Application of hydrochemistry and strontium isotope for understanding the hydrochemical characteristics and genesis of strontium-rich groundwater in karst area, Gongcheng County, Southwest China
-
Abstract: Understanding the hydrochemical characteristics and genesis mechanisms of strontium-rich groundwater is pivotal for supporting the exploitation and utilization of natural strontium-rich groundwater. In this research, 27 groundwater samples were collected. By analyzing major ion chemistry and strontium isotope data, and considering the hydrogeological context, various analytical approaches, including multivariate statistics, ion ratios, and isotopes, were used to reveal the characteristics and genesis mechanisms of strontium-rich groundwater in the study area. The findings indicate that the predominant hydrochemical type of groundwater is HCO3-Ca, with Ca2+ and HCO3− as the primary cations and anions. The hydrochemistry of the strontium-rich groundwater is predominantly influenced by rock weathering processes. A combination of factors, including ion exchange, and anthropogenic activities, shapes the compositional characteristics of the groundwater in the region. The dissolution of calcite due to weathering emerges as the principal source of strontium in the groundwater. While ion exchange processes are not conducive to strontium enrichment in groundwater, their effect is relatively limited. The impact of human activities on the groundwater is minor.
-
Key words:
- Hydrochemistry analysis /
- Strontium /
- 87Sr/86Sr /
- Groundwater /
- Karst
-
Table 1. Statistical table of sampling groundwater from different aquifer.
Groundwater type Sampling site code Sampling site Depth of water
table/mAquifer group pH Ec
μs/cmT /°C Pore groundwater S1158 well 2.5 Qhg 7.0 596 20.0 S1079 well 0.3 Qhg 6.5 218 20.4 S1011 well 6 Qhg 7.2 564 21.5 S2092 spring null Opw 7.3 444 21.4 Fissure groundwater S1111 motor-pumped well 0.9 C1lz 7.1 354 25.5 S1252 well 0.6 C1lz 6.7 383 20.4 S1216 spring null C1lz 7.1 365 21.2 S1094 spring null C1lz 6.8 210 21.4 S1062 spring null C1lz 7.2 267 19.6 Karst groundwater S1161 motor-pumped well 7.6 D3r 6.6 96 21.8 S1034 well 2 C1b 6.8 408 22.8 S2003 well 1.8 C1h 7.3 474 23.0 S2004 spring null C1h 7.1 439 19.4 S2074 spring null C1h 7.2 252 23.5 Table 2. Descriptive statistics of the main chemical components of groundwater.
Parameters TDS K+ Na+ Ca2+ Mg2+ HCO3− Cl− SO42− NO3− mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L Pore Groundwater (n=4) Max. 256.80 8.46 16.79 116.20 9.47 368.34 24.74 53.86 25.84 Min. 51.60 0.36 1.66 38.34 1.70 116.54 2.50 4.56 0.05 Mean 151.62 3.47 5.91 83.37 4.18 246.08 10.03 18.60 8.04 MD 149.04 2.52 2.60 89.48 2.78 249.72 6.44 8.00 3.13 Fissure groundwater (n=5) Max. 225.7 6.22 3.42 78.03 4.16 214.34 8.71 29.35 33.88 Min. 34.9 0.18 0.6 44.21 1.38 108.21 0.76 2.72 0.05 Mean 103.48 1.81 1.50 57.74 3.15 168.14 3.75 12.93 9.54 MD 103.48 0.4 1.12 51.28 3.39 164.4 2.18 8.91 2.42 Karst groundwater (n=5) Max. 318.70 7.70 7.39 88.30 7.37 283.02 10.78 24.81 23.29 Min. 215.30 0.19 0.42 13.76 0.74 24.97 1.16 5.98 0.05 Mean 259.56 3.57 3.25 59.53 4.30 181.88 4.39 13.49 11.75 MD 252.40 1.67 1.37 65.24 5.50 216.42 2.58 9.02 16.99 Note: Max.: maximum, Min.: minimum, MD: Median, TDS: Total dissolve solids. Table 3. Correlation coefficients between hydrochemical parameters of groundwaters (n=14)
Sr K+ Na+ Ca2+ Mg2+ HCO3- Cl- SO42- NO3- Sr 1 K+ −.392 1 Na+ −.118 .831** 1 Ca2+ .537* .074 .284 1 Mg2+ −.051 .732** .796** .469 1 HCO3- .484 .033 .216 .982** .465 1 Cl- .163 .662** .928** .338 .661* .224 1 SO42- .194 .672** .866** .354 .760** .256 .925** 1 NO3- −.375 .383 .057 −.212 −.058 −.295 −.001 −.096 1 Note: * * Indigenous at 0.01 level (bilateral), * Indigenous at 0.05 level (bilateral). Table 4. Sr concentrations and 87Sr/86Sr ratios of different groundwater types
Groundwater type Sr (mg/L) 87Sr/86Sr (2σ) Range Average Range Average Pore groundwater 0.28–0.36 0.31 0.708190–0.712393 0.710000 Fissure groundwater 0.12–0.64 0.33 0.708339–0.709489 0.708446 Karst groundwater 0.04–0.34 0.16 0.708289–0.710818 0.709831 -
Acharya SS, Hishamunda V, Chakrabarti R. 2022. Natural sources and anthropogenic influences on the river water and groundwater chemistry of the lower Mahanadi Basin: Insights from radiogenic Sr isotopes and major ion chemistry. Frontiers in Water, 4: 846438. DOI: 10.3389/frwa.2022.846438. Apollaro C, Buccianti A, Vespasiano G, et al. 2019. Comparative geochemical study between the tap waters and the bottled mineral waters in Calabria (Southern Italy) by compositional data analysis (CoDA) developments. Applied Geochemistry, 107: 19−33. DOI: 10.1016/j.apgeochem.2019.05.011. Apollaro C, Marini L, De Rosa R, et al. 2007. Geochemical features of rocks, stream sediments, and soils of the Fiume Grande Valley (Calabria, Italy). Environmental Geology, 52(4): 719−729. DOI: 10.1007/s00254-006-0508-6. Barbieri M, Boschetti T, Petitta M, et al. 2005. Stable isotope (2H, 18O and 87Sr/86Sr) and hydrochemistry monitoring for groundwater hydrodynamics analysis in a Karst aquifer (Gran Sasso, Central Italy). Applied Geochemistry, 20(11): 2063−2081. DOI: 10.1016/j.apgeochem.2005.07.008. Baublys KA, Hamilton SK, Hofmann H, et al. 2019. A strontium (87Sr/86Sr) isotopic study on the chemical evolution and migration of groundwaters in a low-rank coal seam gas reservoir (Surat Basin, Australia). Applied Geochemistry, 101: 1−18. DOI: 10.1016/j.apgeochem.2018.12.020. Böhlke JK, Horan M. 2000. Strontium isotope geochemistry of groundwaters and streams affected by agriculture, Locust Grove, MD. Applied Geochemistry, 15(5): 599−609. DOI: 10.1016/s0883-2927(99)00075-x. Cartwright I, Weaver T, Petrides B. 2007. Controls on 87Sr/86Sr ratios of groundwater in silicate-dominated aquifers: SE Murray Basin, Australia. Chemical Geology, 246(1−2): 107−123. DOI: 10.1016/j.chemgeo.2007.09.006. Cary L, Benabderraziq H, Elkhattabi J, et al. 2014. Tracking selenium in the Chalk aquifer of northern France: Sr isotope constraints. Applied Geochemistry, 48: 70−82. DOI: 10.1016/j.apgeochem.2014.07.014. Che QH, Su XS, Wang SX, et al. 2021. Hydrochemical characteristics and evolution of groundwater in the alluvial plain (anqing section) of the Lower Yangtze River Basin: Multivariate statistical and inversion model analyses. Water, 13(17): 2403. DOI:10.3390/ w13172403. Chen H, Wang JD, Zhang F, et al. 2022. Hydrochemical characteristics and formation mechanisms of groundwater in West Zoucheng City, Shandong Province, China. Environmental Monitoring and Assessment, 194(8): 573. DOI: 10.1007/s10661-022-10136-2. Christian LN, Banner JL, Mack LE. 2011. Sr isotopes as tracers of anthropogenic influences on stream water in the Austin, Texas, area. Chemical Geology, 282(3−4): 84−97. DOI: 10.1016/j.chemgeo.2011.01.011. Esmaeili-Vardanjani M, Rasa I, Yazdi M, et al. 2016. The hydrochemical assessment of groundwater resources in the Kadkan Basin, Northeast of Iran. Carbonates and Evaporites, 31(2): 129−138. DOI: 10.1007/s13146-015-0248-3. Gaillardet J, Dupré B, Louvat P, et al. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1−4): 3−30. DOI: 10.1016/s0009-2541(99)00031-5. Gamboa C, Godfrey L, Herrera C, et al. 2019. The origin of solutes in groundwater in a hyper-arid environment: A chemical and multi-isotope approach in the Atacama Desert, Chile. Science of the Total Environment, 690: 329−351. DOI: 10.1016/j.scitotenv.2019.06.356. Gibbs RJ. 1970. Mechanisms controlling world water chemistry. Science, 170(3962): 1088−1090. DOI: 10.1126/science.170.3962.1088. Han GL, Eisenhauer A. 2021. Stable and radiogenic strontium isotope cycling in a representative Karst forest ecosystem, Southwest China. Environmental Earth Sciences, 80(22): 741. DOI: 10.1007/s12665-021-10075-0. He XD, Li PY, Shi H, et al. 2022. Identifying strontium sources of flowback fluid and groundwater pollution using 87Sr/86Sr and geochemical model in Sulige gasfield, China. Chemosphere, 306: 135594. DOI: 10.1016/j.chemosphere.2022.135594. Huang TM, Ma BQ. 2019. The origin of major ions of groundwater in a loess aquifer. Water, 11(12): 2464. DOI: 10.3390/w11122464. Jiang YJ. 2011. Strontium isotope geochemistry of groundwater affected by human activities in Nandong underground river system, China. Applied Geochemistry, 26(3): 371−379. DOI: 10.1016/j.apgeochem.2010.12.010. Jiang YJ, Wu YX, Yuan DX. 2009. Human impacts on Karst groundwater contamination deduced by coupled nitrogen with strontium isotopes in the Nandong Underground River System in Yunan, China. Environmental Science & Technology, 43(20): 7676−7683. DOI: 10.1021/es901502t. Kolodziejska B, Stepień N, Kolmas J. 2021. The influence of strontium on bone tissue metabolism and its application in osteoporosis treatment. International Journal of Molecular Sciences, 22(12): 6564. DOI: 10.3390/ijms22126564. Lebid H, Errih M, Boudjemline D. 2016. Contribution of strontium to the study of groundwater salinity. Case of the alluvial plain of Sidi Bel Abbes (Northwestern Algeria). Environmental Earth Sciences, 75(11): 947. DOI: 10.1007/s12665-016-5704-4. Li XD, Liu CQ, Harue M, et al. 2010. The use of environmental isotopic (C, Sr, S) and hydrochemical tracers to characterize anthropogenic effects on Karst groundwater quality: A case study of the Shuicheng Basin, SW China. Applied Geochemistry, 25(12): 1924−1936. DOI: 10.1016/j.apgeochem.2010.10.008. Li ZB, Huang TM, Ma BQ, et al. 2020. Baseline groundwater quality before shale gas development in Xishui, southwest China: Analyses of hydrochemistry and multiple environmental isotopes (2H, 18O, 13C, 87Sr/86Sr, 11B, and noble gas isotopes). Water, 12(6): 1741. DOI: 10.3390/w12061741. Liang CC, Wang W, Ke XM, et al. 2022. Hydrochemical characteristics and formation mechanism of strontium-rich groundwater in Tianjiazhai, Fugu, China. Water, 14(12): 1874. DOI: 10.3390/w14121874. Liu D, Tian CJ, Chen XQ, et al. 2023. Insights into Karst groundwater hydrogeochemical characteristics and spatial evolution in the Jinan Karst aquifer system, Northern China. Water Supply, 23(12): 5004−5016. DOI: 10.2166/ws.2023.309. Liu MJ, Xiao CL, Liang XJ, et al. 2022. Response of groundwater chemical characteristics to land use types and health risk assessment of nitrate in semi-arid areas: A case study of Shuangliao City, Northeast China. Ecotoxicology and Environmental Safety, 236: 113473. DOI: 10.1016/j.ecoenv.2022.113473. Lu SS, Zhou NQ, Jiang SM, et al. 2023. Combining hydrochemistry and environmental isotopes to study hydrogeochemical evolution of Karst groundwater in the Jinci spring area, North China. Carbonates and Evaporites, 38(2): 36. DOI: 10.1007/s13146-023-00859-9. Marie PJ, Ammann P, Boivin G, et al. 2001. Mechanisms of action and TherapeuticPotential of strontium in bone. Calcified Tissue International, 69(3): 121−129. DOI:10.1007/ s002230010055. Musgrove M. 2021. The occurrence and distribution of strontium in U. S. groundwater. Applied Geochemistry, 126: 104867. DOI: 10.1016/j.apgeochem.2020.104867. Négrel P, Petelet-Giraud E. 2005. Strontium isotopes as tracers of groundwater-induced floods: The Somme case study (France). Journal of Hydrology, 305(1−4): 99−119. DOI: 10.1016/j.jhydrol.2004.08.031. Petelet-Giraud E, Négrel P, Casanova J. 2003. Variability of 87Sr in water draining granite revealed after a double correction for atmospheric and anthropogenic inputs. Hydrological Sciences Journal, 48(5): 729−742. DOI: 10.1623/hysj.48.5.729.51448. Petelet-Giraud E, Négrel P, Gourcy L, et al. 2007. Geochemical and isotopic constraints on groundwater-surface water interactions in a highly anthropized site. The Wolfen/Bitterfeld megasite (Mulde subcatchment, Germany). Environmental Pollution, 148(3): 707−717. DOI: 10.1016/j.envpol.2007.01.030. Pu JB, Yuan DX, Zhang C, et al. 2012. Tracing the sources of strontium in Karst groundwater in Chongqing, China: A combined hydrogeochemical approach and strontium isotope. Environmental Earth Sciences, 67(8): 2371−2381. DOI: 10.1007/s12665-012-1683-2. Qin DJ, Zhao ZF, Guo Y, et al. 2017. Using hydrochemical, stable isotope, and river water recharge data to identify groundwater flow paths in a deeply buried Karst system. Hydrological Processes, 31(24): 4297−4314. DOI: 10.1002/hyp.11356. Raiber M, Webb JA, Bennetts DA. 2009. Strontium isotopes as tracers to delineate aquifer interactions and the influence of rainfall in the basalt Plains of southeastern Australia. Journal of Hydrology, 367(3−4): 188−199. DOI: 10.1016/j.jhydrol.2008.12.020. Resz MA, Roman C, Senila M, et al. 2023. A comprehensive approach to the chemistry, pollution impact and risk assessment of drinking water sources in a former industrialized area of Romania. Water, 15(6): 1180. DOI: 10.3390/w15061180. Santoni S, Huneau F, Garel E, et al. 2016. Strontium isotopes as tracers of water-rocks interactions, mixing processes and residence time indicator of groundwater within the granite-carbonate coastal aquifer of Bonifacio (Corsica, France). Science of the Total Environment, 573: 233−246. DOI: 10.1016/j.scitotenv.2016.08.087. Schoeller H. 1967. Qualitative evaluation of groundwater resources. In methods and techniques of groundwater investigation and development. UNESCO, Paris: France. Shoedarto RM, Tada Y, Kashiwaya K, et al. 2021. Investigation of meteoric water and parent fluid mixing in a two-phase geothermal reservoir system using strontium isotope analysis: A case study from Southern Bandung, West Java, Indonesia. Geothermics, 94: 102096. DOI: 10.1016/j.geothermics.2021.102096. Sun XB, Guo CL, Zhang J , et al. 2023. Spatial-temporal difference between nitrate in groundwater and nitrogen in soil based on geostatistical analysis. Journal of Groundwater Science and Engineering, 11(1): 37−46. DOI: 10.26599/JGSE.2023.9280004. Su C, Zhang XQ, Sun YW, et al. 2023. Hydrochemical characteristics and evolution processes of Karst groundwater in Pingyin Karst groundwater system, North China. Environmental Earth Sciences, 82(2): 67. DOI: 10.1007/s12665-022-10717-x. Ullah Z, Zeng XC, Rashid A, et al. 2023. Integrated approach to hydrogeochemical appraisal of groundwater quality concerning arsenic contamination and its suitability analysis for drinking purposes using water quality index. Scientific Reports, 13: 20455. DOI: 10.1038/s41598-023-40105-9. Wang H, Jiang XW, Wan L, et al. 2015. Hydrogeochemical characterization of groundwater flow systems in the discharge area of a river basin. Journal of Hydrology, 527: 433−441. DOI: 10.1016/j.jhydrol.2015.04.063. Wang YX, Shen ZL, Moisevich SG. 2001. Strontium hydrogeochemistry of thermal groundwaters from Baikal and Xinzhou. Science in China Series E: Technological Sciences, 44(1): 138−143. DOI: 10.1007/BF02916805. Wu WH, Zheng HB, Cao JH, et al. 2014. Sr isotopic characteristics in two small watersheds draining silicate and carbonate rocks: Implication for studies on seawater Sr isotopic evolution. Hydrology and Earth System Sciences, 18(2): 559−573. DOI: 10.5194/hess-18-559-2014. Xiao J, Jin ZD, Wang J. 2014. Assessment of the hydrogeochemistry and groundwater quality of the Tarim River Basin in an extreme arid region, NW China. Environmental Management, 53(1): 135−146. DOI: 10.1007/s00267-013-0198-2. Xie XJ, Wang YX, Ellis A, et al. 2013. Delineation of groundwater flow paths using hydrochemical and strontium isotope composition: A case study in high arsenic aquifer systems of the Datong Basin, Northern China. Journal of Hydrology, 476: 87−96. DOI: 10.1016/j.jhydrol.2012.10.016. Yang N, Su CL, Liu WB, et al. 2022. Occurrences and mechanisms of strontium-rich groundwater in Xinglong County, Northern China: Insight from hydrogeological and hydrogeochemical evidence. Hydrogeology Journal, 30(7): 2043−2057. DOI: 10.1007/s10040-022-02533-1. Yuan JF, Xu F, Deng GS, et al. 2017. Hydrogeochemistry of shallow groundwater in a Karst aquifer system of Bijie city, Guizhou Province. Water, 9(8): 625. DOI: 10.3390/w9080625. Zhang B, Zhao D, Zhou PP, et al. 2020. Hydrochemical characteristics of groundwater and dominant water–rock interactions in the Delingha area, Qaidam Basin, Northwest China. Water, 12(3): 836. DOI: 10.3390/w12030836. Zhang T, Wang P, He J, et al. 2023. Hydrochemical characteristics, water quality, and evolution of groundwater in Northeast China. Water, 15(14): 2669. DOI: 10.3390/w15142669. Zhang Y, Yu S, He SY, et al. 2021. New estimate of chemical weathering rate in Xijiang River Basin based on multi-model. Scientific Reports, 11: 5728. DOI: 10.1038/s41598-021-84602-1. Zieliński M, Dopieralska J, Królikowska-Ciaglo S, et al. 2021. Mapping of spatial variations in Sr isotope signatures (87Sr/86Sr) in Poland—Implications of anthropogenic Sr contamination for archaeological provenance and migration research. Science of the Total Environment, 775: 145792. DOI: 10.1016/j.scitotenv.2021.145792.