Evaluation of aquifer hydraulic properties from resistivity and pumping test data in parts of Gwagwalada, Northcentral Nigeria
-
Abstract: Population upsurge in Gwagwalada increased water demand in the area, thereby stressing water resources in the area. Aquifer properties in parts of Gwagwalada in North-Central Nigeria were therefore investigated using resistivity and hydrogeological approaches. Static water level measurements of hand dug wells were used to determine the groundwater flow direction for the area which coincides with the North East-South West joint direction. Constant rate pumping test was adopted for the research and 10 boreholes were pumped. The weathered/fractured basement range from 7.5 m to 56.7 m. The transmissivity values in the area ranged from 0.35 m2/d to 3.63 m2/d while the hydraulic conductivity range from 0.045 m/d to 0.18 m/d. The Vertical Electrical Soundings (VES) were carried out on the area. The geoelectric sections revealed four to five layers and the longitudinal conductance varied from 0.11 Ω−1 to 0.37 Ω−1. The results of the investigation characterized the groundwater potential in the study area into low and moderate while the aquifer protective capacity into weak and moderate zones. The efficacy of resistivity and pumping test data in quantifying aquifer properties has been established in this study. The findings of this study shed light on the properties of ground water and aquifer protective capacity in the area, hence assist in the effective future groundwater resources exploitation.
-
Key words:
- Transmissivity /
- VES /
- Dar Zarrouk Parameters /
- Groundwater Potential /
- Aquifer Protective Capacity
-
Figure 1. Location map of the study area (modified from Elimian et al. 2020)
Table 1. Results of resistivity, layer thickness surveys and classification of curve types
S/N 1st layer 2nd layer 3rd layer 4th layer 5th layer Curve type h1/m ρ1/Ωm h2/m ρ2/Ωm h3/m ρ3/Ωm h4/m ρ4/Ωm h5/m ρ5/Ωm VES 1 0.5 1,194.4 8.4 96.5 69.9 446.9 ∞ 341.0 - - HK VES 2 0.5 367.5 2.7 118.6 13.4 166.4 29.7 771.3 ∞ 83.7 HAK VES 3 0.8 404.3 4.7 48.4 15.4 1414.1 ∞ 5,044.1 - - HA VES 4 1.8 131.0 5.2 13.1 59.2 818.9 ∞ 265.1 - - HK VES 5 1.4 59.0 2.0 80.5 10.7 33.7 ∞ 5,378.0 - - KH VES 6 1.0 252.2 6.7 469.6 25.6 157.1 92.2 632.7 ∞ 365.1 KHK VES 7 1.3 77.0 3.8 531.1 2.7 159.4 12.7 72.7 ∞ 8846.5 KQH VES 8 0.9 128.8 6.8 151.5 31.1 139.5 ∞ 1,734.7 - - KH VES 9 0.6 153.8 1.4 21.5 12.9 513.4 36.1 163.6 ∞ 1204.7 HKH VES 10 1.0 45.0 5.1 138.6 32.5 630.2 ∞ 5,290.4 - - AA Table 2. Data obtained from measured hand dug wells within the Study Area
Location No. of wells tested Elevation/m Static water level/m Depth of well/m Hydraulic Head/m Dukpa 9 139–224 0.8–3.1 4–7 135.9–282.5 Gwagwalada 1 214 2.2 5.5 211.8 Passo 6 180–202 0.2–3.5 4.1–5.7 177.5–201.8 Paikon Kore 4 174–184 0.0–5.5 3.2–6 169.5–183.9 Kaida 5 158–192 1.9–2.7 4.4–5.7 155.7–189.3 Koroko 5 154–170 1.8–2.8 3.0–4.9 152.2–167.5 Table 3. Results of aquifer test parameters
Parameters Minimum Maximum Mean Borehole depth (m) 124 200 155 SWL (m) 1.2 19.4 6.8 Yield (m3/d) 82.1 319.7 158.5 Drawdown (m) 6.6 84.6 38.7 Drawdown per log cycle (m) 4.8 56 28.6 Weathered/fractured
layer thickness (m)7.5 56.7 18.8 Transmissivity (m2/d) 0.35 3.6 1.36 Hydraulic conductivity (m/d) 0.045 0.18 0.07 Table 4. Magnitude and variation transmissivity of Krasny classification (Asfahani, 2021)
Coefficient of T/ m2/d Class Magnitude Groundwater supply potential > 1,000 I Very high Withdrawals of great regional importance 1,000−100 II High Withdrawals of lesser regional importance 100−10 III Intermediate withdrawal for local water supply 10−1 IV Low Smaller withdrawal for local water supply 1−0.1 V Very low withdrawal for local water supply with limited consumption < 0.1 VI Imperceptible Source for local water supply is difficult Table 5. Hydraulic Conductivity Classifications (Sen, 2015)
Km/s 102 101 100 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 Relative permeability Pervious Semi-pervious Impervious Aquifer Good Poor None Consolidated rock Highly fracturated Oil reservoir rock Fresh sandstone Fresh limestone, dolomite Fresh granite Table 6. Relative Errors from pair-wise of transmissivity values
Transmissivity BH2 BH3 BH4 BH5 BH6 BH7 BH8 BH9 BH10 BH1 74.9 45 8.1 61.4 33.4 23.2 1.3 7 66.5 BH2 54.3 77 90.3 83.3 67.3 75.2 76.6 24.9 BH3 49.5 78.8 63.3 28.3 45.7 48.8 39.2 BH4 58 27.5 29.5 6.9 1.3 69.3 BH5 42.1 70.4 60.9 58.5 87.1 BH6 48.9 32.5 28.4 77.7 BH7 24.2 28.6 56.4 BH8 5.7 67 BH9 68.9 Table 7. Longitudinal conductance values and aquifer protective capacity
S/N Longitudinal
conductance/Ω−1Protective capacity VES 1 0.242981 Moderate VES 2 0.143161 Weak VES 3 0.109976 Weak VES 4 0.326328 Moderate VES 6 0.326328 Moderate VES 7 0.215667 Moderate VES 8 0.274811 Moderate VES 9 0.314822 Moderate VES 10 0.11059 Weak Table 8. Aquifer protective capacity rating (Nugraha et al. 2022)
Longitudinal conductance/Ω−1 Protective capacity > 10 Excellet 5−10 Very good 0.7−4.9 Good 0.2−0.69 Moderate 0.1−0.19 Weak < 0.1 Poor -
Abimiku ES, A Dadan-Garba, Adepetu A. 2019. Assessment of groundwater potentials in Ningi Area of Bauchi State, Nigeria. International Journal of Research and Scientific Innovation, 6(6): 155−157. Achichi C, Sennuga SO, Osho-Lagunju B, et al. 2023. Effect of farmers' socioeconomic characteristics on access to agricultural information in Gwagwalada Area Council, Abuja. Discoveries in Agriculture and Food Sciences, 10: 28−47. DOI: 10.14738/dafs.105.14273. Adewumi AJP, Anifowose YB. 2017. Hydrogeologic characterization of Owo and its environs using remote sensing and GIS. Applied Water Science, 7(6): 2987–3000. DOI: 10.1007/s13201-017-0611-8. Amadi AN, Ozoji TM, Aweda AK, et al. 2020. Updates on aquifer attributes of the Benin formation within Eastern Niger Delta, Nigeria using pumping test and hydraulic parameters. Minna Jornal of Geosciences (MJG), 4(1): 37−51. Asfahani J. 2021. Classification of the transmissivity spatial variations of quaternary aquifer in the semi-arid Region Khanasser Valley, Northern Syria. Journal of African Earth Sciences, 182: 104269. DOI: 10.1016/j.jafrearsci.2021.104269. Asije E, Igwe O. 2014. Electrical resistivity investigation for ground water in Parts of Pegi, Federal Capital Territory, Nigeria. IOSR Journal of Applied Geology and Geophysics, 2(6): 27–32. https://www.academia.edu/download/36521752/E02612732.pdf. Chilton JP, Forester SSD. 1993. Hydrogeological characterization and water supply potential of basement aquifers in tropical Africa. Hydrogeology Journal, 3(1): 36−49. DOI: 10.1007/s100400050061. Dan-Hassan MA, Yaya OO. 2007. Application of the hummel (modified schlumberger) method of vertical electrical soundings in groundwater exploration in parts of basement complex of Nigeria. Water Resources, 17: 77−82 Dan-hassan MA. 2013. Some Aspect of Hydrogeology of FCT, Abuja, Nigeria. Ph. D. Thesis. Federal University of Technology, Minna: Nigeria. Dan-hassan MA, Olasehinde PI, Amadi AN, et al. 2012. Spatial and temporary distribution of nitrate pollution in groundwater of Abuja, Nigeria. International Journal of chemistry, 4(3): 104−112. Dinneya OC, Adigun A. 2022. Preliminary gold mineralization potential assessment of a site covering parts of Gwagwalada and Abaji Area Council, Federal Capital Territory (Abuja). Communication in Physical Sciences, 8(4). Egbai JC, Emekeme IRE. 2015. Aquifer transmissivity Dar Zarrouk parameters and groundwater flow direction in Abudu, Edo State, Nigeria. International Journal Environmental Science and Technology, 4(3): 628−640. Elimian KO, Mezue S, Musah A, et al. 2020. What are the drivers of recurrent cholera transmission in Nigeria? Evidence from a scoping review. BMC Public Health, 20(1): 1–13. DOI: 10.1186/s12889-020-08521-y Etu-Efeotor JO. 1998. Hydrochemical analysis of surface andgroundwaters of Gwagwalada area of Central Nigeria. Global Journal of Pure and Applied Sciences, 4(2): 153−162. Fetter CW. 2001. Properties of aquifers. Applied Hydrogeology, 4th Edition. Long Grove, Illinois: Waveland Press, Inc. Gleick PH. 1996. Basic water requirements for human activities: Meeting basic needs. Water International, 21(2): 83−92. DOI: 10.1080/02508069608686494. Haque S, Kannaujiya S, Taloor AK, et al. 2020. Identification of groundwater resource zone in the active tectonic region of Himalaya through earth observatory techniques. Groundwater for Sustainable Development, 10: 100337. DOI: 10.1016/j.gsd.2020.100337. Hasan M, Shang Y, Jin W, et al. 2021. Estimation of hydraulic parameters in a hard rock aquifer using integrated surface geoelectrical method and pumping test data in southeast Guangdong, China. Geosciences Journal, 25: 223−242. DOI: 10.1007/s12303-020-0018-7. Hazell JRT, Cratchley CR, Jones CRC. 1992. The hydrogeology of crystalline aquifers in northern Nigeria and geophysical techniques used in their exploration. Geological Society, London, Special Publications, 66(1): 155−182. DOI: 10.1144/GSL.SP.1992.066.01.08. Henriet JP. 1976. Direct application of the Dar-Zarrouk parameters in groundwater survey. Geophysical Prospecting 24(2): 344−353. DOI: 10.1111/j.1365-2478.1976.tb00931.x. Ighalo JO, Adeniyi AG. 2020. A comprehensive review of water quality monitoring and assessment in Nigeria. Chemosphere, 260, 127569. DOI: 10.1016/j.chemosphere.2020.127569. Kasidi S. 2017. Groundwater exploration using electrical resistivity method a case study in Federal Capital Territory (FCT) Abuja. Nigeria. International Journal of Engineering and Applied Sciences (IJEAS), 4(10): 1−8. Lapworth DJ, Boving TB, Kreamer DK, et al. 2022. Groundwater quality: Global threats, opportunities and realising the potential of groundwater. Science of the Total Environment, 811: 152471. DOI: 10.1016/j.scitotenv.2021.152471. Khilchevskyi V, Karamushka V. 2021. Global water resources: Distribution and demand. In Clean Water and Sanitation. Cham: Springer International Publishing: 1−11. DOI: 10.1007/978-3-319-70061-8_101-1. Mahmud S, Hamza S, Irfan M, et al. 2022. Investigation of groundwater resources using electrical resistivity sounding and Dar Zarrouk parameters for Uthal Balochistan, Pakistan. Groundwater for Sustainable Development, 17: 100738. DOI: 10.1016/j.gsd.2022.100738. Mishra RK. 2023. Fresh water availability and its global challenge. British Journal of Multidisciplinary and Advanced Studies, 4(3): 1−78. DOI: 10.37745/bjmas.2022.0208. Naidu S, Gupta G, Shailaja G, et al. 2021. Spatial behavior of the Dar-Zarrouk parameters for exploration and differentiation of water bodies aquifers in parts of Konkan coast of Maharashtra, India. Journal of Coastal Conservation, 25: 1−9. DOI: 10.1007/s11852-021-00807-6. Nazari B, Keshavarz M. 2023. Water population density: Global and regional analysis. Theoretical and Applied Climatology, 153(1): 431−445. DOI: 10.1007/s00704-023-04473-6. Nazario MG, Kuria ZN, Gichaba CM. 2023. Groundwater potential assessment using remote sensing, geographical information system and electrical resistivity methods in crystalline terrain in Kapuri Area, Jubek State, South Sudan. IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG), 11(2): 49−62. DOI: 10.9790/0990-1102014962. Nugraha GU, Nur AA, Pranantya PA, et al. 2022. Analysis of groundwater potential zones using Dar-Zarrouk parameters in Pangkalpinang city, Indonesia. Environment, Development and Sustainability, 25(2): 1876−1898. DOI: 10.1007/s10668-021-02103-7. Offodile ME. 1992. An approach to groundwater study and development in Nigeria. Mecon Geology and Engineering Services Ltd., Jos: 247. Okogbue CO, Omonona OV. 2013. Potentiel en eaux souterraines de la région de socle d'Egbe-Mopa, dans le centre du Nigeria. Hydrological Sciences Journal, 58(4): 826−840. DOI: 10.1080/02626667.2013.775445. Olasehinde PI. 1999. An integrated geologic and geophysical exploration technique for groundwater in the basement complex of west central part of Nigeria. Water Resources, 10: 46−49. Olasehinde PI, Amadi AN, EO Enwedol, et al. 2016. Assessing the groundwater potential in Wuye distrtrct, Federal Capital Territory, Abuja, Nigeria. Development Journal of Science and Technology Research (DJOSTER), 5(1): 67–78. Olayinka AI. 1990. Electromagnetic profiling and resistivity soundings in groundwater investigation near Egbeda-Kabba, Kwara State. Journal of Mining and Geology, 26(2): 243–250. Olorunfemi MO, Fasuyi SA. 1993. Aquifer types and the geoelectric/hydrogeologic characteristic of part of the central basement terrain of Nigeria (Niger State). Journal of African Earth Sciences, 16(3): 309−317. DOI: 10.1016/0899-5362(93)90051-Q. Pal SC, Ghosh C, Chowdhuri I. 2020. Assessment of groundwater potentiality using geospatial techniques in Purba Bardhaman district, West Bengal. Applied Water Science, 10(10): 221. DOI: 10.1007/s13201-020-01302-3. Omada J, Ogoko E, Kelle H, et al. 2024. Water quality and health risk assessment of metals within the vicinity of Gosa dumpsite, Abuja Nigeria. Revista Colombiana de Ciencias Químico-Farmacéuticas, 53(1). DOI: 10.15446/rcciquifa.v53n1.110647. Rizwan MM. 2018. Hydrogeological analysis of shallow groundwater system around bangar area Dewas District Madhya Pradesh, using remote sensing data. Doctoral dissertation, Vikram University: 201. DOI: 10.13140/RG.2.2.15878.32327. Rojanasakul M, Flavelle C, Migliozzi B, et al. 2023. America is using up its groundwater like there's no tomorrow. The New York Times (Digital Edition), NA-NA. Sen Z. 2015. Practical and applied hydrogeology (Elsevier). DOI: 10.1016/B978-0-12-800075-5.05001-9. Sunkari ED, Kore BM, Abioui M. 2021. Hydrogeophysical appraisal of groundwater potential in the fractured basement aquifer of the federal capital territory, Abuja, Nigeria. Results in Geophysical Sciences, 5: 100012. DOI: 10.1016/j.ringps.2021.100012. Umar DUA, Ramli MF, Aris AZ, et al. 2019. Surface water resources management along Hadejia River Basin, northwestern Nigeria. h2Open Journal, 2(1): 184−199. DOI: 10.2166/h2oj.2019.010. Van der Meulen ES, Sutton NB, Van de Ven, et al. 2020. Trends in demand of urban surface water extractions and in situ use functions. Water Resources Management, 34: 4943−4958. DOI: 10.1007/s11269-020-02700-7. Wiederhold H, Kallesøe AJ, Kirsch R, et al. 2021. Geophysical methods help to assess potential groundwater extraction sites. Grundwasser, 26(4): 367−378. DOI: 10.1007/s00767-021-00495-x. Yusuf MA, Abiye TA. 2019. Risks of groundwater pollution in the coastal areas of Lagos, southwestern Nigeria. Groundwater for Sustainable Development, 9: 100222. DOI: 10.1016/j.gsd.2019.100222. Yusuf SN, Ishaku JM, Wakili WM. 2021. Estimation of Dar-Zarrouk parameters and delineation of groundwater potential zones in Karlahi, part of Adamawa Massif, Northeastern Nigeria. Warta Geologi, 47(2): 103−112. DOI: 10.7186/wg472202101.