• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Assessment of water quality suitability for agriculture in a potentially leachate-contaminated region

Aida H Baghanam Vahid Nourani Zohre Khodaverdi Amirreza T Vakili

Baghanam AH, Nourani V, Khodaverdi Z, et al. 2024. Assessment of water quality suitability for agriculture in a potentially leachate-contaminated region. Journal of Groundwater Science and Engineering, 12(3): 281-292 doi:  10.26599/JGSE.2024.9280021
Citation: Baghanam AH, Nourani V, Khodaverdi Z, et al. 2024. Assessment of water quality suitability for agriculture in a potentially leachate-contaminated region. Journal of Groundwater Science and Engineering, 12(3): 281-292 doi:  10.26599/JGSE.2024.9280021

doi: 10.26599/JGSE.2024.9280021

Assessment of water quality suitability for agriculture in a potentially leachate-contaminated region

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Weight percentage of materials in Zanjan landfill

    Figure  2.  The site of study area

    Figure  3.  Dump site leachate sampling points

    Figure  4.  Summary chart of SSP index (dry and wet seasons)

    Figure  5.  Graph of PI index status in two sampling periods

    Figure  6.  Summary of groundwater analysis for agricultural use

    Table  1.   Location of sampling in the vicinity of Zanjan dump site

    Site Depth /m Distance from dump site /Km Groundwater direction Land use
    1 130 3.4 Upstream Agriculture
    2 110 3.8 Upstream Livestock
    3 120 3.6 Upstream Aviculture
    4 80 3.5 Upstream Aviculture
    5 135 1.5 Downstream Agriculture
    6 8 2.9 Downstream Residential
    7 120 3.7 Downstream Industrial
    8 157 4.15 Downstream Agriculture
    9 140 4.3 Downstream Agriculture
    10 120 4.5 Downstream Livestock
    11 145 4.8 Downstream Agriculture
    12 85 5.2 Downstream Aviculture
    13 89 5.4 Downstream Industrial
    下载: 导出CSV

    Table  2.   Limits set for agricultural indicators

    Category/Index SAR SSP KR PI
    Great <10 <20 _ >75
    Good 18–10 20–40 _ 25–75
    Medium 18–26 40–60 _ _
    Suspect _ 60–80 _ _
    Inappropriate >26 >80 _ <25
    Usable _ _ <1 _
    Unusable _ _ >1 _
    Note: In all the proposed indicators, values are entered in milliequivalents per liter
    下载: 导出CSV

    Table  3.   Summary of physicochemical parameters

    Parameter Groundwater Parameter Leachate
    Dry seasons Wet seasons Dry seasons Wet seasons
    Average Max Min Average Max Min Fresh waste Old waste Fresh waste Old waste
    pH 6.5 7.2 6.1 6.5 6.8 5.9 PH 5.7 8.2 5.1 7.9
    TDS (ppm) 755.6 2150 376.0 615.6 1210 350 EC (µs) 34,900 34,100 26,700 26,000
    Cl (mg/L) 142.2 396.9 39.1 123.7 326.6 63.9 TDS (ppm) 17,400 17,100 13,400 13,100
    COD (mg/L) 55.2 155.5 3.6 32.0 86.3 4.4 NO3 (mg/L) 200 50 160 40
    NH3 (mg/L) 0.11 0.31 0.04 0.08 0.11 0.05 Cl (mg/L) 200 150 6,248 200
    HCO3 (mg/L) 175.9 237.0 128.8 200.8 233.9 123.9 COD (mg/L) 55,750 9,079 42,522 5,500
    Ca (mg/L) 229.5 410.0 128 103.7 234 40.6 PO4 (mg/L) 234 61 240 78
    Mg (mg/L) 36.1 49.7 24.1 23.8 33.5 15.7 SO4 (mg/L) 1,800 200 1100 500
    Na (mg/L) 142.3 621.0 36.4 67.8 178.5 22.9 NH3 (mg/L) 640 790 680 820
    K (mg/L) 3.6 7.3 1.1 2.1 3.8 0.6 Hg (µg/L) 0.02 0.01 0.02 0.01
    Hg (µg/L) - - - - - - Cr (µg/L) 0.3 1.4 0.1 1.1
    Cr (µg/L) 10.1 11.1 9.9 13.5 13.7 13.3 Cu (ppm) 0.2 0.17 0.04 0.03
    Cu (µg/L) 4.1 4.2 4 4.4 4.8 4.1 Fe (ppm) 16 5.1 9.5 3
    Fe (mg/L) - - - - - - Ni (ppm) 0.6 1.4 0.5 1.1
    Ni (µg/L) 1.5 2 1.2 1.1 1.1 1 Pb (ppm) 0.01 0.06 0.02 0.07
    Pb (µg/L) - - - - - - Zn (ppm) 3 0.42 0.25 0.03
    Zn (µg/L) - - - - - - Mn (ppm) 24 0.3 9.3 0.1
    Coliforms - - - - - - Coliforms 460 1100 460 1100
    下载: 导出CSV

    Table  4.   Results of the evaluated indexes through sampling points (dry and wet seasons)

    parameters Average Max Min Standard deviation Coefficient of changes
    Leachate LPI Dry season 24.52 24.54 24.51 0.02 0
    Groundwater LPI 5.32 5.5 5.15 0.11 0.02
    SAR 2.15 7.73 0.66 1.81 0.84
    SSP 26 52.69 12.53 10.99 0.42
    KR 0.38 1.11 0.14 0.26 0.67
    PI 35.23 55.56 25.58 8.32 0.24
    Leachate LPI Wet season 27.36 27.93 26.79 0.81 0.03
    Groundwater LPI 5.34 5.40 5.08 0.55 0.10
    SAR 1.5 2.9 0.62 0.71 0.47
    SSP 28.37 43.4 16.93 7.54 0.27
    KR 0.4 0.86 0.14 0.16 0.39
    PI 49.84 64.93 35.59 9.27 0.19
    下载: 导出CSV
  • Abd El-Salam MM, I Abu-Zuid G. 2015. Impact of landfill leachate on the groundwater quality: A case study in Egypt. Journal of Advanced Research, 6(4): 579−586. DOI: 10.1016/j.jare.2014.02.003.
    Aher K, Gaikwad S. 2017. Irrigation groundwater quality based on hydrochemical analysis of Nandgaon Block, Nashik district in Maharashtra. International Journal of Advanced Geosciences, 5(1): 1−5. DOI: 10.14419/ijag.v5i1.7116.
    Alao JO, Abdo HG, Ayejoto DA, et al. 2023. Evaluation of groundwater contamination and the health risk due to landfills using integrated geophysical methods and Physiochemical water analysis. Case Studies in Chemical and Environmental Engineering, 8: 100523. DOI: 10.1016/j.cscee.2023.100523.
    Aucott M. 2006. The fate of heavy metals in landfills: A Review. New Jersey Department of Environmental Protection New Jersey.
    Baghanam AH, Nourani V, Aslani H, et al. 2020. Spatiotemporal variation of water pollution near landfill site: Application of clustering methods to assess the admissibility of LWPI. Journal of Hydrology, 591(prepublish): 125581.
    Baghapour MA, Shooshtarian MR, Zarghami M. 2020. Process mining approach of a new water quality index for long-term assessment under uncertainty using consensus-based fuzzy decision support system. Water Resources Management, 34(3): 1155−1172. DOI: 10.1007/s11269-020-02489-5.
    Cotruvo JA. 2017. WHO guidelines for drinking water quality: First addendum to the fourth edition. American Water Works Association Journal, 109(7): 44−51. DOI: 10.5942/jawwa.2017.109.0087.
    Doneen L. 1962. The influence of crop and soil on percolating water. Proc. 1961 Biennial conference on Groundwater recharge.
    Gharejelou F, Parizanagneh AA, Zamani AA. 2017. Qualitative/quantitative studies and physical/chemical analysis of municipal solid wastes in Zanjan City University of Zanjan.
    Hem JD. 1959. Study and interpretation of the chemical characteristics of natural water.
    Kapelewska J, Kotowska U, Karpińska J, et al. 2019. Water pollution indicators and chemometric expertise for the assessment of the impact of municipal solid waste landfills on groundwater located in their area. Chemical Engineering Journal, 359: 790−800. DOI: 10.1016/j.cej.2018.11.137.
    Kelley WP. 1941. Permissible composition and concentration of irrigation water. Transactions of the American Society of Civil Engineers, 106(1): 849−855. DOI: 10.1061/TACEAT.0005384.
    Khanoranga, Khalid S. 2019. An assessment of groundwater quality for irrigation and drinking purposes around brick kilns in three districts of Balochistan Province, Pakistan, through water quality index and multivariate statistical approaches. Journal of Geochemical Exploration, 197: 14−26. DOI: 10.1016/j.gexplo.2018.11.007.
    Kulikowska D, Klimiuk E. 2008. The effect of landfill age on municipal leachate composition. Bioresource Technology, 99(13): 5981−5985. DOI: 10.1016/j.biortech.2007.10.015.
    Kumar D, Alappat BJ. 2005. Analysis of leachate pollution index and formulation of sub-leachate pollution indices. Waste Management & Research, 23(3): 230−239. DOI: 10.1177/0734242X05054875.
    Kumar D, Alappat BJ. 2005. Evaluating leachate contamination potential of landfill sites using leachate pollution index. Clean Technologies and Environmental Policy, 7(3): 190−197. DOI: 10.1007/s10098-004-0269-4.
    Ling CP, Zhang Q. 2017. Evaluation of surface water and groundwater contamination in a MSW landfill area using hydrochemical analysis and electrical resistivity tomography: A case study in Sichuan Province, Southwest China. Environmental Monitoring and Assessment, 189(4): 140. DOI: 10.1007/s10661-017-5832-7.
    Mahammad S, Islam A, Shit PK. 2023. Geospatial assessment of groundwater quality using entropy-based irrigation water quality index and heavy metal pollution indices. Environmental Science and Pollution Research, 30(55): 116498−116521. DOI: 10.1007/s11356-022-20665-5.
    Mishra H, Karmakar S, Kumar R, et al. 2018. A long-term comparative assessment of human health risk to leachate-contaminated groundwater from heavy metal with different liner systems. Environmental Science and Pollution Research, 25(3): 2911−2923. DOI: 10.1007/s11356-017-0717-4.
    Mishra S, Tiwary D, Ohri A. 2018. Leachate characterisation and evaluation of leachate pollution potential of urban municipal landfill sites. International Journal of Environment and Waste Management, 21(4): 217. DOI: 10.1504/ijewm.2018.093431.
    Mor S, Ravindra K, Dahiya RP, et al. 2006. Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environmental Monitoring and Assessment, 118(1): 435−456. DOI: 10.1007/s10661-006-1505-7.
    Patel MP, Gami B, Patel A, et al. 2020. Climatic and anthropogenic impact on groundwater quality of agriculture dominated areas of southern and central Gujarat, India. Groundwater for Sustainable Development, 10: 100306. DOI: 10.1016/j.gsd.2019.100306.
    Rice EW, Bridgewater L, Association APH. 2017. Standard methods for the examination of water and wastewater (Vol. 23). American public health association Washington, DC.
    Sizirici B, Tansel B. 2010. Projection of landfill stabilization period by time series analysis of leachate quality and transformation trends of VOCs. Waste Management, 30(1): 82−91. DOI: 10.1016/j.wasman.2009.09.006.
    Soujanya Kamble B, Saxena PR. 2017. Environmental impact of municipal dumpsite leachate on ground-water quality in Jawaharnagar, Rangareddy, Telangana, India. Applied Water Science, 7(6): 3333−3343. DOI: 10.1007/s13201-016-0480-6.
    Stefania GA, Rotiroti M, Buerge IJ, et al. 2019. Identification of groundwater pollution sources in a landfill site using artificial sweeteners, multivariate analysis and transport modeling. Waste Management, 95: 116−128. DOI: 10.1016/j.wasman.2019.06.010.
    Tahmasebi P, Mahmudy-Gharaie MH, Ghassemzadeh F, et al. 2018. Assessment of groundwater suitability for irrigation in a gold mine surrounding area, NE Iran. Environmental Earth Sciences, 77(22): 766. DOI: 10.1007/s12665-018-7941-1.
    Talalaj IA. 2014. Assessment of groundwater quality near the landfill site using the modified water quality index. Environmental Monitoring and Assessment, 186(6): 3673−3683. DOI: 10.1007/s10661-014-3649-1.
    Talalaj IA, Biedka P. 2016. Use of the landfill water pollution index (LWPI) for groundwater quality assessment near the landfill sites. Environmental Science and Pollution Research, 23(24): 24601−24613. DOI: 10.1007/s11356-016-7622-0.
    Tchobanoglous G. 1993. Integrated solid waste managementengineering principles and management issues. Water Science & Technology Library. DOI: 10.1016/0921-3449(93)90020-G.
    Umar M, Aziz HA, Yusoff MS. 2010. Variability of parameters involved in leachate pollution index and determination of LPI from four landfills in Malaysia. International Journal of Chemical Engineering, 2: 49−54. DOI: 10.1155/2010/747953.
    Vaverková. 2019. Landfill impacts on the environment—Review. Geosciences, 9: 2−16. DOI: 10.3390/geosciences9100431.
    Yousefi Kebria D, Taghizadeh M, Darvish G. 2014. Effect of leachate penetration on the chemical and physical properties of MSW landfill soils (Case Study: Tonekabon Landfill). Nashrieh Shimi va Mohandesi Shimi Iran, 33(2): 63−69.
  • [1] Zi-xuan Zhang, Lin Wu, Xiang-ke Kong, Hui Li, Le Song, Ping Wang, Yan-yan Wang2024:  Impact of Cr(III) complexation with organic acid on its adsorption in silts and fine sands, Journal of Groundwater Science and Engineering, 12, 347-359. doi: 10.26599/JGSE.2024.9280026
    [2] Djafer Khodja Hakim, Aichour Amina, Metaiche Mehdi, Ferhati Ahmed2024:  Groundwater quality assessment for drinking and irrigation purposes in Boumerdes Region, Algeria, Journal of Groundwater Science and Engineering, 12, 397-410. doi: 10.26599/JGSE.2024.9280030
    [3] Chun-xiao Wang, Yong Qian, Zhao-ji Zhang, Chen Yue, Chun-yan Guo, Xiang-xiang Cui2023:  Current status and prospects of research on 1,4-dioxane pollution and treatment technologies in the water environment, Journal of Groundwater Science and Engineering, 11, 158-170. doi: 10.26599/JGSE.2023.9280014
    [4] Tanzeel Khan, Muhammad Akhtar Malik, Gohram Malghani, Rabia Akhtar2022:  Comparative analysis of bacterial contamination in tap and groundwater: A case study on water quality of Quetta City, an arid zone in Pakistan, Journal of Groundwater Science and Engineering, 10, 153-165. doi: 10.19637/j.cnki.2305-7068.2022.02.005
    [5] Ahmed Mohammad Tofayal, Monir Minhaj Uddin, Hasan Md Yeasir, Rahman Md Mominur, Rifat Md Shamiul Islam, Islam Md Naim, Khan Abu Shamim, Rahman Md Mizanur, Islam Md Shajidul2020:  Hydro-geochemical evaluation of groundwater with studies on water quality index and suitability for drinking in Sagardari, Jashore, Journal of Groundwater Science and Engineering, 8, 259-273. doi: 10.19637/j.cnki.2305-7068.2020.03.006
    [6] MIAO Qing-zhuang, ZHOU Xiao-ni, WANG Gui-ling, ZHANG Wei, LIU Feng, XING Lin-xiao2019:  Research on changes of hydrodynamics and ion-exchange adsorption in Brackish-Water Interface, Journal of Groundwater Science and Engineering, 7, 94-105. doi: 10.19637/j.cnki.2305-7068.2019.02.001
    [7] HU Zun-fang, KANG Feng-xin, ZOU An-de, YU Lin-song, LI Yang, TIAN Tong-liang, KANG Gui-ling2019:  Evolution trend of the water quality in Dongping Lake after South-North Water Transfer Project in China, Journal of Groundwater Science and Engineering, 7, 333-339. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.004
    [8] T K G P Ranasinghe, R U K Piyadasa2019:  Visualizing the spatial water quality of Bentota, Sri Lanka in the presence of seawater intrusion, Journal of Groundwater Science and Engineering, 7, 340-353. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.005
    [9] GUO Si-jia, GUO Gui-ping2018:  Enhancement of gaseous mercury (Hg0) adsorption for the modified activated carbons by surface acid oxygen function groups, Journal of Groundwater Science and Engineering, 6, 104-114. doi: 10.19637/j.cnki.2305-7068.2018.02.004
    [10] WU Ting-wen, WANG Li-huan, WANG Lin-shu, KONG Qing-xuan2018:  Evaluation of groundwater quality and pollution in Daqing Oilfield, Journal of Groundwater Science and Engineering, 6, 40-48. doi: 10.19637/j.cnki.2305-7068.2018.01.005
    [11] TAO Hong, ZHENG Miao-miao, FAN Li-min, LI Wen-li, DING Jia, LI Hui, HE Xu-bo, TAO Fu-ping2017:  Research on quality changes and influencing factors of groundwater in the Guanzhong Basin, Journal of Groundwater Science and Engineering, 5, 296-302.
    [12] YU Kai-ning, LIAO An-ran2016:  Primary study on evaluation index system for groundwater exploitation potentiality based on the niche theories, Journal of Groundwater Science and Engineering, 4, 18-25.
    [13] DAI Wen-Bin, ZHANG Wei-Jun, COWEN Taha2015:  An analysis of River Derwent pollution and its impacts, Journal of Groundwater Science and Engineering, 3, 39-44.
    [14] YI Qing, GE Li-qiang, CHENG Yan-pei, DONG Hua, LIU Kun, ZHANG Jian-kang, YUE Chen2015:  Compilation of Groundwater Quality Map and study of hydrogeochemical characteristics of groundwater in Asia, Journal of Groundwater Science and Engineering, 3, 176-185.
    [15] FEI Yu-hong, ZHANG Zhao-ji, LI Ya-song, GUO Chun-yan, TIAN Xia2015:  Quality evaluation of groundwater in the North China Plain, Journal of Groundwater Science and Engineering, 3, 306-315.
    [16] YANG Li-zhi, LIU Chun-hua2015:  Study on the characteristics and causes of carbon tetrachloride pollution of karst water in eastern suburbs of Jinan, Journal of Groundwater Science and Engineering, 3, 331-341.
    [17] Kang-qin HAN, Ri-sheng DUAN, Liang-liang JIA, Yuan-yuan DUAN, Min-ying FENG2014:  Analysis on Present Status of Underground Water Pollution in Shijiazhuang and Its Prevention Measures, Journal of Groundwater Science and Engineering, 2, 44-48.
    [18] Cui-ling Wang, Chang-li Liu, Ya-jie Pang, Li-xin Pei, Yun Zhang2013:  Adsorption Behavior of Hexavalent Chromium in Vadose Zone, Journal of Groundwater Science and Engineering, 1, 83-88.
    [19] Aizhong Ding, Lirong Cheng, Steve Thornton, Wei Huang, David Lerner2013:  Groundwater quality Management in China, Journal of Groundwater Science and Engineering, 1, 54-59.
    [20] Wang Qian, Zhang Lizhong, Cai Zizhao, Huo Zhibin, Zhang Huaidong2013:  Evaluation Index System of Hydrogeological Investigation Software, Journal of Groundwater Science and Engineering, 1, 96-103.
  • 加载中
图(6) / 表ll (4)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  87
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-26
  • 录用日期:  2024-03-29
  • 网络出版日期:  2024-08-10
  • 刊出日期:  2024-09-15

目录

    /

    返回文章
    返回