• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Temporal and spatial variations hydrochemical components and driving factors in Baiyangdian Lake in the Northern Plain of China

Tian-lun Zhai Qian-qian Zhang Long Wang Hui-wei Wang

Zhai TL, Zhang QQ, Wang L, et al. 2024. Temporal and spatial variations hydrochemical components and driving factors in Baiyangdian Lake in the Northern Plain of China. Journal of Groundwater Science and Engineering, 12(3): 293-308 doi:  10.26599/JGSE.2024.9280022
Citation: Zhai TL, Zhang QQ, Wang L, et al. 2024. Temporal and spatial variations hydrochemical components and driving factors in Baiyangdian Lake in the Northern Plain of China. Journal of Groundwater Science and Engineering, 12(3): 293-308 doi:  10.26599/JGSE.2024.9280022

doi: 10.26599/JGSE.2024.9280022

Temporal and spatial variations hydrochemical components and driving factors in Baiyangdian Lake in the Northern Plain of China

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Distribution of sampling sites in Baiyangdian Lake basin

    Figure  2.  Piper diagram of Baiyangdian Lake in different seasons (a) Lake water; (b) River water

    Figure  3.  Gibbs diagram of Baiyangdian Lake

    Figure  4.  Relationship between HCO3/Na+ and Ca2+/Na+(a), Mg2+/Na+ and Ca2+/Na+ (b) in Baiyangdian Lake

    Figure  5.  Baiyangdian Lake γ[Ca2++Mg2+] and γ[HCO3-+SO42−] relationship

    Figure  6.  Baiyangdian Lake [SO42−]/[Ca2+] and [NO3]/[Ca2+](a), [Cl] and [NO3]/[Cl] (b) relationship

    Figure  7.  Correlation analysis of Baiyangdian Lake in normal, flood and dry seasons

    1.   Basic information of the sampling sites

    Sites Longitude Latitude Land use Potential sources of pollution
    L1 115°58′26.96″ 38°56′33.15″ Scenic areas, Farmland, Sewage
    L2 115°59′1.98″ 38°56′0.07″ Tourist Area Sewage
    L3 116°0′6.68″ 38°54′59.17″ Distribution of rural farmland Agricultural non-point pollution
    L4 116°1′29.46″ 38°55′6.33″ Near the Observation Deck
    L5 116°2′11.14″ 38°54′0.71″ Village Sewage
    L6 116°3′38.26″ 38°543′50.44″ Village Sewage
    L7 116°5′28.23″ 38°53′25.56″ Village, near the Farmland Agricultural non-point pollution and sewage
    L8 116°3′12.39″ 38°52′46.14″ Village Sewage
    L9 116°1′9.94″ 38°51′27.40″ Village Sewage
    L10 116°2′34.59″ 38°50′52.66″ Aquaculture intensive area Feeding fodder and animal excrements
    L11 116°2′40.78″ 38°49′39.59″ Village, Aquaculture area Sewage
    L12 116°1′33.95″ 38°49′46.12″ Village, Large number of aquatic plant distribution Sewage
    L13 115°59′40.70″ 38°50′32.51″ Village Sewage
    L14 115°57′21.19″ 38°50′59.41″ Village, Farmland Agricultural non-point pollution and sewage
    L15 115°59′6.09″ 38°52′26.80″ Village Sewage
    L16 115°59′53.59″ 38°53′57.37″ Village Sewage
    R1 115°55′22.3″ 38°54′15.75″ Village, Farmland Undertake domestic sewage and industrial wastewater
    R2 115°47′20.12″ 38°53′50.23″ Villages along the route, Farmland Agricultural non-point pollution and sewage
    R3 115°46′19.88″ 38°54′56.44″ Close to Villages, Farmland, Fishing Sites Agricultural non-point pollution and sewage
    R4 115°52′29.83″ 38°47′30.89″ Close to Villages, Farmland Agricultural non-point pollution and sewage
    R5 116°02′1.15″ 39°00′44.03″ Village, Farmland Agricultural non-point pollution and sewage
    R6 116°01′5.21″ 38°47′20.45″ Farmland along the route, Fewer villages Agricultural non-point pollution and sewage
    R7 115°50′55.11″ 38°48′26.68″ Village, Farmland Agricultural non-point pollution and sewage
    下载: 导出CSV

    2.   Hydrochemical parameters, analytical method, equipment and detection limits.

    Parameters Analytical method Analytical equipment Detection limit
    pH
    EC(μS/cm)
    DO(mg/L)
    Electrode method HQ40D, HACH, United States 0.01
    0.01
    0.05
    Nitrate [NO3](mg/L) Spectrophotometry Perkin-Elmer Lambda 35, United States 0.664
    Chloride [Cl](mg/L) 1.0
    Sulfate [SO42−](mg/L) 0.75
    Potassium [K+](mg/L) Inductively coupled plasma-mass spectrometry Agilent 7500ce ICP-MS, Tokyo, Japan 0.05
    Sodium [Na+](mg/L) 0.01
    Calcium [Ca2+](mg/L) 4.0
    Magnesium [Mg2+](mg/L) 3.0
    Bicarbonate [HCO3](mg/L) Acid–base titration 5.0
    下载: 导出CSV

    Table  1.   Statistical table of chemical components of Baiyangdian Lake

    Parameter Mean value Range Variable coefficient(%) National standard
    NS FS DS NS FS DS NS FS DS
    pH 8.67 8.41 7.41 8.17–10.2 7.73–8.87 7.31–7.54 6.51 4.58 0.856 6.0–9.0
    EC 945 719 848 704–1199 540–984 706–1089 15.2 21.3 12.9
    DO 8.03 8.41 7.72 4.99–11.0 4.59–11.7 4.25–9.27 25.6 29.8 26.1 5.0
    K+ 6.30 6.39 8.33 5.45–8.62 4.12–8.95 5.15–10.1 12.7 26.9 16.8
    Na+ 103 72.7 75.5 59.4–175 32.6–141 34.9–113 31.2 55.4 31.5
    Ca2+ 50.8 41.1 56.4 22.3–69.5 32.9–49.9 47.5–63.3 25.9 12.4 8.39
    Mg2+ 26.2 23.1 24.8 19.8–31.4 19.9–29.2 20.0–29.2 14.6 13.6 9.36
    HCO3 197 206 243 134–285 178–227 216–266 21.0 7.10 5.51
    Cl 116 72.8 86.0 82.8–153 40.3–124 28.8–144 16.1 40.9 42.3 250
    SO42– 73.3 93.0 92.5 33.8–137 39.9–149 24.4–202 34.4 34.3 50.3 250
    NO3 2.36 1.68 2.34 0.050–5.98 0.574–4.73 0.448–8.91 58.0 67.4 98.9 44.3
    Note: pH is dimensionless. EC unit is μs/cm. The unit of other indicators is mg/L. NS: Normal season; FS: Flood season; DS: Dry season; National standard: Class III standard of the national surface water quality standard, Chinese (GB 3838—2002).
    下载: 导出CSV

    Table  2.   Statistical table of chemical components of the river flows into Baiyangdian Lake

    Parameter Mean value Range Variable coefficient(%) National
    standard
    NS FS DS NS FS DS NS FS DS
    pH 8.66 8.38 8.59 8.42–8.76 7.65–8.46 7.51–9.39 1.66 4.48 8.71 6.0–9.0
    EC 721 661 1188 357–1324 331–1379 370–2270 47.2 64.7 52.5
    DO 7.11 7.99 7.33 5.22–8.81 5.55–8.77 5.11–8.49 17.4 18.0 15.8 5.0
    K+ 6.64 5.86 9.97 2.18–14.0 2.80–13.0 2.80–25.4 82.4 52.7 77.2
    Na+ 73.1 68.8 151 8.28–233 13.0–212 13.8–413 136 104 91.9
    Ca2+ 45.4 41.3 52.9 44.6–45.9 32.1–52.7 35.2–80.3 1.39 19.2 29.3
    Mg2+ 20.4 16.8 21.8 11.5–26.9 13.5–24.9 11.5–36.9 39.4 22.7 41.4
    HCO3 192 191 272 149–303 137–259 161–471 33.1 22.2 44.7
    Cl 76.4 61.1 120 16.3–173 7.17–162 13.9–234 77.0 104 67.6 250
    SO42– 55.4 91.1 96.8 30.8–98.5 34.1–181 21.0–212 52.0 65.6 82.7 250
    NO3 7.13 6.80 12.7 3.20–10.6 1.20–11.8 8.02–20.5 34.9 65.0 37.9 44.3
    下载: 导出CSV

    Table  3.   Driving factors of chemical components in Baiyangdian Lake water

    Parameter Normal season Flood season Dry season
    PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC1 PC2 PC3 PC4
    pH 0.798 −0.179 −0.306 −0.107 −0.327 0.945 0.284 0.026 0.163 −0.200 0.846
    DO 0.817 0.242 −0.374 −0.135 −0.119 0.927 0.219 −0.229 −0.132 0.335 0.767
    K+ 0.879 −0.241 0.341 0.102 0.120 0.670 0.733 0.907 0.184 0.113 −0.011
    Na+ 0.933 −0.029 0.040 0.012 0.330 0.629 0.765 0.857 −0.113 0.395 −0.010
    Ca2+ 0.329 0.689 −0.404 0.397 0.175 −0.296 −0.906 −0.050 0.957 0.108 0.109
    Mg2+ −0.203 0.895 −0.148 −0.262 0.150 −0.797 −0.087 −0.148 0.889 0.270 −0.048
    HCO3 −0.043 0.021 0.994 0.011 0.003 0.578 0.675 0.881 −0.430 −0.004 −0.028
    Cl 0.060 −0.009 −0.002 0.078 0.985 0.454 0.881 0.274 0.183 0.792 −0.004
    NO3 −0.121 −0.081 0.018 0.964 0.090 0.434 −0.783 −0.887 0.118 0.187 0.318
    SO42− 0.266 0.816 0.052 0.439 −0.106 0.654 0.566 −0.075 0.199 0.927 0.037
    Eigenvalue 3.39 2.09 1.58 1.33 1.10 6.97 1.76 3.56 2.57 1.38 1.14
    Variance contribution rate (%) 33.9 20.9 15.8 13.3 11.0 69.7 17.6 35.6 25.7 13.8 11.4
    Driving factor Dissolution of salt in sediments Dissol-ution of silicate and carbonate Carbonate sedime-ntation Fertilizer Manu-re Sewage Lixivi-ation Sewage, manure, fertilizers, and carbonate sedimentation Dissolution of salt, fertili-zers, and manu-re Silicate and carbonate dissolution and carbon-ate sedime-ntation Sewage Nitrifi-cation
    下载: 导出CSV
  • Chi GY, Su XS, Lv H, et al. 2022. Prediction and evaluation of groundwater level changes in an over-exploited area of the Baiyangdian Lake Basin, China under the combined influence of climate change and ecological water recharge. Environmental Research, 212(Pt A): 113104. DOI:10.1016/j.envres. 2022.113104.
    Dearing JA, Yang XD, Dong XH, et al. 2012. Extending the timescale and range of ecosystem services through paleoenvironmental analyses, exemplified in the Lower Yangtze Basin. Proceedings of the National Academy of Sciences of the United States of America, 109(18): 6808−6809. DOI: 10.1073/pnas.1118263109.
    Downing JA, Prairie YT, Cole JJ, et al. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography, 51(5): 2388−2397. DOI: 10.4319/lo.2006.51.5.2388.
    Fan ZJ, Wei X, Zhou YL, et al. 2012. Hydrochemical and hydrogen-oxygen stable isotope characteristics of urban shallow groundwater in Three Gorges Reservoir Area and indicative significance. Acta Scientiae Circumstantiae, 43(6): 258−269. (In Chinese).
    Güler C, Ali Kurt M, Alpaslan M, et al. 2012. Assessment of the impact of anthropogenic activities on the groundwater hydrology and chemistry in Tarsus coastal plain (Mersin, SE Turkey) using fuzzy clustering, multivariate statistics and GIS techniques. Journal of Hydrology, 414: 435−451. DOI: 10.1016/j.jhydrol.2011.11.021.
    Han Q, Tong RZ, Sun WC, et al. 2020. Anthropogenic influences on the water quality of the Baiyangdian Lake in North China over the last decade. The Science of the Total Environment, 701: 134929. DOI: 10.1016/j.scitotenv.2019.134929.
    Jiang H, Liu WJ, Li YC, et al. 2022. Multiple isotopes reveal a hydrology dominated control on the nitrogen cycling in the Nujiang River Basin, the last undammed large river basin on the Tibetan Plateau. Environmental Science & Technology, 56(7): 4610−4619. DOI: 10.1021/acs.est.1c07102.
    Jin ZF, Qin X, Chen LX, et al. 2015. Using dual isotopes to evaluate sources and transformations of nitrate in the West Lake watershed, Eastern China. Journal of Contaminant Hydrology, 177−178: 64−75. DOI: 10.1016/j.jconhyd.2015.02.008.
    Li DS, Cui BL, Wang Y, et al. 2021. Source and quality of groundwater surrounding the Qinghai Lake, NE Qinghai-Tibet Plateau. Groundwater, 59(2): 245−255. DOI: 10.1111/gwat.13042.
    Li H, Shen HY, Li SJ, et al. 2018. Effects of eutrophication on the benthic-pelagic coupling food web in Baiyangdian Lake. Acta Ecologica Sinica, 38(6): 2017−2030. DOI: 10.5846/stxb201701060057.
    Li PY, Wu JH, Qian H. 2013. Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China. Environmental Earth Sciences, 69(7): 2211−2225. DOI: 10.1007/s12665-012-2049-5.
    Li ZJ, Yang QC, Yang YS, et al. 2019. Isotopic and geochemical interpretation of groundwater under the influences of anthropogenic activities. Journal of Hydrology, 576: 685−697. DOI: 10.1016/j.jhydrol.2019.06.037.
    Lin CY, Abdullah MH, Praveena SM, et al. 2012. Delineation of temporal variability and governing factors influencing the spatial variability of shallow groundwater chemistry in a tropical sedimentary island. Journal of Hydrology, 432−433: 26−42. DOI: 10.1016/j.jhydrol.2012.02.015.
    Lu Y, Wang NA, Li GP, et al. 2010. Spatial distribution of lakes hydro-chemical types in Badain Jaran Desert. Journal of Lake Sciences, 22(5): 774−782. (in Chinese)
    Martín del Campo MA, Esteller MV, Expósito JL, et al. 2014. Impacts of urbanization on groundwater hydrodynamics and hydrochemistry of the Toluca Valley aquifer (Mexico). Environmental Monitoring and Assessment, 186(5): 2979−2999. DOI: 10.1007/s10661-013-3595-3.
    Mbaye ML, Gaye AT, Spitzy A, et al. 2016. Seasonal and spatial variation in suspended matter, organic carbon, nitrogen, and nutrient concentrations of the Senegal River in West Africa. Limnologica, 57: 1−13. DOI: 10.1016/j.limno.2015.12.003.
    Mendonça R, Müller RA, Clow D, et al. 2017. Organic carbon burial in global lakes and reservoirs. Nature Communications, 8: 1694. DOI: 10.1038/s41467-017-01789-6.
    Njuguna SM, Onyango JA, Githaiga KB, et al. 2020. Application of multivariate statistical analysis and water quality index in health risk assessment by domestic use of river water. Case study of Tana River in Kenya. Process Safety and Environmental Protection, 133: 149−158. DOI: 10.1016/j.psep.2019.11.006.
    Ren CB, Zhang QQ. 2020. Groundwater chemical characteristics and controlling factors in a region of Northern China with intensive human activity. International Journal of Environmental Research and Public Health, 17(23): 9126. DOI: 10.3390/ijerph17239126.
    Ren XH, Yu RH, Kang JF, et al. 2022. Hydrochemical evaluation of water quality and its influencing factors in a closed inland lake basin of Northern China. Frontiers in Ecology and Evolution, 10: 1005289. DOI: 10.3389/fevo.2022.1005289.
    Ren XH, Yu RH, Kang JF, et al. 2022. Water pollution characteristics and influencing factors of closed lake in a semiarid area: A case study of Daihai Lake, China. Environmental Earth Sciences, 81(15): 393. DOI: 10.1007/s12665-022-10526-2.
    Ren XH, Zhang ZH, Yu RH, et al. 2023. Hydrochemical variations and driving mechanisms in a large linked river-irrigation-lake system. Environmental Research, 225: 115596. DOI: 10.1016/j.envres.2023.115596.
    Shaw GD, White ES, Gammons CH. 2013. Characterizing groundwater–lake interactions and its impact on lake water quality. Journal of Hydrology, 492: 69−78. DOI: 10.1016/j.jhydrol.2013.04.018.
    Sun ZX, Soldatova EA, Guseva NV, et al. 2014. Impact of human activity on the groundwater chemical composition of the south part of the Poyang Lake basin. IERI Procedia, 8: 113−118. DOI: 10.1016/j.ieri.2014.09.019.
    Torres-Martínez JA, Mora A, Knappett PSK, et al. 2020. Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi-tracer approach combined with a Bayesian isotope mixing model. Water Research, 182: 115962. DOI: 10.1016/j.watres.2020.115962.
    Wan YS, Wan L, Li YC, et al. 2017. Decadal and seasonal trends of nutrient concentration and export from highly managed coastal catchments. Water Research, 115: 180−194. DOI: 10.1016/j.watres.2017.02.068.
    Wang YZ, Liu MZ, Dai Y, et al. 2021. Health and ecotoxicological risk assessment for human and aquatic organism exposure to polycyclic aromatic hydrocarbons in the Baiyangdian Lake. Environmental Science and Pollution Research, 28(1): 574−586. DOI: 10.1007/s11356-020-10480-1.
    Wang L, Zhang QQ, Wang HW. 2023. Rapid urbanization has changed the driving factors of groundwater chemical evolution in the large groundwater depression funnel area of northern China. Water, 15(16): 2917. DOI: 10.3390/w15162917.
    Xue DM, Botte J, De Baets B, et al. 2009. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Research, 43(5): 1159−1170. DOI: 10.1016/j.watres.2008.12.048.
    Xu F, Li PY, Du QQ, et al. 2023. Seasonal hydrochemical characteristics, geochemical evolution, and pollution sources of Lake Sha in an arid and semiarid region of Northwest China. Exposure and Health, 15(1): 231−244. DOI: 10.1007/s12403-022-00488-y.
    Xue PY, Zhao QL, Wang YQ, et al. 2018. Distribution characteristics of heavy metals in sediment-submerged macrophyte-water systems of Lake Baiyangdian. Journal of Lake Sciences, 30(6): 1525−1536. DOI: 10.18307/2018.0605.
    Yan JH, Chen JS, Zhang WQ. 2021. Study on the groundwater quality and its influencing factor in Songyuan City, Northeast China, using integrated hydrogeochemical method. The Science of the Total Environment, 773: 144958. DOI: 10.1016/j.scitotenv.2021.144958.
    Zhang QQ, Miao LP, Wang HW, et al. 2019. How rapid urbanization drives Deteriorating Groundwater quality in a provincial capital of China. Polish Journal of Environmental Studies, 29(1): 441−450. DOI: 10.15244/pjoes/103359.
    Zhang QQ, Wang HW. 2020. Assessment of sources and transformation of nitrate in the alluvial-pluvial fan region of North China using a multi-isotope approach. Journal of Environmental Sciences (China), 89: 9−22. DOI:  10.1016/j.jes.2019.09.021.
    Zhang QQ, Wang XK, Wan WX, et al. 2015. The spatial-temporal pattern and source apportionment of water pollution in a trans-urban river. Polish Journal of Environmental Studies, 24(2): 841−851.
    Zhou B, Wang HW, Zhang QQ. 2021. Assessment of the evolution of groundwater chemistry and its controlling factors in the Huangshui River Basin of northwestern China, using hydrochemistry and multivariate statistical techniques. International Journal of Environmental Research and Public Health, 18(14): 7551. DOI: 10.3390/ijerph18147551.
    Zhou L, Sun WC, Han Q, et al. 2020. Assessment of spatial variation in river water quality of the Baiyangdian Basin (China) during environmental water release period of upstream reservoirs. Water, 12(3): 688. DOI: 10.3390/w12030688.
  • [1] Marwa M Aly, Shymaa AK Fayad, Ahmed MI Abd Elhamid2024:  Assessment of groundwater suitability for different activities in Toshka district, south Egypt, Journal of Groundwater Science and Engineering, 12, 34-48. doi: 10.26599/JGSE.2024.9280004
    [2] Qing-shan Li, Xiao-bing Kang, Mo Xu, Bang-yan Mao2023:  Effects of coal mining and tunnel excavation on groundwater flow system in karst areas by modeling: A case study in Zhongliang Mountain, Chongqing, Southwest China, Journal of Groundwater Science and Engineering, 11, 391-407. doi: 10.26599/JGSE.2023.9280031
    [3] Liu Ya-ci, Zhang Zhao-ji, Zhao Xin-yi, Wen Meng-tuo, Cao Sheng-wei, Li Ya-song2021:  Arsenic contamination caused by roxarsone transformation with spatiotemporal variation of microbial community structure in a column experiment, Journal of Groundwater Science and Engineering, 9, 304-316. doi: 10.19637/j.cnki.2305-7068.2021.04.004
    [4] Qaisar Mehmood, Muhammad Arshad, Muhammad Rizwan, Shanawar Hamid, Waqas Mehmood, Muhammad Ansir Muneer, Muhammad Irfan, Lubna Anjum2020:  Integration of geoelectric and hydrochemical approaches for delineation of groundwater potential zones in alluvial aquifer, Journal of Groundwater Science and Engineering, 8, 366-380. doi: 10.19637/j.cnki.2305-7068.2020.04.007
    [5] Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip2020:  Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand, Journal of Groundwater Science and Engineering, 8, 10-19. doi: 10.19637/j.cnki.2305-7068.2020.01.002
    [6] YANG Liu, ZHANG Ying-ping, WEN Xue-ru, PEI Li-xin, LIU Bing2020:  Characteristics of groundwater and urban emergency water sources optimazation in Luoyang, China, Journal of Groundwater Science and Engineering, 8, 298-304. doi: 10.19637/j.cnki.2305-7068.2020.03.010
    [7] Bahrami Mehdi, Khaksar Elmira, Khaksar Elahe2020:  Spatial variation assessment of groundwater quality using multivariate statistical analysis(Case Study: Fasa Plain, Iran), Journal of Groundwater Science and Engineering, 8, 230-243. doi: 10.19637/j.cnki.2305-7068.2020.03.004
    [8] CAO Yan-ling, SONG Liang, LIU Lian, ZHU Wen-feng, CUI Su, WANG Yan-ting, GUO Peng2020:  Preliminary study on strontium-rich characteristics of shallow groundwater in Dingtao Area, China, Journal of Groundwater Science and Engineering, 8, 244-258. doi: 10.19637/j.cnki.2305-7068.2020.03.005
    [9] LI Yang, KANG Feng-Xin, ZOU An-de2019:  Isotope analysis of nitrate pollution sources in groundwater of Dong’e geohydrological unit, Journal of Groundwater Science and Engineering, 7, 145-154. doi: 10.19637/j.cnki.2305-7068.2019.02.005
    [10] LI Xiao-hang, WANG Rui, LI Jian-feng2018:  Study on hydrochemical characteristics and formation mechanism of shallow groundwater in eastern Songnen Plain, Journal of Groundwater Science and Engineering, 6, 161-170. doi: 10.19637/j.cnki.2305-7068.2018.03.001
    [11] JIANG Ti-sheng, QU Ci-xiao, WANG Ming-yu, SUN Yan-wei, HU Bo, CHU Jun-yao2017:  Analysis on temporal and spatial variations of groundwater hydrochemical characteristics in the past decade in southern plain of Beijing, China, Journal of Groundwater Science and Engineering, 5, 235-248.
    [12] TIAN Xia, FEI Yu-hong, ZHANG Zhao-ji, LI Ya-song, DUN Yu, GUO Chun-yan2017:  Analysis on hydrochemical characteristics of groundwater in strongly exploited area in Hutuo River Plain, Journal of Groundwater Science and Engineering, 5, 130-139.
    [13] ZHU Wei, TANG Wen, LIU Qiang, ZHANG Mei-gui2017:  Analysis on variation characteristics of geothermal response in Liaoning Province, Journal of Groundwater Science and Engineering, 5, 336-342.
    [14] SONG Chao, HAN Gui-lin, WANG Pan, SHI Ying-chun, HE Ze2017:  Hydrochemical and isotope characteristics of spring water discharging from Qiushe Loess Section in Lingtai, northwestern China and their implication to groundwater recharge, Journal of Groundwater Science and Engineering, 5, 364-373.
    [15] GUO Li-jun, YAN Ya-ya, GUO Li-na, MA Jin-long, LV Ming-yu2016:  GIS-based spatial and temporal changes of land occupation caused by mining activities-a study in eastern part of Hubei Province, Journal of Groundwater Science and Engineering, 4, 60-68.
    [16] GONG Xiao-ping, JIANG Guang-hui, CHEN Chang-jie, GUO Xiao-jiao, ZHANG Hua-sheng2015:  Specific yield of phreatic variation zone in karst aquifer with the method of water level analysis, Journal of Groundwater Science and Engineering, 3, 192-201.
    [17] ZHOU Yang-xiao, Parvez Sarwer Hossain, Nico van der Moot2015:  Analysis of travel time, sources of water and well protection zones with groundwater models, Journal of Groundwater Science and Engineering, 3, 363-374.
    [18] Chang-li LIU, Chao SONG, Hong-bing HOU, Xiu-yan WANG, Yun ZHANG, Jun-kun WANG, Jian-mei JIANG, Li-xin PEI, Bo SONG2014:  The Impact of Human Activities on CO2 Intake by Carbonate Weathering: A Case Study of Conglin Karst Ridge-trough at Fuling Town, Chongqing, China, Journal of Groundwater Science and Engineering, 2, 29-38.
    [19] 2013:  The Study of Statistical Damage Constitutive Models of Rock and Its Parameters Based on Lade-Duncan Criterion, Journal of Groundwater Science and Engineering, 1, 74-79.
    [20] 2013:  ESR Signal Intensity and Crystallinity of Quartz from Three Major Asian Dust Sources: Implication for Tracing the Provenances of Eolian Dust, Journal of Groundwater Science and Engineering, 1, 53-67.
  • 加载中
图(7) / 表ll (5)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  67
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-12
  • 录用日期:  2024-05-25
  • 网络出版日期:  2024-08-10
  • 刊出日期:  2024-09-15

目录

    /

    返回文章
    返回