Research progress on temperature field evolution of hot reservoirs under low-temperature tailwater reinjection
-
Abstract: This paper focuses on the study of the evolutionary mechanism governing the temperature field of geothermal reservoir under low-temperature tailwater reinjection conditions, which is crucial for the sustainable geothermal energy management. With advancing exploitation of geothermal resources deepens, precise understanding of this mechanism becomes paramount for devising effective reinjection strategies, optimizing reservoir utilization, and bolstering the economic viability of geothermal energy development. The article presents a comprehensive review of temperature field evolution across diverse heterogeneous thermal reservoirs under low-temperature tailwater reinjection conditions, and analyzes key factors influencing this evolution. It evaluates existing research methods, highlighting their strengths and limitations. The study identifies gaps in the application of rock seepage and heat transfer theories on a large scale, alongside the need for enhanced accuracy in field test results, particularly regarding computational efficiency of fractured thermal reservoir models under multi-well reinjection conditions. To address these shortcomings, the study proposes conducting large-scale rock seepage and heat transfer experiments, coupled with multi-tracer techniques for field testing, aimed at optimizing fractured thermal reservoir models' computational efficiency under multi-well reinjection conditions. Additionally, it suggests integrating deep learning methods into research endeavors. These initiatives are of significance in deepening the understanding of the evolution process of the temperature field in deep thermal reservoirs and enhancing the sustainability of deep geothermal resource development.
-
Figure 1. Temperature field distribution of thermal reservoir in pore sandstone at different time (a) t=0.05a,(b) t=1a, (c) t=10a, (d) t=30a (Wang et al. 2023)
Figure 2. Temperature field distribution of fractured carbonate thermal reservoir at different time (a) t=1a, (b) t=10a, (c) t=15a, (d) t=20a (Wang et al. 2021)
Figure 3. Relationship between different fracture openings and average reservoir temperature (Li et al. 2019)
Figure 4. Average temperature of thermal reservoir on the mining side with different irrigation and irrigation spacing (Wang et al. 2021)
Figure 5. Mining side temperature at different reinjection pressure (Wang et al. 2021)
Figure 6. Mining side temperature at different reinjection temperature (Wang et al. 2021)
Figure 7. Experimental apparatus for seepage and heat transfer (Huang et al. 2021)
Table 1. Formula for convective heat transfer coefficient of rocks
Author Types of thermal storage rocks Convective heat transfer formula Zhao (2014) Granite $ h=\dfrac{-\mathrm{l}\mathrm{n}\dfrac{{T}_{2}-{T}_{c}}{{T}_{1}-{T}_{c}}{\rho }_{w}{c}_{p,w}u\delta \dfrac{{K}_{r}}{2}}{\mathrm{l}\mathrm{n}\dfrac{{T}_{2}-{T}_{c}}{{T}_{1}-{T}_{c}}{\rho }_{w}{c}_{p,w}u\delta \dfrac{d}{4}+{K}_{r}L} $ Zhang (2014) Granite $ h=\dfrac{21.16{c}_{p}\lambda \rho u\delta ({T}_{2}-{T}_{1})}{42.32\lambda L{T}_{0}-2\pi {c}_{p}{r}_{0}\rho u\delta ({T}_{2}-{T}_{1})-21.16\lambda L({T}_{1}+{T}_{2})} $ Bai et al. (2016) Granite $ h=\dfrac{{c}_{p,w}{\rho }_{w}u\delta ({T}_{2}-{T}_{1})}{2L\left({T}_{c}-\dfrac{{c}_{p,w}{\rho }_{w}u\delta ({T}_{2}-{T}_{1})}{42.32{K}_{r}L}-\dfrac{{T}_{1}+{T}_{2}}{2}\right)} $ Li et al. (2017) Granite $ h=\dfrac{{c}_{\rho ,w}m({T}_{2}-{T}_{1})}{S({T}_{s}-{T}_{f})} $ Luo et al. (2019) Granite $ h=\dfrac{{c}_{p,w}{\rho }_{w}{q}_{v}({T}_{2}-{T}_{1})}{dL\left({T}_{c}-\dfrac{{T}_{1}+{T}_{2}}{2}\right)} $ Zhan (2021) Carbonate rock $ h=\dfrac{{c}_{w}{\rho }_{w}{q}_{w}({T}_{w2}-{T}_{w1})}{2LR\left[\dfrac{1}{2}\left({T}_{i1}+{T}_{i2})+{T}_{c}-({T}_{w1}+{T}_{w2}\right)\right]} $ Table 2. Classification of common tracers
Category Common tracers Advantage Shortage Natural tracer Hydrogen and oxygen isotopes, noble gases, 222Rn — — Inert tracers NaCl, KCl, NaBr, KBr, Ki. el. halide Good low temperature stability and easy to detect The background value in storage is high, adsorption, and the reaction occurs at high temperature. Fluorescein, sodium naphthalenesulfonate, rhodamine, saffron Economical and relatively non-toxic, low value in thermal reservoir, easy to detect Sensitive to pH, salinity and high chloride concentration, photochemical and chemical decay, susceptible to sediment adsorption, decomposition at high temperatures and loss of fluorescence properties. Radioactive tracers 3H,35S,82Br,131I High sensitivity, strong anti-interference ability, easy to detect The test requirements are high and easy to pollute the environment. Reaction tracer Esters, amides, carbamates The heat exchange area and temperature drop rate can be determined Data analysis requires experimental correction factors, which increases the workload. Smart tracer Nanoparticles, quantum dots Economical, environmentally friendly, stable, easy to detect, designed as a conservative or reaction tracer as needed — Table 3. Common numerical simulation software and functions
Software name Algorithm Multi-field coupling capability COMSOL Finite elements THMC OPENGEOSYS Finite elements THMC FLUENT Limited volume THM TOUGH-FLAC Finite difference THM FRACMAN Finite elements THM -
Al-Khoury R, Bonnier PG, Brinkgreve RBJ. 2005. Efficient finite element formulation for geothermal heating systems. Part I: Steady state. International Journal for Numerical Methods in Engineering, 63(7): 988−1013. DOI: 10.1002/nme.1313. Al Khoury R, Bonnier P. 2006. Efficient finite element formulation for geothermal heating systems. Part II: Transient. International journal for numerical methods in engineering, 67(5): 725−745. DOI: 10.1002/nme.1662. Alaskar M, Ames M, Liu C, et al. 2015. Temperature nanotracers for fractured reservoirs characterization. Journal of Petroleum Science and Engineering, 127212−228. DOI: 10.1016/j.petrol.2015.01.021. Allen A, Milenic D. 2003. Low-enthalpy geothermal energy resources from groundwater in fluvioglacial gravels of buried valleys. Applied Energy, 74(1): 9−19. DOI: 10.1016/S0306-2619(02)00126-5. Aquilina L, de Dreuzy J-R, Bour O, et al. 2004. Porosity and fluid velocities in the upper continental crust (2 to 4 km) inferred from injection tests at the Soultz-sous-Forêts geothermal site. Geochimica et Cosmochimica Acta, 68(11): 2405−2415. DOI: 10.1016/j.gca.2003.08.023. Bai B, He Y, Li X, et al. 2016. Local heat transfer characteristics of water flowing through a single fracture within a cylindrical granite specimen. Environmental Earth Sciences, 75(22): 1460. DOI: 10.1007/s12665-016-6249-2. Bett G, Yasuhiro F. 2023. Integrated geological assessment and numerical simulation for Olkaria's East and Southeast geothermal fields. Geothermics, 109. DOI: 10.1016/j.geothermics.2023.102652. Botros FE, Hassan AE, Reeves DM, et al. 2008. On mapping fracture networks onto continuum. Water Resources Research, 44(8). DOI: 10.1029/2007wr006092. Bottacin-Busolin A, Dallan E, Marion A. 2021. STIR-RST: A Software tool for reactive smart tracer studies. Environmental Modelling & Software, 135. DOI: 10.1016/j.envsoft.2020.104894. Bullivant D, O'sullivan M. 1989. Matching a field tracer test with some simple models. Water Resources Research, 25(8): 1879−1891. DOI: 10.1029/WR025i008p01879. Cao Q, Fang CH, Li Y, et al. 2021. Development status and enlightenment of geothermal reinjection at home and abroad. Oil Drilling & Production Technology, 43(02): 203−211. (in Chinese) DOI: 10.13639/j.odpt.2021.02.011. Cao V, Schaffer M, Licha T. 2018. The feasibility of using carbamates to track the thermal state in geothermal reservoirs. Geothermics, 72301−306. DOI: 10.1016/j.geothermics.2017.12.006. Cao V, Schaffer M, Taherdangkoo R, et al. 2020. Solute Reactive Tracers for Hydrogeological Applications: A Short Review and Future Prospects. Water, 12(3): 653−674. DOI: 10.3390/w12030653. Chen BG, Song EX, Cheng XH. 2014. Numerical calculation method of discrete fracture network model for seepage heat transfer of two-dimensional fractured rock mass. Chinese Journal of Rock Mechanics and Engineering, 33(01): 43−51. DOI: 10.13722/j.cnki.jrme.2014.01.005. Cheng L, Luo Z, Xie Y, et al. 2023. Numerical simulation and analysis of damage evolution and fracture activation in enhanced tight oil recovery using a THMD coupled model. Computers and Geotechnics, 155. DOI: 10.1016/j.compgeo.2023.105244. Cheng WQ, Liu JL, Chen HB. 2011. Simulation research on reinjection temperature field of geothermal doublet well. World Geology, 30(03): 486−492. (in Chinese) Cui HB, Tang JP, Jiang XT. 2018a. Influence of injection and production parameters on EGS thermal reservoir change law. Journal of Liaoning Technical University(Natural Science), 37(06): 871−881. (in Chinese) DOI: 10.11956/j.issn.1008-0562.2018.06.003. Cui YL, Zhu J, Twaha S, et al. 2018b. A comprehensive review on 2D and 3D models of vertical ground heat exchangers. Renewable and Sustainable Energy Reviews, 9484−114. DOI: 10.1016/j.rser.2018.05.063. Diaz AR, Kaya E, Zarrouk SJ. 2016. Reinjection in geothermal fields − A worldwide review update. Renewable and Sustainable Energy Reviews, 53105−162. DOI: 10.1016/j.rser.2015.07.151. Du L, Tang G, Zhan HY, et al. 2021. Seepage-heat transfer characteristics of carbonate acid erosion fractures. Science Technology and Engineering, 21(33): 14333−14344. (in Chinese) Du L, Zhao L, Qiao Y, et al. 2019. Study on the Influence of Fracture Orientation and Injection Velocity on the Micro Seepage Law of Reinjection Water in Fracture Geothermal Reservoir. Shandong Chemical Industry, 48(20): 139−141+146. (in Chinese) DOI: 10.19319/j.cnki.issn.1008-021x.2019.20.052. Einarsson SS, Vides A, Cuellar G. Disposal of geothermal waste water by reinjection. 2nd United Nations Symposium on the Development of Geothermal Resources, 1975. 1349−1363. Ellis AJ. 1977. Chemical and isotopic techniques in geothermal investigations. Geothermics, 53−12. Doi: 10.1016/0375-6505(77)90003-7. Fan Y, Duan Z, Yang Y, et al. 2023. The influence of thermal storage characteristics on the distance between hot storage and production Wells in sandstone: A case study of Jiyang Depression. Hydrogeology & Engineering Geology, 1−9. (in Chinese) DOI: 10.16030/j.cnki.issn.1000-3665.202301033. Hawkins AJ, Becker MW, Tester JW. 2018. Inert and adsorptive tracer tests for field measurement of flow‐wetted surface area. Water Resources Research, 54(8): 5341−5358. DOI: 10.1029/2017wr021910. He YY, Bai B, Hu SB, et al. 2016. Effects of surface roughness on the heat transfer characteristics of water flow through a single granite fracture. Computers and Geotechnics, 80312−321. DOI: 10.1016/j.compgeo.2016.09.002. Huang Y, Zhang Y, Yu Z, et al. 2019. Experimental investigation of seepage and heat transfer in rough fractures for enhanced geothermal systems. Renewable Energy, 135846−855. DOI: 10.1016/j.renene.2018.12.063. Huang YB, Zhang YJ, Gao XF, et al. 2021. Experimental and numerical investigation of seepage and heat transfer in rough single fracture for thermal reservoir. Geothermics, 95. DOI: 10.1016/j.geothermics.2021.102163. Jackson CP, Hoch AR, Todman S. 2000. Self-consistency of a heterogeneous continuum porous medium representation of a fractured medium. Water Resources Research, 36(1): 189−202. DOI: 10.1029/1999wr900249. Jin W, Atkinson TA, Doughty C, et al. 2022. Machine-learning-assisted high-temperature reservoir thermal energy storage optimization. Renewable Energy, 197384−397. DOI: 10.1016/j.renene.2022.07.118. Kamila Z, Kaya E, Zarrouk SJ. 2021. Reinjection in geothermal fields: An updated worldwide review 2020. Geothermics, 891−88. DOI: 10.1016/j.geothermics.2020.101970. Kuo CH, Song SR, Rose P, et al. 2018. Reactive tracer experiments in a low temperature geothermal field, Yilan, Taiwan. Geothermics, 74298−304. DOI: 10.1016/j.geothermics.2017.11.017. Li TX, Cai YF, Liu YG, et al. 2020. Tracer test and simulation of thermal energy storage in carbonate rocks of the Xian County geothermal field. Earth Science Frontiers, 27(01): 152−158. (in Chinese) DOI: 10.13745/j.esf.2020.1.16. Li XX, Li DQ, Xu Y. 2019. Equivalent simulation method of three-dimensional seepage and heat transfer coupling in fractured rock mass of geothermal-borehole system. Engineering Mechanics, 36(7): 238−247. (in Chinese) Li ZW, Feng XT, Zhang YJ, et al. 2017. Experimental research on the convection heat transfer characteristics of distilled water in manmade smooth and rough rock fractures. Energy, 133: 206−218. DOI: 10.1016/j.energy. Liao ZJ, Cirpka OA. 2011. Shape-free inference of hyporheic traveltime distributions from synthetic conservative and “smart” tracer tests in streams. Water Resources Research, 47(7): W07510. DOI: 10.1029/2010wr009927. Liu GH. 2019. Numerical method for the coupled THM processes in deep geothermal reservoirs at city scale and application. Ph. D. thesis. Xuzhou: China University of Mining and Technology: 4−14. (in Chinese) Liu GH, Pu H, Zhao ZH, et al. 2019a. Coupled thermo-hydro-mechanical modeling on well pairs in heterogeneous porous geothermal reservoirs. Energy, 171631−653. DOI: 10.1016/j.energy.2019.01.022. Liu HC, He H, Du L. 2020a. Study on the Influencing factors of the seepage law of reinjection water in carbonate fractured geothermal reservoir. Science Technology and Engineering, 20(35): 14505−14511. (in Chinese) Liu HJ, Wang HW, Lei HW, et al. 2020b. Numerical modeling of thermal breakthrough induced by geothermal production in fractured granite. Journal of Rock Mechanics and Geotechnical Engineering, 12(4): 900−916. DOI: 10.1016/j.jrmge.2020.01.002. Liu JR. 2003. The status of geothermal reinjection. Hydrogeology & Engineering Geology, (03): 100−104. (in Chinese) Liu QS, Liu XW. 2014. Research on critical problem for fracture network propagation and evolution with multifield coupling of fractured rock mass. Rock and Soil Mechanics, 35(02): 305−320. (in Chinese) DOI: 10.16285/j.rsm.2014.02.003. Liu YG, Liu GH, Zhao ZH, et al. 2019b. Theoretical model of geothermal tail water reinjection based on an equivalent flow channel model: A case study in Xianxian, North China Plain. Energy Exploration & Exploitation, 37(2): 849−864. DOI:10.1177/01445987188224 01. Liu YG, Long XT, Liu F. 2022. Tracer test and design optimization of doublet system of carbonate geothermal reservoirs. Geothermics, 105. DOI: 10.1016/j.geothermics.2022.102533. Liu Z, Liu Y, Li T, et al. 2023. Seepage and heat transfer of dominant flow in fractured geothermal reservoirs: A review and outlook. Water, 15(16). DOI: 10.3390/w15162953. Luo S. 2018. Numerical analysis of coupled fluid flow and heat transfer at multiple scales in deep geothermal systems. Ph. D. thesis. Beijing: Tsinghua University: 6−17. (in Chinese) Luo YF, Xu WL, Lei Y, et al. 2019. Experimental study of heat transfer by water flowing through smooth and rough rock fractures. Energy Reports, 51025−1029. DOI:10.1016/ j.egyr.2019.07.018. Ma YQ, Gan Q, Zhang YJ, et al. 2023. Experimental research on the heat transfer characteristics of fluid flowing through rock with intersecting fractures. Geothermics, 107: 102587. DOI: 10.1016/j.geothermics.2022.102587. Ma YQ, Zhang YJ, Hu ZJ, et al. 2019a. Experimental study of the heat transfer by water in rough fractures and the effect of fracture surface roughness on the heat transfer characteristics. Geothermics, 81235−242. DOI: 10.1016/j.geothermics.2019.05.009. Ma YQ, Zhang YJ, Huang YB, et al. 2019b. Experimental study on flow and heat transfer characteristics of water flowing through a rock fracture induced by hydraulic fracturing for an enhanced geothermal system. Applied Thermal Engineering, 154433−441. DOI: 10.1016/j.applthermaleng.2019.03.114. Mazor E, Truesdell AH. 1984. Dynamics of a geothermal field traced by noble gases: Cerro Prieto, Mexico. Geothermics, 13(1/2): 91−102. DOI: 10.1016/0375-6505(84)90009-9. Neuman SP, Depner JS. 1988. Use of variable-scale pressure test data to estimate the log hydraulic conductivity covariance and dispersivity of fractured granites near Oracle, Arizona. Journal of Hydrology, 102475−501. DOI: 10.1016/0022-1694(88)90112-6. O'Sullivan MJ, Pruess K, Lippmann MJ. 2001. State of the art of geothermal reservoirs simulation. Geothermics, 30(4): 395−429. DOI: 10.1016/S0375-6505(01)00005-0. Pandey SN, Vishal V, Chaudhuri A. 2018. Geothermal reservoir modeling in a coupled thermo-hydro-mechanical-chemical approach: A review. Earth-Science Reviews, 1851157-1169. DOI: 10.1016/j.earscirev.2018.09.004. Pollack A, Cladouhos TT, Swyer MW, et al. 2021. Stochastic inversion of gravity, magnetic, tracer, lithology, and fault data for geologically realistic structural models: Patua Geothermal Field case study. Geothermics, 95. DOI: 10.1016/j.geothermics.2021.102129. Qiao Y, Li S, Yan K, et al. 2023. Karst thermal reservoir tracer test and seepage characteristics analysis in Niutuozhen geothermal field in Xiong'an New Area. Frontiers in Earth Science, 11. DOI: 10.3389/feart.2023.1132095. Qu ZQ, Zhang W, Guo TK, et al. 2017. Research on the effect of geothermal reservoir parameters and bedding fractures on geothermaldeliverability based on COMSOL. Progress in Geophysics, 32(06): 2374−2382. (in Chinese) Radilla G, Sausse J, Sanjuan B, et al. 2012. Interpreting tracer tests in the enhanced geothermal system (EGS) of Soultz-sous-Forêts using the equivalent stratified medium approach. Geothermics, 4443−51. DOI: 10.1016/j.geothermics.2012.07.001. Reimus P, Caporuscio F, Marina O, et al. 2020. Field demonstration of the combined use of thermally-degrading and cation-exchanging tracers to predict thermal drawdown in a geothermal reservoir. Geothermics, 83. DOI: 10.1016/j.geothermics.2019.101712. Ren YQ, Kong YL, Pang ZH, et al. 2023. A comprehensive review of tracer tests in enhanced geothermal systems. Renewable and Sustainable Energy Reviews, 182. DOI: 10.1016/j.rser.2023.113393. Shi HL, Wang GL and Lu C. 2023. Numerical investigation on delaying thermal breakthrough by regulating reinjection fluid path in multi-aquifer geothermal system. Applied Thermal Engineering, 221. DOI: 10.1016/j.applthermaleng.2022.119692. Stefansson V-đ. 1997. Geothermal reinjection experience. Geothermics, 26(1). DOI: 10.1016/S0375-6505(96)00035-1. Sullera MM, Horne RN. 2001. Inferring injection returns from chloride monitoring data. Geothermics, 30591-616. DOI: 10.1016/S0375-6505(01)00016-5. Sun JX, Yue GF, Zhang W. 2023. Simulation of thermal breakthrough factors affecting carbonate geothermal-to-well systems. Journal of Groundwater Science and Engineering, 11(4): 379−390. DOI: 10.26599/jgse.2023.9280030. Sun ZX, Xu Y, Lv SH, et al. 2016. A thermo-hydro-mechanical coupling model for numerical simulation of enhanced geothermal systems. Journal of China University of Petroleum(Edition of Natural Science), 40(06): 109−117. (in Chinese) DOI:10.3969/ j.issn.1673-5005.2016.06.014. Tang JP, Qiu YM. 2023. Analysis of the influence of the distance between producing Wells on the enhancedgeothermal system. Chinese Journal of Computational Mechanics, 40(01): 126−132. (in Chinese) Wang GL, Liu YG, Zhu X, et al. 2020a. The status and development trend of geothermal resources in China. Earth Science Frontiers, 27(01): 1−9. (in Chinese) DOI: 10.13745/j.esf.2020.1.1. Wang GL, Lu C. 2023. Stimulation technology development of hot dry rock and Enhanced geothermal system driven by carbon neutrality target. Geology and Resources, 32(01): 85−95+126. (in Chinese) DOI: 10.13686/j.cnki.dzyzy.2023.01.011. Wang GS, Song XZ, Shi Y, et al. 2020b. Comparison of production characteristics of various coaxial closed-loop geothermal systems. Energy Conversion and Management, 225. DOI: 10.1016/j.enconman.2020.113437. Wang K, Liu Z, Zeng T, et al. 2022a. Performance of enhanced geothermal system with varying injection-production parameters and reservoir properties. Applied Thermal Engineering, 207. DOI: 10.1016/j.applthermaleng.2022.118160. Wang K, Zhou J, Ma Y, et al. 2023. Constitutive and numerical modeling for the coupled thermal-hydro-mechanical processes in dual-porosity geothermal reservoir. Applied Thermal Engineering, 223. DOI: 10.1016/j.applthermaleng.2023.120027. Wang LJ, Yuan AD, Wang HT, et al. 2022b. EGS heat-flow coupled heat transfer characteristics of single fracture thermal storage combined with wellbore. Journal of Anhui Polytechnic University, 37(05): 66−72+79. (in Chinese) Wang SF, Liu JR, Lin P. 2013. A study of reinjection experiment and tracer test in a karst geothermal reservoir. Hydrogeology & Engineering Geology, 40(06): 129−133. (in Chinese) DOI: 10.16030/j.cnki.issn.1000-3665.2013.06.025. Wang Y, Liu Y, Bian K, et al. 2021. Influence of low temperature tail water reinjection on seepage and heat transfer of carbonate reservoirs. Energy Exploration & Exploitation, 39(6): 2062−2079. DOI:10.1177/014459 87211020416. Wang Y, Su BY, Ying XZ. 1995. Three-dimensional fractured rock seepage coupling model and its finite element simulation. Hydrogeology & Engineering Geology, (03): 1−5. (in Chinese) DOI: 10.16030/j.cnki.issn.1000-3665.1995.03.001. Wang'ombe B, Okiambe E, Omenda P, et al. 2014. A numerical solution to estimate hydro-geologic parameters of a fractured geothermal porous medium based on fluorescein thermal decay correction. Geothermics, 51124−129. DOI: 10.1016/j.geothermics.2013.11.003. Wolfsberg A. 1997. Rock fractures and fluid flow contemporary understanding and applications. Earth & Space Science News, 78(49): 569, 573. DOI: 10.1029/97EO00345. Xiao P, Dou B, Tian H, et al. 2021. Numerical simulation of seepage and heat transfer in single fractured rock mass of geotherma reservoirs. Drilling Engineering, 48(02): 16−28. (in Chinese) Yao J, Zhang X, Huang Z, et al. 2022. Numerical simulation of thermo–hydraulic coupling processes in fractured karst geothermal reservoirs. Natural Gas Industry B, 9(6): 511−520. DOI: 10.1016/j.ngib.2022.11.003. Yu C, Zhang Y, Tan Y, et al. 2023. Simulation study of novel methods for water reinjection efficiency improvement of a doublet system in guantao sandstone geothermal reservoir. Geothermics, 111. DOI: 10.1016/j.geothermics.2023.102709. Zayed ME, Shboul B, Yin H, et al. 2023. Recent advances in geothermal energy reservoirs modeling: Challenges and potential of thermo-fluid integrated models for reservoir heat extraction and geothermal energy piles design. Journal of Energy Storage, 62. DOI: 10.1016/j.est.2023.106835. Zeng MX, Ruan CX, Zhao YB, et al. 2008. Connect test between karst cranny reservoir pumping well and injection well. Geology and Exploration, (02): 105−109. (in Chinese) Zhan HY. 2021. Research on carbonate rock fracture seepage and heat transfer coupling mechanism and thermal storage production and irrigation. M. S. thesis. Shenyang: Shenyang Ligong University: 3-8. (in Chinese) Zhang C. 2017. Experiment and numerical study of seepage heat transfer in a single fracture of hot dry rock. M. S. thesis. Changchun: Jilin University: 63−74. (in Chinese) Zhang GW. 2014. The theoretical and experimental study of fluid-solid heat transfer for the fracture medium. M. S. thesis. Tianjin: Tianjin University: 10−20. (in Chinese) Zhang P, Zhang Y, Huang Y. 2021. Experimental study of convective heat transfer characteristics of fractures with different morphologies based on fractal theory. Case Studies in Thermal Engineering, 28: 101499. DOI: 10.1016/j.csite.2021.101499. Zhao J, Brown ET. 1992. Hydro-thermo-mechanical properties of joints in the carnmenellis granite. GeoScienceWorld, 25(4): 279−290. DOI: 10.1144/GSL.QJEG.1992.025.04.03. Zhao J, Tso CP. 1993. Heat transfer by water flow in rock fractures and the application to hot dry rock geothermal systems. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(6): 633−641. DOI: 10.1016/0148-9062(93)91223-6. Zhao ZH. 2014. On the heat transfer coefficient between rock fracture walls and flowing fluid. Computers and Geotechnics, 59105−111. DOI: 10.1016/j.compgeo.2014.03.002. Zhao ZH, Liu GH, Wang JC, et al. 2022. A robust numerical modeling framework for coupled thermo-hydro-mechanical process in deep geoenergy engineering. Engineering Mechanics, 37(06): 1−14. (in Chinese) DOI: 10.13225/j.cnki.jccs.2022.1027. Zheng J, Li P, Dou B, et al. 2022. Impact research of well layout schemes and fracture parameters on heat production performance of enhanced geothermal system considering water cooling effect. Energy, 255. DOI: 10.1016/j.energy.2022.124496. Zhou LM, Zhu ZD, Xie XH, et al. 2022. Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance. Renewable Energy, 1811440−1458. DOI: 10.1016/j.renene.2021.10.014.