Assessment of groundwater suitability for different activities in Toshka district, south Egypt
-
Abstract: Globally, groundwater has globally emerged as a crucial freshwater source for domestic, irrigation, and industrial needs. The evaluation of groundwater quality in the Toshka region is imperative to ensure its suitability for the extensive agricultural and industrial activities underway in this promising, groundwater-dependent development area. This is particularly significant as Egypt increasingly relies on groundwater reserves to address freshwater deficits and to implement mega-development projects in barren lands. In this study, fifty-two samples were collected from the recently drilled wells tapping into the Nubian Sandstone Aquifer (NSA) in the Toshka region. Groundwater quality was assessed through hydrochemical analysis, Piper diagram, and various indicators such as Na%, SAR, RSC, KR, MH and PI. The hydrochemical analysis revealed improved groundwater quality characteristics, attributed to continuous recharge from Lake Nasser. The Piper diagram categorised most of the water samples as "secondary salinity" water type. Almost all wells proved suitable for irrigation with only two wells unsuitable based on MH values and six wells based on KR values. Considering Total Hardness (TH) values, all samples were classified as "Soft", indicating their suitability for domestic and industrial purposes. Water Quality Index (WQI) results concluded that all samples met WHO and FAO guidelines for drinking and irrigation, respectively. Spatial distribution maps, constructed using GIS, facilitate the interpretation of the results. Regular monitoring of quality parameters is essential to detect any deviation from permissible limits.
-
Table 1. Weight (wi) and relative weight (Wi) of groundwater parameters used for arithmetic-WQI estimation (Drinking)
Parameter Standard WHO Weight (wi) Relative weights (Wi) Na+ 200 3 0.09375 K+ 12 2 0.0625 Mg2+ 50 2 0.0625 Ca2+ 75 3 0.09375 HCO3− 120 2 0.0625 SO42− 250 4 0.125 CO32− 120 2 0.0625 CI− 250 3 0.09375 EC 1000 3 0.09375 TDS 500 5 0.15625 pH 8.5 3 0.09375 $ \sum {} $ 32 1 Table 2. Weight (wi) and relative weight (Wi) of groundwater parameters used for arithmetic-WQI estimation (Irrigation)
Parameter Standard FAO Weight (wi) Relative weights (Wi) Na+ 919 3 0.1154 K+ 2 2 0.0769 Mg2+ 60 1 0.0385 Ca2+ 400 1 0.0385 HCO3− 610 1 0.0385 SO42− 960 5 0.1923 CO32− 610 1 0.03846 CI− 1063 4 0.1538 EC 2000 2 0.0769 TDS 2000 3 0.1154 pH 8.5 3 0.1154 $ \sum {} $ 26 1 Table 3. Hydrochemical coefficients calculated for the 52 water samples.
Well Na+/
Cl−Mg2+/Ca2+ Cl−/sum of Anions Well Na+/
Cl−Mg2+/
Ca2+Cl−/Sum of anions 23 0.62 0.15 0.41 57 0.74 0.31 0.34 24 0.68 0.21 0.34 58 0.69 0.26 0.3 25 0.72 0.44 0.39 59 0.73 0.21 0.32 26 0.79 0.21 0.29 61 0.74 0.27 0.33 27 0.77 0.13 0.38 62 0.68 0.27 0.34 28 0.71 0.57 0.36 63 0.56 0.28 0.38 29 0.73 0.19 0.36 64 0.66 0.27 0.35 30 0.69 0.23 0.32 65 0.63 0.24 0.4 31 0.64 0.34 0.46 66 0.74 0.28 0.31 32 0.7 0.2 0.35 67 0.73 0.15 0.29 33 0.72 0.28 0.32 68 0.68 0.26 0.33 34 0.76 0.15 0.3 69 0.62 0.56 0.31 35 0.81 0.17 0.34 70 0.65 0.36 0.33 36 0.73 0.25 0.31 71 0.58 0.43 0.32 37 0.8 0.16 0.28 72 0.59 0.43 0.34 38 0.79 0.2 0.29 73 0.79 0.42 0.3 39 0.73 0.25 0.3 74 0.69 0.34 0.32 40 0.74 0.33 0.33 75 0.73 0.52 0.29 41 0.89 0.11 0.27 76 0.79 0.52 0.31 42 0.84 0.24 0.27 77 0.77 0.56 0.33 44 0.89 0.14 0.27 78 0.76 1.00 0.28 45 0.86 0.18 0.29 79 0.73 0.26 0.32 46 0.76 0.18 0.33 81 0.79 0.22 0.32 54 0.62 0.82 0.31 82 0.77 0.25 0.32 55 0.7 0.3 0.32 83 0.82 0.25 0.31 56 0.64 0.29 0.37 84 0.78 0.32 0.3 Table 4. Descriptive statics of groundwater parameters in Toshka area and WHO guidelines
Parameter Minimum Maximum Mean Standard deviation WHO allowable limit PH 6.6 7.9 7.21 0.32 8.5 EC 699 1263 863.32 111.21 1,500 TDS 458 774 569.69 79.65 1,000 Na+ 72 144 95.46 18.39 200 K+ 3.4 7.2 4.50 0.74 12 Ca2+ 32 86 64.76 10.93 75 Mg2+ 7.9 41.3 18.66 6.90 50 CI− 100 224 132.11 25.68 250 SO42− 90 210 154.61 25.39 250 HCO3− 84 196 116.15 20.78 120 CO32− 0 24 1.26 4.48 120 Table 5. Classification of groundwater samples of Toshka area for irrigation purposes
Parameters Range Classification No. of samples Sample% EC (µS/cm)
Todd 1982)<250 Excellent / / 250–750 Good 7 13.5% 750–2,250 Permissible 45 86.5% 2,250–5,000 Doubtful / / >5,000 Unsuitable / / TDS < 1000 Non saline 52 100% 1000–3000 Slightly saline / / 3000–10,000 Moderately saline / / > 10000 Very saline / / %Na 0–20 Excellent / / 20–40 Good 1 2% 40–60 Permissible 51 98% 60–80 Doubtful / / <80 Unsuitable / / RSC >1.25 Good 52 100% 1.25–2.5 Doubtful / / <2.5 Unsuitable / / MH <50% Suitable 50 96% >50% Unsuitable 2 4% KR <1 Suitable 46 88.5% >1 Unsuitable 6 11.5% Table 6. Classification of irrigation water based on SAR values
Level (SAR) Quality Water class No. of samples Sample% S1 0–10 Low sodium Excellent 52 100% S2 10–18 Medium sodium Good / / S3 18–26 High sodium Fair / / S4 < 26 Very high sodium Poor / / Table 7. Classification of irrigation water based on PI
PI Water quality Classification No. of samples Sample (%) PI >75 Class I Good 50 96% >75 75–25 Class II Moderate 2 4% 75–25 <25 Class III Poor / / <25 Table 8. Hardness classification of water
TH Classification No. of samples Sample (%) 0−75 Soft 52 100 75−150 Moderately hard / / 150−300 Hard / / Over 300 Very hard / / Table 9. Results of WQI for domestic.
WQI range Type of water No. of samples Sample (%) <50 Excellent water / / 50–100 Good water 52 100 100–200 Poor water / / 200–300 Very poor water / / >300 Unsuitable water / / Table 10. Results of WQI for Irrigation.
WQI range Type of water No. of samples Sample (%) <50 Excellent water 52 100 50–100 Good water __ __ 100–200 Poor water __ __ 200–300 Very poor water __ __ >300 Unsuitable water __ __ -
Abd El-Azeem Y, Shehata M, Nosair A, et al. 2023. Quaternary aquifer hydrochemical assessment, el-tur area, South Sinai, Egypt. Bulletin of Faculty of Science, Zagazig University, 2023(2): 72−85. Adimalla N, Qian H. 2020. Spatial distribution and health risk assessment of fluoride contamination in groundwater of Telangana: A state-of-the-art. Geochemistry, 80(4): 125548. DOI: 10.1016/j.chemer.2019.125548. Ahmed MT, Hasan MY, Monir MU, et al. 2021. Evaluation of groundwater quality and its suitability by applying the geospatial and IWQI techniques for irrigation purposes in the southwestern coastal plain of Bangladesh. Arabian Journal of Geosciences, 14(3): 233. DOI: 10.1007/s12517-021-06510-y. Akter T, Jhohura FT, Akter F, et al. 2016. Water Quality Index for measuring drinking water quality in rural Bangladesh: A cross-sectional study. Journal of Health, Population, and Nutrition, 35: 4. Alshehri F, El-Sorogy AS, Almadani S, et al. 2023. Groundwater quality assessment in western Saudi Arabia using GIS and multivariate analysis. Journal of King Saud University - Science, 35(4): 102586. DOI: 10.1016/j.jksus.2023.102586. Aly MM, Abd Elhamid AMI, Abu-Bakr HAA, et al. 2023. Integrated management and environmental impact assessment of sustainable groundwater-dependent development in toshka district, Egypt. Water, 15(12): 2183. DOI: 10.3390/w15122183. Aly MM, Sakr SA, Fayad SAK. 2019. Evaluation of the impact of Lake Nasser on the groundwater system in Toshka under future development scenarios, Western Desert, Egypt. Arabian Journal of Geosciences, 12(17): 553. DOI: 10.1007/s12517-019-4701-9. Anonna TA, Ahmed Z, Alam R, et al. 2022. Water quality assessment for drinking and irrigation purposes in Mahananda River Basin of Bangladesh. Earth Systems and Environment, 6(1): 87−98. DOI: 10.1007/s41748-021-00274-x. Armanuos AM, Negm A, Valeriano OCS. 2016. Groundwater quality investigation using multivariate analysis—Case study: Western Nile delta aquifer, Egypt. International Journal of Environmental Science and Development, 7(1): 1−9. DOI: 10.7763/ijesd.2016.v7.732. Awad ES, Imran NS, Albayati MM, et al. 2022. Groundwater hydrogeochemical and quality appraisal for agriculture irrigation in greenbelt area, Iraq. Environments, 9(4): 43. DOI: 10.3390/environments9040043. Benaafi M, Yassin M, Usman A, et al. 2022. Neurocomputing modelling of hydrochemical and physical properties of groundwater coupled with spatial clustering, GIS, and statistical techniques. Sustainabilty, 14(4): 2250. DOI: 10.3390/su14042250. El-Rawy M, Ismail E, Abdalla O. 2019. Assessment of groundwater quality using GIS, hydrogeochemsitry, and factor statistical analysis in Qena governorate, Egypt. Desalination and Water Treatment, 162: 14−29. DOI: 10.5004/dwt.2019.24423. El-Zeiny AM, Elbeih SF. 2019. GIS-based evaluation of groundwater quality and suitability in Dakhla oases, Egypt. Earth Systems and Environment, 3(3): 507−523. DOI: 10.1007/s41748-019-00112-1. Ezzeldin H, Kamal A, Reda AM, et al. 2018. Assessment of factors affecting the groundwater quality in el-hammam area, north-west coast of Egypt. Middle East Journal Applied Sciences, 08(03): 798−819. Hagage M, Madani AA, Elbeih SF. 2022. Quaternary groundwater aquifer suitability for drinking in Akhmim, Upper Egypt: An assessment using water quality index and GIS techniques. Arabian Journal of Geosciences, 15(2): 196. DOI: 10.1007/s12517-021-09393-1. Hasan MSU, Rai AK. 2023. Suitability of the Lower Ganga Basin groundwater for irrigation, using hydrogeochemical parameters and land-use dynamics. Environmental Science and Pollution Research, 30(55): 116831−116847. DOI: 10.1007/s11356-022-24708-9. Khan A, Qureshi FR. 2018. Groundwater quality assessment through water quality index (WQI) in new Karachi town, Karachi, Pakistan. Asian Journal of Water, Environment and Pollution, 15(1): 41−46. DOI: 10.3233/ajw-180004. Kumari M, Rai SC. 2020. Hydrogeochemical evaluation of groundwater quality for drinking and irrigation purposes using water quality index in semi arid region of India. Journal of the Geological Society of India, 95(2): 159−168. DOI: 10.1007/s12594-020-1405-4. Megahed HA, Farrag AEH A. 2019. Groundwater potentiality and evaluation in the Egyptian Nile Valley: Case study from Assiut Governorate using hydrochemical, bacteriological approach, and GIS techniques. Bulletin of the National Research Centre, 43(1): 48. DOI: 10.1186/s42269-019-0091-0. Mohamed NA, Wachemo AC, Karuppannan S, et al. 2022. Spatio-temporal variation of groundwater hydrochemistry and suitability for drinking and irrigation in Arba Minch Town, Ethiopia: An integrated approach using water quality index, multivariate statistics, and GIS. Urban Climate, 46: 101338. DOI: 10.1016/j.uclim.2022.101338. Naik MR, Mahanty B, Sahoo SK, et al. 2022. Assessment of groundwater geochemistry using multivariate water quality index and potential health risk in industrial belt of central Odisha, India. Environmental Pollution, 303: 119161. DOI: 10.1016/j.envpol.2022.119161. Patel A, Rai SP, Akpataku KV, et al. 2023. Hydrogeochemical characterization of groundwater in the shallow aquifer system of Middle Ganga Basin, India. Groundwater for Sustainable Development, 21: 100934. DOI: 10.1016/j.gsd.2023.100934. Rabeiy RE. 2018. Assessment and modeling of groundwater quality using WQI and GIS in Upper Egypt area. Environmental Science and Pollution Research, 25(31): 30808−30817. DOI: 10.1007/s11356-017-8617-1. Ram A, Tiwari SK, Pandey HK, et al. 2021. Groundwater quality assessment using water quality index (WQI) under GIS framework. Applied Water Science, 11(2): 46. DOI: 10.1007/s13201-021-01376-7. RamyaPriya R, Elango L. 2017. Evaluation of geogenic and anthropogenic impacts on spatio-temporal variation in quality of surface water and groundwater along Cauvery River, India. Environmental Earth Sciences, 77(1): 2. DOI: 10.1007/s12665-017-7176-6. Shalby A, Elshemy M, Zeidan BA. 2020. Assessment of climate change impacts on water quality parameters of Lake Burullus, Egypt. Environmental Science and Pollution Research, 27(26): 32157−32178. DOI: 10.1007/s11356-019-06105-x. Shalby A, Emara SR, Metwally MI, et al. 2023. Satellite-based estimates of groundwater storage depletion over Egypt. Environmental Monitoring and Assessment, 195(5): 594. DOI: 10.1007/s10661-023-11171-3. Sinduja M, Sathya V, Maheswari M, et al. 2023. Groundwater quality assessment for agricultural purposes at Vellore District of Southern India: A geospatial based study. Urban Climate, 47: 101368. DOI: 10.1016/j.uclim.2022.101368. Soleimani H, Abbasnia A, Yousefi M, et al. 2018. Data on assessment of groundwater quality for drinking and irrigation in rural area Sarpol-e Zahab city, Kermanshah Province, Iran. Data in Brief, 17: 148−156. DOI: 10.1016/j.dib.2017.12.061. Tarawneh MSM, Janardhana MR, Ahmed MM. 2019. Hydrochemical processes and groundwater quality assessment in North eastern region of Jordan valley, Jordan. HydroResearch, 2: 129−145. DOI: 10.1016/j.hydres.2020.02.001. Zhao XB, Guo HP, Wang YL, et al. 2021. Groundwater hydrogeochemical characteristics and quality suitability assessment for irrigation and drinking purposes in an agricultural region of the North China plain. Environmental Earth Sciences, 80(4): 162. DOI: 10.1007/s12665-021-09432-w.