-
Abstract: Underground Thermal Energy Storage (UTES) store unstable and non-continuous energy underground, releasing stable heat energy on demand. This effectively improve energy utilization and optimize energy allocation. As UTES technology advances, accommodating greater depth, higher temperature and multi-energy complementarity, new research challenges emerge. This paper comprehensively provides a systematic summary of the current research status of UTES. It categorized different types of UTES systems, analyzes the applicability of key technologies of UTES, and evaluate their economic and environmental benefits. Moreover, this paper identifies existing issues with UTES, such as injection blockage, wellbore scaling and corrosion, seepage and heat transfer in cracks, etc. It suggests deepening the research on blockage formation mechanism and plugging prevention technology, improving the study of anticorrosive materials and water treatment technology, and enhancing the investigation of reservoir fracture network characterization technology and seepage heat transfer. These recommendations serve as valuable references for promoting the high-quality development of UTES.
-
Figure 1. Schematic representation of the most common UTES systems. Adapted from (Lee, 2013; Matos et al. 2019)
Figure 2. Schematic diagram of BTES system: (a) boreholes distribution plan view; (b) single borehole configuration (Zhang et al. 2012)
Figure 3. HWTES system (Xu et al. 2014)
Figure 4. GWTES system (Pfeil and Koch, 2000)
Table 1. International application cases of ATES
Year Country Purpose Facility Well depth (m) Well number Temperature (°C) Capacity (MW) Reference 2000 Germany H+C Building 320 12 19 / Holstenkamp et al. 2017 2001 Sweden H+C Expo architecture 75 10 / 1.3 Andersson, 2007 2004 Germany HT District heating 1,250 2 55 3.3 Holstenkamp et al. 2017 2008 America C University 60 6 / 2 Paksoy, 2009 2013 China H+C Research Center / / 2.3 / Yao et al. 2023 2013 Britain H+C Apartments 70 8 / 2.9 Fleuchaus et al. 2018 2015 Netherland H+C District heating / 7 / 20 Fleuchaus et al. 2018 2015 Denmark H+C Airport 110 10 / 5 Larsen and Sonderberg, 2015 2016 China H+C factory / 2 / 43 Zhang et al. 2021b Note: H is Heat; C is Cool. Table 2. Application cases of BTES system technology worldwide
Year Country Purpose Facility Number of pipes Depth (m) Reference 2004 Canada H+C University 384 213 Dincer and Rosen, 2007 2007 Germany H school 80 55 Mangold, 2007 2011 China H+C Commercial center 3,789 120 Yin and Wu, 2018 2012 Denmark H District heating 48 45 Gehlin, 2016 2015 Romania H+C Research center 1,080 125 Gehlin, 2016 2016 China H+C District heating 468 80 Xu et al. 2018 2019 China H+C Airport 10,680 140/120 He et al. 2022 2020 China H+C Hospital 1,320 120 Wang et al. 2023 Note: H is Heat; C is Cool. Table 3. Comparison of thermal energy storage systems (Rad and Fung, 2016; Schmidt et al. 2003)
ATES BTES GWTES HWTES Storage medium Ground material/water Ground material Gravel-water Water Heat capacity
(kW h/m3)30–40 15–30 30–50 60–80 Storage volume for (1 m3 of water equivalent) 2–3 3–5 1.3–2 1 Geological requirement · Natural aquifer layer with high hydraulic conductivity;
· Confining layers on top and below;
· No or low natural groundwater flow;
· Suitable water chemistry at high temperatures;
· Aquifer thickness 20–50 m· Drillable ground;
· Groundwater favorable;
· High heat capacity;
· High thermal conductivity;
· Low hydraulic conductivity;
· Natural groundwater flow <1 m/s;
· 30–100 m deep· Stable ground conditions;
· Preferably no groundwater;
· 5–15 m deepTable 4. Common numerical simulation software for UTES and its characteristics (Gao et al. 2017)
Code Numerical scheme Characteristic and application conditions VS2DH Finite difference 2-D;constant density fluid; variably saturated porous media; single phase fluid flow FEHM Control volume finite element 3-D;for multiphase flow of heat and mass with air, water, and CO2 MT3DMS Finite difference 3-D;always coupled with MODFLOW; simulating heat transport due to the analogy between heat and mass transfer processes FEFLOW Finite element 3-D; able to incorporate spatially variable aquifer properties, geologic layering, and screening of pumping/injection wells over multiple intervals TOUGH2 Integral finite differences 3-D;variably saturated porous and fractured media; coupled transport of water, vapor, noncondensable gas, and heat FLUENT Finite volume 3-D;useful in fluid flow, heat transfer, chemical reaction etc. COMSOL Finite element 3-D;multiphysics; different module Table 5. Energy conservation and emission reduction indicators (Zhou et al. 2022)
Parameters Formula Unit Energy conservation Cumulative cooling load per unit air conditioning area $ {Q}_{c}={a}_{c}{q}_{c}{t}_{c} $ Kwh/m2 Cumulative heat load per unit air conditioning area $ {Q}_{h}={a}_{h}{q}_{h}{t}_{h} $ Kwh/m2 The modified cumulative cooling load of the building $ {Q}_{r}=\dfrac{(1-1/{\varepsilon }_{h})}{(1+1/{\varepsilon }_{c})}{Q}_{h} $ Kwh/m2 Energy savings during the cooling season $ \Delta {\mathrm{E}}_{\mathrm{c}}=\mathrm{D}{\mathrm{Q}}_{\mathrm{r}}\left(\dfrac{1}{{\mathrm{\varepsilon }}_{\mathrm{t}}}-\dfrac{1}{{\mathrm{\varepsilon }}_{\mathrm{c}}}\right) $ kgce/m2 Energy savings during the heating season $ \Delta {\mathrm{E}}_{\mathrm{h}}=\dfrac{3,600{\mathrm{Q}}_{\mathrm{h}}}{{\mathrm{q}}_{\mathrm{b}\mathrm{m}}{\mathrm{\eta }}_{\mathrm{t}}}-\dfrac{\mathrm{D}{\mathrm{Q}}_{\mathrm{h}}}{{\mathrm{\epsilon }}_{\mathrm{h}}} $ kgce/m2 Annual energy savings $ \Delta \mathrm{E}=\Delta {\mathrm{E}}_{\mathrm{c}}+\Delta {\mathrm{E}}_{\mathrm{h}} $ kgce/m2 Annual electricity savings $ \Delta \mathrm{P}=\dfrac{\Delta \mathrm{E}}{\mathrm{D}} $ Kwh/m2 Emission reduction CO2 emission reduction $ {Q}_{{CO}_{2}}={Q}_{s}\times {V}_{{CO}_{2}} $ t/a SO2 emission reduction $ {Q}_{{SO}_{2}}={Q}_{s}\times {V}_{{SO}_{2}} $ t/a Dust emission reduction $ {Q}_{fc}={Q}_{s}\times {V}_{fc} $ t/a Note : $ {a}_{c} $ and $ {a}_{h} $ are the adjustment coefficients of cooling load and heating load respectively, and they are both 0.52; $ {q}_{c} $ and $ {q}_{h} $ are the cooling load in summer and heating load in winter respectively, W/m; $ {t}_{c} $ and $ {t}_{h} $ are the operating time of cooling in summer and heating in winter respectively, h; $ {\epsilon }_{c} $ and $ {\epsilon }_{h} $ are the energy efficiency ratio of refrigeration and heating of underground energy storage system; $ {\mathrm{\epsilon }}_{\mathrm{t}} $ is the energy efficiency ratio of conventional air conditioning refrigeration; $ {\mathrm{\eta }}_{\mathrm{t}} $ is the operating efficiency of coal-fired boilers; $ {\mathrm{q}}_{\mathrm{b}\mathrm{m}} $ is the calorific value of standard coal, taking 29,307 kJ /kg; D is equivalent to the consumption of standard coal per kwh, 0.327 kgce/kwh; $ {Q}_{s} $ is conventional energy replacement quantity, tce/a; $ {V}_{{CO}_{2}} $, $ {V}_{{SO}_{2}} $ and $ {V}_{fc} $ are the emission intensity of CO2, SO2 and dust respectively, which are 2.47 t/tce, 0.02 t/tce and 0.01 t/tce, respectively. 2; The buried tube heat exchanger is designed for heating conditions in winter, and auxiliary cold source is used for peak regulation in summer, so that the heat extraction to the underground in winter and the heat storage to the underground in summer are basically balanced. Therefore, when calculating energy saving, the summer load is modified based on the winter load to ensure the balance of heat absorption and emission in winter and summer. -
Andersson O. 2007. BO 01 ATES system for heating and cooling in Malmö. In: Thermal Energy Storage for Sustainable Energy Consumption: Fundamentals, Case Studies and Design. Dordrecht: Springer Press: 235-238. Brun G. 1965. La régularisation de l'énergie solaire par stockage thermique dans le sol. Revue Général de Thermique, August (44). Casasso A, Giordano N, Bianco C, et al. 2022. UTES - underground thermal energy storage. Encyclopedia of Energy Storage: 382−393. Catolico N, Ge SM, McCartney JS. 2016. Numerical modeling of a soil-borehole thermal energy storage system. Vadose Zone Journal, 15(1): 1−17. DOI: 10.2136/vzj2015.05.0078. Cetin A, Kadioglu YK, Paksoy H. 2020. Underground thermal heat storage and ground source heat pump activities in Turkey. Solar Energy, 200: 22−28. DOI: 10.1016/j.solener.2018.12.055. Chen M. 2012. Research on ATES key-technology in Shanghai. M. S. thesis. Changchun: Jilin University: 26-35. (in Chinese) Chen SRL. 2019. Thermal characteristics study of seasonal borehole thermal energy storage (BTES)system under different operating modes. ph. D. thesis. Tianjin: Tianjin University: 1-30. (in Chinese) Ciampi G, Rosato A, Sibilio S. 2018. Thermo-economic sensitivity analysis by dynamic simulations of a small Italian solar district heating system with a seasonal borehole thermal energy storage. Energy, 143: 757−771. DOI: 10.1016/j.energy.2017.11.029. Coenen L, Raven R, Verbong G. 2010. Local niche experimentation in energy transitions: A theoretical and empirical exploration of proximity advantages and disadvantages. Technology in Society, 32(4): 295−302. DOI: 10.1016/j.techsoc.2010.10.006. Deng S, Shen X, Liu L, et al. 2021. Researh progress in corrosion and protection of geothermal well system. Materials Reports, 35(21): 21178−21184. (in Chinese) DOI: 10.11896/cldb.20050245. Diao NR, Cui P, Gao CM, et al. 2013. Thermal investigation of in-series vertical ground heat exchangers for seasonal heat storage. Journal of Shandong Jianzhu University, 28(06): 503−508+513. (in Chinese) Dincer I, Rosen M. 2007. A unique borehole thermal storage system at University of Ontario Institute of Technology. In: Thermal Energy Storage for Sustainable Energy Consumption: Fundamentals, Case Studies and Design. NATO Science Series. Springer, Dordrecht, 234: 221-228. Du XQ, Ye XY, Lu Y, et al. 2009. Advances in clogging research of artificial recharge. Advances in Earth Science, 24(09): 973−980. (in Chinese) Ebrahimi K, Jones GF, Fleischer AS. 2014. A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities. Renewable and Sustainable Energy Reviews, 31: 622−638. DOI: 10.1016/j.rser.2013.12.007. Feng B, Ke ZG, Liu YG, et al. 2022. Plugging mechanism and plugging removal technologies for enhanced geothermal system reservoirs. Natural Gas Industry, 42(12): 165−183. (in Chinese) DOI: 10.3787/j.issn.1000-0976.2022.12.017. Fleuchaus P, Godschalk B, Stober I, et al. 2018. Worldwide application of aquifer thermal energy storage–A review. Renewable and Sustainable Energy Reviews, 94: 861−876. DOI: 10.1016/j.rser.2018.06.057. Gao LH, Zhao J, An QS, et al. 2017. A review on system performance studies of aquifer thermal energy storage. Energy Procedia, 142: 3537−3545. DOI: 10.1016/j.egypro.2017.12.242. Gao LH, Zhao J, Tang ZP. 2015. A review on borehole seasonal solar thermal energy storage. Energy Procedia, 70: 209−218. DOI: 10.1016/j.egypro.2015.02.117. Gehlin S. 2016. Borehole thermal energy storage. Advances in Ground-Source Heat Pump Systems. Amsterdam: 295−327. Gluyas JG, Adams CA, Wilson IAG. 2020. The theoretical potential for large-scale underground thermal energy storage (UTES) within the UK. Energy Reports, 6: 229−237. DOI: 10.1016/j.egyr.2020.12.006. Guan QL. 2009. Pump with seasonal storage by TRNSYS study on solar-ground coupled heat. M. S. thesis. Tianjin: Tianjin University: 82-84. (in Chinese) Han CJ, Yu X. 2016. Sensitivity analysis of a vertical geothermal heat pump system. Applied Energy, 170: 148−160. DOI: 10.1016/j.apenergy.2016.02.085. He JC, Bie S, Yi W, et al. 2022. Application of ground-source heat pump systems to Beijing Daxing International Airpport. Heating Ventilating & Air Conditioning, 52(05): 90−95. (in Chinese) DOI: 10.19991/j.hvac1971.2022.05.20. Holstenkamp L, Meisel M, Neidig P, et al. 2017. Interdisciplinary review of medium-deep aquifer thermal energy storage in North Germany. Energy Procedia, 135: 327−336. DOI: 10.1016/j.egypro.2017.09.524. Huang W. 2012. Research of corrosion prevention technology for injection-production system in Chaheji Oil Field. M. S. thesis. Qingdao: China University of Petroleum (East China): 1-6. (in Chinese) Huang YH, Pang ZH, Cheng YZ, et al. 2020. The development and outlook of the deep aquifer thermal energy storage (deep-ATES). Earth Science Frontiers, 27(01): 17−24. (in Chinese) DOI: 10.13745/j.esf.2020.1.3. IEA. 2022. Renewable energy market update - May 2022. International Energy Agency. Available on https://www.iea.org/reports/renewable-energy-market-update-may-2022. IRENA, IEA, REN21. 2018. Renewable energy policies in a time of transition. International Energy Agency. Available on https://www.iea.org/reports/renewable-energy-policies-in-a-time-of-transition. Kabus F, Seibt P. 2000. Aquifer thermal energy storage for the Berlin Reichstag building-new seat of the german parliament. In: World Geothermal Congress. Kyushu-Tohoku, Japan: 3611−3615. Kallesøe AJ, Vangkilde-Pedersen T, Guglielmetti L. 2020. HEATSTORE—underground thermal energy storage (UTES)—state of the art, example cases and lessons learned. Proceedings World Geothermal Congress: 1-9. Kemler EN. 1946. Heat-pump heat sources. Edison Electric Institute (EEI) Bulletin, October: 339−346. Kemler EN. 1947. Methods of earth heat recovery for the heat pump. Heating and Ventilating, September: 69−72. Kılkış Ş, Wang C, Björk F, et al. 2017. Cleaner energy scenarios for building clusters in campus areas based on the Rational Exergy Management Model. Journal of Cleaner Production, 155: 72−82. DOI: 10.1016/j.jclepro.2016.10.126. Kim J, Lee Y, Yoon WS, et al. 2010. Numerical modeling of aquifer thermal energy storage system. Energy, 35(12): 4955−4965. DOI: 10.1016/j.energy.2010.08.029. Larsen H, Sonderberg P. 2015. DTU International Energy Report: Energy Systems Integration for the Transition to Non-Fossil Energy Systems. Technical University of Denmark. Lee KS. 2013. Underground Thermal Energy Storage. London: Springer Press: 15-26. Li HL, Kang J, Tong J, et al. 2021. State-of-art on Clogging Mechanism of Geothermal tall-water Reinjection. In: 2021 Science and Technology Annual Conference of Chinese Society of Environmental Sciences — Environmental Engineering Technology Innovation and Application Branch Venue. Tianjin: 782-790. (in Chinese) Li HR, Hou J, Hong TZ, et al. 2021. Energy, economic, and environmental analysis of integration of thermal energy storage into district heating systems using waste heat from data centres. Energy, 219: 119582. DOI: 10.1016/j.energy.2020.119582. Li XG, Zhao J, Wang YP, et al. 2009. The application and experiment of solar-ground coupled heat pump with heat storage. Acta Energiae Solaris Sinica, 30(12): 1658−1661. (in Chinese) Lian HK, Li Y, Shu GY, et al. 2011. An overview of domestic technologies for waste heat utilization. Energy Conservation Technology, 29(02): 123−128, 133. (in Chinese) Liang B. 2022. Thermal performance of a spiral-type ground heat exchanger with coupled thermal and moisture migration mechanism in unsaturated sandy soil. ph. D. thesis. Beijing: Beijing Jiaotong University: 8-11. (in Chinese) Liu GQ, Wu SQ, Fan ZW, et al. 2016. Analytical derivation on recharge and periodic backwashing process and the variation of recharge pressure. Journal of Jilin University (Earth Science Edition), 46(06): 1799−1807. (in Chinese) DOI: 10.13278/j.cnki.jjuese.201606203. Liu HG, Yang CH, Liu JJ, et al. 2023. An overview of underground energy storage in porous media and development in China. Gas Science and Engineering, 117: 1−15. DOI: 10.1016/j.jgsce.2023.205079. Long X, Wan MY, Ma J. 2005a. The application of ATES and its condition for energy storage. Energy Engineering, (01): 42−44. (in Chinese) DOI: 10.16189/j.cnki.nygc.2005.01.010. Long X, Wan MY, Ma J. 2005b. Research on ATES mathematical model and its flowing condition. Energy Research & Utilization, (01): 14−18. (in Chinese) Mangold D. 2007. Seasonal storage-a German success story. Sun& Wind Energy: 48-58. Mathey B. 1977. Development and resorption of a thermal disturbance in a phreatic aquifer with natural convection. Journal of Hydrology, 34(3-4): 315−333. DOI: 10.1016/0022-1694(77)90139-1. Matos CR, Carneiro JF, Silva PP. 2019. Overview of large-scale underground energy storage technologies for integration of renewable energies and criteria for reservoir identification. Journal of Energy Storage, 21: 241−258. DOI: 10.1016/j.est.2018.11.023. Mays DC, Hunt JR. 2007. Hydrodynamic and chemical factors in clogging by montmorillonite in porous media. Environmental Science Technology, 41(16): 5666−5671. DOI: 10.1021/es062009s. Molz FJ, Melville JG, Güven O, et al. 1983. Aquifer thermal energy storage: An attempt to counter free thermal convection. Water Resources Research, 19(4): 922−930. DOI: 10.1029/wr019i004p00922. Molz FJ, Melville JG, Parr AD, et al. 1983. Aquifer thermal energy storage: A well doublet experiment at increased temperatures. Water Resources Research, 19(1): 149−160. DOI: 10.1029/wr019i001p00149. Molz FJ, Parr AD, Andersen PF, et al. 1979. Thermal energy storage in a confined aquifer: Experimental results. Water Resources Research, 15(6): 1509−1514. DOI: 10.1029/wr015i006p01509. Molz FJ, Warman JC, Jones TE. 1978. Aquifer storage of heated water: Part I — a field experiment. Groundwater, 16(4): 234−241. DOI: 10.1111/j.1745-6584.1978.tb03230.x. Morofsky E. 1994. ATES-energy efficiency, economics, and the environment. In:International Symposium on Aquifer Thermal Energy Storage. Tuscaloosa, Alabama,USA: 1−8. NEA. 2023. Renewable energy statistics in China. National Energy Administration. Available on https://www.gov.cn/xinwen/2023-02/14/content_5741481.htm. Ni L, Rong L, Ma ZL. 2007. The history and future of Aquifer Thermal Energy Storage. Building Energy & Environment, (01): 18−24. (in Chinese) Nordell B. 2013. Underground thermal energy storage (UTES). In: The 12th International Conference on Energy Storage. 1-10. Paksoy H. 2009. State-of-the-art review of aquifer thermal energy storage systems for heating and cooling buildings. Proceedings of Thermal Energy Storage for Efficiency and Sustainability, Effstock. Pfeil M, Koch H. 2000. High performance–low cost seasonal gravel/water storage pit. Solar Energy, 69(6): 461−467. DOI: 10.1016/S0038-092X(00)00123-7. Pramanik S, Ravikrishna RV. 2017. A review of concentrated solar power hybrid technologies. Applied Thermal Engineering, 127: 602−637. DOI: 10.1016/j.applthermaleng.2017.08.038. Rad FM, Fung AS. 2016. Solar community heating and cooling system with borehole thermal energy storage — Review of systems. Renewable and Sustainable Energy Reviews, 60: 1550−1561. DOI: 10.1016/j.rser.2016.03.025. Regnier G, Salinas P, Jacquemyn C, et al. 2022. Numerical simulation of aquifer thermal energy storage using surface-based geologic modelling and dynamic mesh optimisation. Hydrogeology Journal, 30(4): 1179−1198. DOI: 10.1007/s10040-022-02481-w. Renaldi R, Friedrich D. 2019. Techno-economic analysis of a solar district heating system with seasonal thermal storage in the UK. Applied Energy, 236: 388−400. DOI: 10.1016/j.apenergy.2018.11.030. Schmidt T, Mangold D, Müller-Steinhagen H. 2003. Seasonal thermal energy storage in Germany. In: ISES solar world congress: 230-232. Sibbitt B, Mcclenahan D, Djebbar R, et al. 2012. The performance of a high solar fraction seasonal storage district heating system — five years of operation. Energy Procedia, 30: 856−865. DOI: 10.1016/j.egypro.2012.11.097. Siriwardene N, Deletic A, Fletcher T. 2007. Clogging of stormwater gravel infiltration systems and filters: Insights from a laboratory study. Water Research, 41(7): 1433−1440. DOI: 10.1016/j.watres.2006.12.040. Socaciu LG. 2012. Seasonal thermal energy storage concepts. Acta Technic Napocensis-Series: Applied Mathematics, Mechanics, Engineering, 55(4): 775-784. Stemmle R, Lee H, Blum P, et al. 2024. City-scale heating and cooling with aquifer thermal energy storage (ATES). Geothermal Energy, 12(1): 2. DOI: 10.1186/s40517-023-00279-x. Wang GL, Yang X, Ma L, et al. 2021. Status quo and prospects of geothermal energy in heat supply. Integrated Intelligent Energy, 43(11): 15−24. (in Chinese) DOI: 10.3969/j.issn.1674-1951.2021.11.003. Wang MY, Ma J, Hao ZL. 2005. Choice and arrangement of aquifer thermal energy storage well's position. Journal of Chengdu University of Technology (Science & Technology Edition), 32(01): 12−16. (in Chinese) Wang S, Ding YR, Liu LY, et al. 2023. Design and initial operation analysis of buried pipe ground-source heat pump air conditioning system for a three-star green hospital. Heating Ventilating & Air Conditioning, 53(04): 76−83. (in Chinese) DOI: 10.19991/j.hvac1971.2023.04.13. Wang ZY, Xu YJ, Zhou XZ, et al. 2020. Storage and release characteristics of seasonal composite thermal storage system. Energy Storage Science and Technology, 9(6): 1837−1846. (in Chinese) DOI: 10.19799/j.cnki.2095-4239.2020.0101. Wang ZY, Zhou XZ, Xu YJ, et al. 2021b. Research on thermal diffusion mechanism of underground seasonal composite thermal storage system. Journal of Engineering Thermophysics, 42(08): 1917−1924. (in Chinese) DOI:0253-231X (2021) 08-1917-08. Wesselink M, Liu W, Koornneef J, et al. 2018. Conceptual market potential framework of high temperature aquifer thermal energy storage—A case study in the Netherlands. Energy, 147: 477−489. DOI: 10.1016/j.energy.2018.01.072. Wu XB. 2004. Development of ground water loop for ATES and ground water source heat pump systems. Heating Ventilating and Air Conditioning, 34(01): 19−22. (in Chinese) DOI: 10.3969/j.issn.1002-8501.2004.01.006. Wu XB, Ma J. 1999. ATES technology in China and its development. Energy Research and Information, 15: 8−12. (in Chinese) DOI: 10.13259/j.cnki.eri.1999.04.003. Xia JQ, Tian H, Dou B, et al. 2023. Experimental Review: Particle clogging in porous sandstone geothermal reservoirs during tail water reinjection. Journal of Hydrology, 625: 130066. DOI: 10.1016/j.jhydrol.2023.130066. Xu J, Wang RZ, Li Y. 2014. A review of available technologies for seasonal thermal energy storage. Solar Energy, 103: 610−638. DOI: 10.1016/j.solener.2013.06.006. Xu LY, Torrens JI, Guo F, et al. 2018. Application of large underground seasonal thermal energy storage in district heating system: A model-based energy performance assessment of a pilot system in Chifeng, China. Applied Thermal Engineering, 137: 319−328. DOI: 10.1016/j.applthermaleng.2018.03.047. Xue YQ, Xie CH, Li QF. 1990. Aquifer thermal energy storage: A numerical simulation of field experiments in China. Water Resources Research, 26(10): 2365−2375. DOI: 10.1029/WR026i010p02365. Yang TR, Liu W, Kramer GJ, et al. 2021. Seasonal thermal energy storage: A techno-economic literature review. Renewable and Sustainable Energy Reviews, 139: 110732. DOI: 10.1016/j.rser.2021.110732. Yang WB, Zhang Y, Wang F, et al. 2023. Experimental and numerical investigations on operation characteristics of seasonal borehole underground thermal energy storage. Renewable Energy, 217: 119365. DOI: 10.1016/j.renene.2023.119365. Yao Y, Gong YL, Ye CT, et al. 2023. New progress in application of innovative geothermal utilization technology in the Yangtze River Delta. Science & Technology Review, 41(12): 33−45. (in Chinese) DOI: 10.3981/j.issn.1000-7857.2023.12.005. Yin BQ, Wu XT. 2018. Performance analysis on a large scale borehole ground source heat pump in Tianjin cultural centre. IOP Conference Series: Earth and Environmental Science, 121: 052071. DOI: 10.1088/1755-1315/121/5/052071. Yin WL. 2022. Analysis of the regional energy mode in hot summer and cold winter areas — taking the regional energy project of Hefei Binhu Science City as an Example. Intelligent Building & Smart City, 07: 79−81. (in Chinese) DOI: 10.13655/j.cnki.ibci.2022.07.024. Yuan RQ, Zhang Y, Long XT. 2022. Deep groundwater circulation in a syncline in Rucheng County, China. Journal of Hydrology, 610: 127824. DOI: 10.1016/j.jhydrol.2022.127824. Zhang CG, Long XT, Tang XW, et al. 2021. Implementation of water treatment processes to optimize the water saving in chemically enhanced oil recovery and hydraulic fracturing methods. Energy Reports, 7: 1720−1727. DOI: 10.1016/j.egyr.2021.03.027. Zhang H. 2021. Study on characteristics of seasonal borehole thermal energy storage system. M. S. thesis. Beijing: North China Electric Power University: 1-7. (in Chinese) Zhang L, Geng SH, Chao JH, et al. 2022. Scaling and blockage risk in geothermal reinjection wellbore: Experiment assessment and model prediction based on scaling deposition kinetics. Journal of Petroleum Science and Engineering, 209: 109867. DOI: 10.1016/j.petrol.2021.109867. Zhang P. 2022. Study on dynamic evolution mechanism of deep thermal reservoir fractures under multi field coupling. Ph. D. thesis. Changchun: Jilin University: 1-28. (in Chinese) Zhang RL, Lu N, Wu YS. 2012. Efficiency of a community-scale borehole thermal energy storage technique for solar thermal energy. GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering: 4386-4395. Zhang SM, Gao Q, Bai L, et al. 2016. The influence of the underground aquifer flow pattern to the groundwater heat pump based on fluent/simulink. Journal of Basic Science and Engineering, 24(02): 242−252. (in Chinese) DOI: 10.16058/j.issn.1005-0930.2016.02.003. Zhang Y. 2023. Study on characteristics of seasonal underground energy storage based on borehole. M. S. thesis. Yangzhou: Yangzhou University: 1-10. (in Chinese) Zhang Y, Xue YQ, Xie CH. 1999. Derivation of darcy's law for high temperature situation. Advances in Water Science, 10(4): 362−367. (in Chinese) Zhang Y, Xue YQ, Xie CH, et al. 1999b. Flow equation with temperature variation and its applications in the aquifer thermal energy storage model. Geological Review, 45: 209−217. (in Chinese) DOI: 10.16509/j.georeview.1999.02.022. Zhang YY, Ye CT, Gong YL, et al. 2021b. Review and prospect of underground thermal energy storage technology. Integrated Intelligent Energy, 43(11): 49−57. (in Chinese) DOI: 10.3969/j.issn.1674-1951.2021.11.006. Zhang ZH, Wu JC, Xue YQ, et al. 1997. A study on the natural heat convection and the water rock thermal exchange in the aquifer thermal transfer process. Engineering Geology, 5(3): 269−275. Zhao XY, Wan MY, Shi XJ. 2004. Heat pump project which uses ATES System and its impact on the environment. Energy Engineering, 02: 20−24. (in Chinese) DOI: 10.16189/j.cnki.nygc.2004.02.006. Zheng XL, Shan BB, Cui H, et al. 2013. Test and numerical simulation on physical clogging during aquifer artificial recharge. Earth Science, 38(06): 1321−1326. (in Chinese) DOI: 10.3799/dqkx.2013.129. Zhou NQ, Kong LX, Wang XQ. 2022. Analysis and evaluation on the benefit of shallow geothermal energy development in Shanghai under the background of carbon neutral. Shanghai Land & Resources, 43(03): 1−7. (in Chinese) DOI: 10.3969/j.issn.2095-1329.2022.03.001. Zhu HY, Zhang WS, Wang YX. 2005. Research on the construction technology of control ground subsidence recharge well. Drilling Engineering, (S1): 200−205. (in Chinese)