Formation mechanism of hydrochemical and quality evaluation of shallow groundwater in the Upper Kebir sub-basin, Northeast Algeria
-
Abstract: This study investigates the hydrochemical formation mechanism of shallow groundwater in the Upper Kebir upstream sub-basin (Northeastern Algeria). The objective is to evaluate water quality suitability for domestic purposes through the application of water quality index (WQI). A total of 24 water points (wells and borewells) evenly distributed in the basin were collected and analyzed in the laboratory for determining the major ions and other geochemical parameters in the groundwater. The groundwater hydrochemical types were identified as Cl–Na and Cl–HCO3 –Na, with the dominant major ions were found in the order of Na+ > Ca2+ > Mg2+ for cations, and Cl− > SO42− > HCO3– > NO3− for anions. Results suggest that weathering, dissolution of carbonate, sulfate, salt rocks, and anthropogenic activities were the major contributors to ion content in the groundwater. The Water Quality Index (WQI) was calculated to assess the water quality of potable water. Approximately 50% of the sampled sites exhibited good water quality. However, the study highlights significant NO3 contamination in the study area, with 50% of samples exceeding permissible limits. Therefore, effective treatment measures are crucial for the safe consumption of groundwater.
-
Key words:
- Semi-arid /
- Salinization process /
- Nitrate /
- Water Quality Index /
- Domestic use
-
Figure 1. A. Major geomorphologic units of North Algeria (Villa, 1980). B. Kebir Rhumel subbasins (ABH, 2014).
Figure 2. Geological map of the study area, redesigned from Setif geological map at 1/200,000 (Villa, 1977).
Figure 5. Mechanisms governing groundwater chemistry in the study area (Gibbs, 1970).
Table 1. Physicochemical groundwater quality constituents in the Upper Kebir sub-basin
pH T CE TDS TH TA O2 dis Ca Mg Na Cl SO4 HCO3 NO3 Unit °C μS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 1 7.0 15.9 1,865 1,286 494 240 0.16 115 32 182 314 76 156 28 2 7.4 14.3 1,285 1,074 280 105 0.25 94 41 154 312 79 130 35 3 7.2 20.3 1,420 1,251 477 184 0.24 143 17 208 402 86 92 36 4 7.0 22.4 2,810 1,857 470 220 1.88 186 63 241 357 86 239 37 5 7.1 15.0 4,460 2,543 320 288 0.12 126 58 257 375 87 216 37 6 7.0 20.3 960 749 450 210 0.17 154 6 227 365 120 176 37 7 7.2 19.9 1,075 744 449 312 0.16 127 42 207 375 140 225 41 8 7.1 16.5 1,609 1,163 449 342 0.06 157 67 135 379 146 284 41 9 7.0 16.3 2,900 1,869 958 376 0.29 257 62 295 432 148 292 42 10 7.1 13.0 1,200 857 372 405 0.1 186 48 208 385 157 285 48 11 7.0 18.6 702 509 268 196 0.34 95 25 213 341 157 128 53 12 7.8 13.9 630 579 292 202 0.03 95 65 210 384 157 135 54 13 7.0 15.0 2,380 1,360 852 186 0.55 105 48 291 450 158 127 62 14 7.0 16.6 885 704 292 126 0.16 128 34 205 357 162 163 68 15 7.0 11.5 4,918 3,006 491 201 8.12 114 42 265 403 163 189 68 16 7.1 16.5 2,620 1,610 373 186 3.5 84 35 242 356 169 145 82 17 7.4 15.4 5,830 4,223 412 204 2.07 136 38 214 365 178 137 82 18 7.7 17.7 3,525 2,434 343 190 6.04 143 28 238 375 186 185 92 19 7.3 19.6 5,282 3,214 538 234 5.4 203 58 239 425 198 207 94 20 7.2 17.3 4,200 2,940 433 158 0.7 129 29 259 405 213 182 95 21 7.1 21.7 1,375 1,250 365 202 0.716 139 47 228 390 241 175 108 22 6.7 17.3 2,900 1,726 114 154 0.74 133 48 224 365 385 186 114 23 7.0 15.5 4,196 2,369 570 310 0.481 189 36 229 385 428 230 115 24 7.5 18.9 2,172 1149 500 302 0.508 148 33 232 325 198 254 37 Table 2. Summary statistics of groundwater physicochemical parameters with WHO drinking water quality standards
Min Max Mean SD CV% WHO (2011) Number of samples below MPL Number of samples exceeding MPL DL MPL pH 6.7 7.85 7.15 0.27 3.80 6.5–8.5 9.2 24 0 T (°C) 11.5 22.4 17.05 2.81 16.45 25 24 0 EC (µs/cm) 630 5,830 2,549.96 1,565.41 61.39 900 1,400 3 21 TDS (mg/L) 509 4,223 1,686.01 967.44 57.38 600 900 0 24 TH as CaCO3 (mg/L) 114 958 440.08 177.04 40.23 100 500 0 24 TA as CaCO3 (mg/L) 105 405 230.54 76.90 33.35 150 - 2 22 Dissolved O2 (mg/L) 0.03 8.12 1.336 2.18 159.84 4–6 - 22 2 Ca (mg/L) 84 257 141.08 40.30 28.56 75 200 23 1 Mg (mg/L) 6 67 41.75 15.55 37.24 50 150 24 0 Na (mg/L) 135 295 225.13 36.60 16.26 - 200 2 22 Cl (mg/L) 312 450 375.92 34.23 9.10 250 600 24 0 SO4 (mg/L) 76 486 183.58 106.23 57.87 200 500 24 0 HCO3 (mg/L) 92 292 189.08 55.10 29.14 125 350 24 0 NO3 (mg/L) 28 128 66.54 30.53 45.88 50 - 10 14 Min: Minimum, Max: Maximum, SD: Standard deviation, CV%: Coefficients of variation (%), DL: Desirable limits, MPL: Maximum permissible limits. EC, TDS, TH and TA Values are at 25°C. Table 4. WQI Computation of groundwater in the study area
Si wi Wi Ci
(Mean values)qi SI pH 8.5 3 0.097 7.15 84.14 8.16 T (°C) 25 4 0.129 17.05 68.24 8.80 EC (µs / cm) 1500 3 0.097 2,549.96 170.00 16.49 Ca (mg/L) 200 2 0.065 141.08 70.54 4.59 Mg (mg/L) 150 2 0.065 41.75 27.83 1.81 Na (mg/L) 200 2 0.065 225.13 112.56 7.32 Cl (mg/L) 250 4 0.128 375.92 126.06 16.14 SO4 (mg/L) 250 3 0.097 183.58 73.43 4.12 HCO3 (mg/L) 125 3 0.097 189.08 150.37 14.59 NO3 (mg/L) 50 5 0.160 66.54 133.08 21.29 Σwi = 31 1 Table 3. Classification of water quality
Ranking WQI Value Explanation < 50 Excellent water Good for human health 50–100 Good water Suitable for human consumption 100–200 Poor water Water in poor condition 200–300 Very poor water Needs special attention before use > 300 Unsuitable for drinking Requires too much attention -
Abdelhamid K. 2016. Caractérisation des paramètres hydrodynamiques de l'aquifère deTadjnant –Chelghoum Laid et impact de la pollution des eaux desurface sur les eaux souterraines. Thèse Doc. Es. Sci., Univ. Batna2: Algérie: 162. ABH. 2014. Le bassin du Khébir Rhumel. Cahiers de l'agence 15 : Alger. Adimalla N, Qian H. 2019. Groundwater quality evaluation using water quality index (WQI) for drinking purposes and human health risk (HHR) assessment in an agricultural region of Nanganur, South India. Ecotoxicology and Environmental Safety, 176: 153−161. DOI: 10.1016/j.ecoenv.2019.03.066. Allia Z, Lalaoui M, Chebbah M. 2022. Hydrochemical assessment for the suitability of drinking and irrigation use of surface water in Grouz Dam Basin, Northeast Algeria. Sustainable Water Resources Management, 8(3): 88. DOI: 10.1007/s40899-022-00663-8. Allia Z, Chebbah M, Ouamane A. 2018. Analyse et évaluation de la qualité des eaux du système aquifère mio-pliocène dans le Zab Chergui, Bas Sahara Septentrional. Courrier du Savoir, univ Biskra, Algérie, 26: 235-244 Ameen HA. 2019. Spring water quality assessment using water quality index in villages of Barwari Bala, Duhok, Kurdistan Region, Iraq. Applied Water Science, 9(8): 176. DOI: 10.1007/s13201-019-1080-z. APHA. 2005. Standard methods for examination of water and wastewater 21st ed. American Public Health Association, Washington D. C. Bouderbala A, Gharbi BY. 2017. Hydrogeochemical characterization and groundwater quality assessment in the intensive agricultural zone of the Upper Cheliff plain, Algeria. Environmental Earth Sciences, 76(21): 744. DOI: 10.1007/s12665-017-7067-x. Campo M, Esteller MV, Exposito J. et al. 2014. Impacts of urbanization on groundwater hydrodynamics and hydrochemistry of the Toluca Valley aquifer (Mexico). Environmental Monitoring and Assessment, 186: 2979−2999. DOI: 10.1007/s10661-013-3595-3. Chebbah M, Allia Z. 2014. Geochemistry and hydrogeochemical process of groundwater in arid region: A case study of the water table in the Souf Valley (Low Septentrional Sahara, Algeria). African Journal of Geo-Science Research, 2(3): 23−30. Durozoy G. 1960. Etude géologique de la région de Châteaudun du Rhumel, publ. Serv. Carte Géol. Algérie, Nlle sér. 22, Alger. Fakharian K, Narany TS. 2016. Multidisciplinary approach to evaluate groundwater salinity in Saveh Plain, Iran. Environmental Earth Sciences, 75(7): 624. DOI: 10.1007/s12665-015-5104-1. Freeze RA, Cherry JA. 1979. Groundwater, Prentice-Hall, Inc. Englewood Cliffs, New Jersey 07632, United States of America. p 589. Ganiyu SA, Badmus BS, Olurin OT, et al. 2018. Evaluation of seasonal variation of water quality using multivariate statistical analysis and irrigation parameter indices in Ajakanga area, Ibadan, Nigeria. Applied Water Science, 8(1): 35. DOI: 10.1007/s13201-018-0677-y. Ghouili N, Hamzaoui-Azaza F, Zammouri M, et al. 2018. Groundwater quality assessment of the Takelsa phreatic aquifer (Northeastern Tunisia) using geochemical and statistical methods: Implications for aquifer management and end-users. Environmental Science and Pollution Research, 25(36): 36306−36327. DOI: 10.1007/s11356-018-3473-1. Gibbs RJ. 1970. Mechanisms controlling world water chemistry. Science, 170(3962): 1088−1090. DOI: 10.1126/science.170.3962.1088. Hassen I, Hamzaoui-Azaza F, Bouhlila R. 2016. Application of multivariate statistical analysis and hydrochemical and isotopic investigations for evaluation of groundwater quality and its suitability for drinking and agriculture purposes: Case of Oum Ali-Thelepte aquifer, central Tunisia. Environmental Monitoring and Assessment, 188(3): 135. DOI: 10.1007/s10661-016-5124-7. Horton RK. 1965. An index number system for rating water quality. Journal of the Water Pollution Control Federation. 37(3): 300–306. Hounslow AW. 1995. Water quality data analysis and interpretation. CRC Press, Boca Raton, CRC Press LLC. Kachroud M, Trolard F, Kefi M, et al. 2019. Water quality indices: Challenges and application limits in the literature. Water, 11(2): 361. DOI: 10.3390/w1020361. Khan A, Qureshi FR. 2018. Groundwater quality assessment through water quality index (WQI) in New Karachi Town, Karachi, Pakistan. Asian Journal Water Environment Pollution, 15(1): 41−46. DOI: 10.3233/AJW-180004. Kundu A, Kanti Nag, S. 2015. Delineation of groundwater quality for drinking and irrigation purposes: A case study of chhatna block, Bankura District, West Bengal. International Journal of Water Resources Development, 3(1): 5−23. Lalaoui M, Allia Z, Chebbah M. 2020. Hydrogeochemical processes and suitability assessment of surface water in the Grouz Dam Basin, northeast Algeria. Journal of Fundamental and Applied Sciences, 12(3): 1452−1474. DOI: 10.4314/jfas.v12i3.29. Liu F, Song X, Yang L, et al. 2015. Identifying the origin and geochemical evolution of groundwater using hydrochemistry and stable isotopes in the Subei Lake Basin, Ordos energy base, Northwestern China. Hydrology and Earth System Sciences, 19(1): 551−565. DOI: 10.5194/hess-19-551-2015. Liu JT, Feng JG, Gao ZJ, et al. 2019. Hydrochemical characteristics and quality assessment of groundwater for drinking and irrigation purposes in the Futuan River Basin, China. Arabian Journal of Geosciences, 12(18): 560. DOI: 10.1007/s12517-019-4732-2. Long DT, Pearson AL, Voice TC, et al. 2018. Influence of rainy season and land use on drinking water quality in a karst landscape, State of Yucatán, Mexico. Applied Geochemistry, 98(11): 265−277. DOI: 10.1016/j.apgeochem.2018.09.020. Marco R, Tullia B, Elisa S. et al. 2019. The effects of irrigation on groundwater quality and quantity in a human-modified hydro-system: The Oglio River Basin, Po Plain, northern Italy. Science of the Total Environment, 672: 342−356. DOI: 10.1016/j.scitotenv.2019.03.427. Maskooni EK, Naseri-Rad M, Berndtsson R. 2020. Use of heavy metal content and modified Water Quality Index to assess groundwater quality in a semiarid area. Water Quality and Contamination, 12(1115). Perera TANT, Herath HMMSD, Piyadasa RUK, et al. 2022. Spatial and physicochemical assessment of groundwater quality in the urban coastal region of Sri Lanka. Environmental Science and Pollution Research, 29(11): 16250−16264. DOI: 10.1007/s11356-021-16911-x. Qasemi M, Farhang M, Biglari H, et al. 2018. Health risk assessments due to nitrate levels in drinking water in villages of Azadshahr, northeastern Iran. Environmental Earth Sciences, 77(23): 782. DOI: 10.1007/s12665-018-7973-6. RadFard M, Seif M, Ghazizadeh Hashemi AH, et al. 2019. Protocol for the estimation of drinking water quality index (DWQI) in water resources: Artificial neural network (ANFIS) and Arc-Gis. MethodsX, 6: 1021−1029. DOI: 10.1016/j.mex.2019.04.027. Selvakumar S, Chandrasekar N, Kumar G. 2017. Hydrogeochemical characteristics and groundwater contamination in the rapid urban development areas of Coimbatore, India. Water Resources and Industry, 17: 26−33. DOI: 10.1016/j.wri.2017.02.002. Shah KA, Joshi GS. 2017. Evaluation of water quality index for River Sabarmati, Gujarat, India. Applied Water Science, 7(3): 1349−1358. DOI: 10.1007/s13201-015-0318-7. Tampo L, Gnazou DTM, Kodom T, et al. 2015 Suitability of groundwater and surface water for drinking and irrigation purpose in Zio River Basin (Togo). Journal of Scientific Research of the University of Lomé (Togo), 17(3): 35-51. Tyagi S, Sharma B, Singh P, et al. 2020. Water quality assessment in terms of water quality index. American Journal of Water Resources, 1(3): 34−38. DOI: 10.12691/ajwr-1-3-3. Villa JM. 1977. Carte géologique de Sétif au 1/200 000. Publication SONATRACH, Algérie : 98. (In French) Villa JM. 1980. La chaîne alpine d’Algérie orientale et des confins algéro-tunisiens. Thèse Docteur ès Sciences. Paris VI, France: 665. (In French) Voute C. 1967. Essais de synthèse de l’histoire géologique des environs d’Ain Fakroune, Ain Babouche, et des environs limitrophes. Publ. Serv. Carte géol. Algérie, Nlle Série, 2 t. Essais de synthèse de l’histoire géologique des environs d’Ain Fakroune, Ain Babouche, et des environs limitrophes. Publ. Serv. Carte géol. Algérie, Nlle Série: 192. (In French) WHO 2008. World Health Organisation Guidelines for Drinking Water Quality, Third Editions. 20 Avenue Appia, 1211 Geneva 1227, Switzerland. WHO. 2011 World Health Organization Guidelines for Drinking Water Quality, 4rd editions. Incorporating the First and Second ADDENDA, Vol 1. Recommendation, Geneva. WHO. 2017. World Health Organization Guidelines for Drinking-water quality, 4rd editions. Incorporating the First addendum, Geneva. Yang L, Zhang YP, Wen XR, et al. 2020. Characteristics of groundwater and urban emergency water sources optimazation in Luoyang, China. Journal of Groundwater Science and Engineering, 8(3): 298−304. DOI: 10.19637/j.cnki.2305-7068.2020.03.010. Yang QC, Li ZJ, Ma HY, et al. 2016. Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the Southeastern part of Ordos Basin, China. Environmental Pollution, 218: 879−888. DOI: 10.1016/j.envpol.2016.08.017. Zhang QY, Xu PP, Qian H. 2020. Groundwater quality assessment using improved water quality index (WQI) and human health risk (HHR) evaluation in a semi-arid region of northwest China. Exposure and Health, 12(3): 487−500. DOI: 10.1007/s12403-020-00345-w.