water resources carrying capacity of Gonghe basin based on fuzzy comprehensive evaluation method, Journal of Groundwater Science and Engineering, 4, 213-219.
    [14] ZHANG Pei-feng2016:  Thermal stresses analysis of casing string used in enhanced geothermal systems wells, Journal of Groundwater Science and Engineering, 4, 293-300.
    [15] WANG Ji-ning, MENG Yong-hui2016:  Characteristics analysis and model prediction of sea-salt water intrusion in lower reaches of the Weihe River, Shandong Province, China, Journal of Groundwater Science and Engineering, 4, 149-156.
    [16] Wang Bin, LI Bai-xiang, LI Fu-cheng2015:  Discussion on heat source mechanism and geothermal system of Qinghai Gonghe-Guide Basin, Journal of Groundwater Science and Engineering, 3, 86-97.
    [17] LIU Jin-hui, SUN Zhan-xue, SHI Wei-jun, ZHOU Yi-peng2015:  Factors influencing in-situ leaching of uranium mining in a sandstone deposit in Shihongtan, Northwest China, Journal of Groundwater Science and Engineering, 3, 16-20.
    [18] ZHU Xi, ZHANG Qing-lian, WANG Wan-li, LIU Yan-guang2015:  Study on the influencing factors of rock-soil thermophysical parameters in shallow geothermal energy, Journal of Groundwater Science and Engineering, 3, 256-267.
    [19] Qing YI, Yan-pei CHENG, Jian-kang ZHANG2014:  Analysis on the Salt Content Characteristics of Southern Saline-Alkali Soil in Datong Basin and Its Causes, Journal of Groundwater Science and Engineering, 2, 63-72.
    [20] 2013:  Analysis of Groundwater Environmental Conditions and Influencing Factors in Typical City in Northwest China, Journal of Groundwater Science and Engineering, 1, 60-73.
  • 加载中
图(12) / 表ll (3)
计量
  • 文章访问数:  932
  • HTML全文浏览量:  365
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-05
  • 录用日期:  2023-11-19
  • 网络出版日期:  2024-03-15
  • 刊出日期:  2024-03-15

目录

    /

    返回文章
    返回