• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Conventional and futuristic approaches for the computation of groundwater recharge: A comprehensive review

Shamla Rasheed Marykutty Abraham

Rasheed S, Abraham M. 2024. Conventional and futuristic approaches for the computation of groundwater recharge: A comprehensive review. Journal of Groundwater Science and Engineering, 12(4): 428-452 doi:  10.26599/JGSE.2024.9280027
Citation: Rasheed S, Abraham M. 2024. Conventional and futuristic approaches for the computation of groundwater recharge: A comprehensive review. Journal of Groundwater Science and Engineering, 12(4): 428-452 doi:  10.26599/JGSE.2024.9280027

doi: 10.26599/JGSE.2024.9280027

Conventional and futuristic approaches for the computation of groundwater recharge: A comprehensive review

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Table  1.   Empirical equations for recharge estimation

    Formula Name Equation (s) Parameter definition
    Chaturvedi Formula (Chaturvedi, 1973) Ganga-Yamuna doab region R= 2(P−15)0.4
    Modified Chaturvedi Formula - Ganga-Yamuna doab region R = 1.35(P−14)0.5
    Sehgal Formula (1973)- Punjab region R = 2.5 (P−16)0.5 P = rainfall (inch)
    Kumar and Seethapathi (2002) - Upper Ganga Canal command area R = 0.63 (P−15.28)0.76 R = recharge (inch)
    Mohan and Abraham (2010)- Cuddalore basin , Tamil Nadu R = 3.55 (P−40)0.42 P and R (cm)
    下载: 导出CSV

    Table  2.   Details of machine learning algorithms utilized in recent studies for groundwater level and recharge predictions.

    References Machine learning models Predictive evaluation metrics Input data Target prediction
    Emamgholizadeh et al. 2014 Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) Root-Mean-Square-Error (RMSE) and determination coefficient (R2) Rainfall recharge, irrigation returned flow and pumping rates from water wells Groundwater level (GWL)
    Pandey et al. 2020 ANN optimized with a Genetic Algorithm (GA-ANN) Coefficient of determination (R2), coefficient of efficiency (CE), correlation coefficient (r), Mean Absolute Deviation (MAD), RMSE, Coefficient of Variation of Error Residuals (CVER), Absolute Prediction Error (APE) and Performance Index (PI) Groundwater recharge, groundwater discharge and previous groundwater level data Seasonal groundwater table depth
    Derbela and Nouiri, 2020 ANN RMSE, R2, Nash–Sutcliffe (NASH) efficiency coefficient Monthly rainfall, evapotranspiration and initial water table level Monthly water table levels
    Dadhich et al. 2021 Time series forecasting models (Simple Exponential Smoothing, Holt's Trend Method, ARIMA) and ANN Root-Mean-Square-Error (RMSE) and determination coefficient (R2) Groundwater data GWL and quality parameters
    Pham et al. 2022 Random Tree (RT), Random Forest (RF), decision stump, M5P regression algorithm, Support Vector Machine (SVM), locally weighted linear regression (LWLR), and reduce error pruning tree (REP Tree) RMSE, Mean Absolute Error (MAE), Relative Absolute Error (RAE), Root Relative Squared Error (RRSE), Correlation Coefficient (CC), and Taylor diagram Historical GWL, mean temperature, rainfall, and relative humidity datasets Groundwater level (GWL)
    Huang et al. 2023 Top-down deep learning model (s-LSTM), bottom-up machine learning models (m-Linear, m-MLP, and m-LSTM) Root-Mean-Square-Error (RMSE), absolute errors between calibrated and predicted data Groundwater extraction, mean number of wet days per year, seasonal minimum temperature, seasonal rainfall, and seasonal actual evaporation Groundwater recharge
    Banerjee et al. 2024 Linear Regression model to the intricate Extreme Gradient Booting (xgboost) Inversive correlation and k-fold cross-validation Precipitation, Land Use Land Cover (LULC), soil type, land slope, temperature, potential evapotranspiration, and aridity index Groundwater recharge pattern under different climate change scenarios
    Ramadan and Boubaker, 2024 SVM, RF, Linear Regression (LR), and Gradient Boosting (GB) Mean Squared Error (MSE), R-squared (R2), Mean Absolute Error (MAE), Explained Variance Score (EVS), Mean Absolute Percentage Error (MAPE), and Median Absolute Error (medae) Weather data Water consumption, groundwater recharge
    Fahim et al. 2024 Multiple Linear Regression (MLR), regression trees, SVM, Gaussian Process Regression (GPR), and ANN Overall correlation coefficient (R) and MSE Groundwater storage (GWS) gridded data from the Global Land Data Assimilation System (GLDAS) and other data sources such as population, rainfall, temperature, irrigation, and elevation Groundwater level (GWL)
    下载: 导出CSV

    Table  3.   Brief outline of the various methods of estimation of groundwater recharge with their advantages, disadvantages and scope of application

    Zones Methods Climatic regions Advantages Disadvantages Scope of application
    Physical methods
    Surface water zone Channel Water Balance All Climatic Regions Analyzes recharge Rate based on transmission losses;Provides potential recharge values. Uncertainty issues due to inherent fluctuations in hydrologic cycle and related measurement mistakes;Overestimation due to bank storage/evapotranspiration/perched aquifer effects. Represent average recharge values over the reach between gauging stations;Temporal scales range from event scale to long-term summation of individual events.
    Seepage Meters All Climatic Regions Direct, Fast Measurement;Simple computation;Affordable;Rational on-site implementation. Point estimates of fluxes;Requires multiple measurements. Localized Recharge Estimation providing actual recharge values;Time scales range from individual events to days;Wide application range.
    Hydrograph Separation Method Humid Simple recharge estimator;No sophisticated instrument required;Estimates recharge over longer times by summing shorter time estimates. Not suitable for large basins with high pumpage, evapotranspiration, deep aquifer underflow and losing stream; Difficulty in separating flow components from bank storage effects. Watershed/catchment/regional level estimation providing net recharge values;Time scales range from months to years;Best for shallow water-table regions with gaining streams.
    Unsaturated zone techniques Lysimeter Method All Climatic Regions Percolate gathered by lysimeters closely approximates the recharge reaching the water table. High costs and impracticability in non-identical soils, drainage areas, deep rooted vegetation condition and sidewall flow.Overestimation due to changes in surface and subsurface flow routes;Point-estimate of recharge. Measures aquifer renewal rate;Used for local estimation at point scales;Temporal scale ranges from minutes to years, depending on drainage accuracy and lysimeter surface area;Wide application range.
    Zero Flux Plane Method All Climatic Regions Direct point estimation of potential groundwater recharge. Costly requires expensive devices and data;Fails with sufficient infiltration due to a positive hydraulic gradient;ZFP depth is not fixed and fluctuates throughout the year, ranging from a few centimeters to a few meters below the soil surface; Accurate determination requires special care and sensitive instruments, making it difficult to measure;Not applicable in wet areas. Applicable in areas with FP and deep water table;Cannot be used when water fluxes are downward or when water storage grows;Downward movement of a wetting front can obscure the zero-flux plane.
    Unstaurated Zone Flux Estimation Using Richards Eqution Arid/Semiarid Water draining below the root zone (or passing through unsaturated zone) contributes to recharge. Difficulties in measuring soil-water potential gradient at deeper layer/profile;Variabilities in hydraulic properties of field soil, field measured data of hydraulic properties, etc; Point estimate of recharge over a wide range of time;Does not indicate total recharge as it only accounts for diffuse or matrix flow. The minimum recharge rate that can be estimated using Richards equation depends on the accuracy of hydraulic conductivity and head gradient measurement.
    Saturated Zone Techniques Water Table Fluctuation Method All Climatic Regions Widely used method for estimating groundwater recharge based on groundwater levels; Applicable in arid and semiarid regions with shallow WT; Most promising and attractive approaches due to its accuracy, ease of use and low application cost in semiarid areas;Effective for analyzing short-term fluctuations in water levels in shallow water tables and for determining long-term recharge changes induced by climate or land-use change. Not suitable for deep aquifers due to the delayed rise in WT; Time intervals for recording/ measurement should consider wet/dry spell length, aquifer depth, and recharge estimation objective;Accumulated errors from other fluxes can lead to significant mistakes. Applicable to unconfined aquifer only; Used for local to catchment/regional level estimation providing actual recharge values; Rates for recharge range from tens to hundreds or thousands of meters;Time spans range from event scale to hydrographic record length.
    Chemical methods
    Surface Water Zone Heat Tracer Arid/Semiarid Measures surface water infiltration and flow through ephemeral rivers; Alternative to flow measurements in semi-arid regions prone to erosion. Point estimate of recharge. Uses a variably saturated flow model to estimate sediment hydraulic conductivity and percolation rates based on temperature fluctuations and matric potential from heat dissipation sensors.
    Isotopic Tracer All Climatic Regions Direct method for field surveys;Accurate results without absorption or tracer loss;Requires only one-time sampling, allowing for smaller flux estimates;Doesn't require frequent field visits. Radioactive material may not be permitted in all areas due to environmental protection laws;Requires costly instruments for reading samples and technical operation;Point estimates of recharge require multiple measurements;Difficulties in soil sampling at greater depths and locating tracer peak;Water content within root zone is underestimated due to evapotranspiration. Application of tracer at multiple sites and appropriate averaging of the results can give more realistic value of recharge;Understanding groundwater flow patterns, age, recharge zones, losses, and interactions with surface waters.
    Unsaturated Zone Techniques Environmental Tracer Arid/Semiarid Chloride Mass Balance (CMB) Model for Recharge Rate Estimation;Cost-effective and environmentally friendly;Accurately estimates recharge rates;Conserves atmospheric inputs;Provides integrated value. Ambiguity in determining chloride concentration in wet/dry deposition;Extreme rainfall affects concentration;CMB method relies on runoff for Cl concentration causes errors in humid regions; Provides precise recharge rate approximation for a few years to longer periods;Used for local to catchment/regional level estimation providing potential estimates if withdrawals greater than recharge.
    Historical Tracer Arid/Semiarid No extra hazard;No extra cost of tracer;Historical tracers provide point estimates of water flux over the last 50 years. Uncertainties regarding tracer location and concentration; Difficulties of soil sampling at greater depths and locating tracer peaks in areas with higher recharge rate;Water fluxes estimated from tracers within the root zone can overestimate water fluxes below the root zone due to evapotranspiration. Historical tracers or event markers such as bomb-pulse tritium (3H) has been widely used in the past in both unsaturated and saturated zones to estimate recharge.
    Applied Tracer Humid No environmental hazard;Easy to apply and sampling;Low cost; Visual observation is possible for visible dyes;Provides precise recharge estimations as they are unaffected by surface runoff and other water balance component and driven only by recharge component. Observed recharge rate will be higher than actual due to preferential pathways;Negligible concentration towards greater depth with insufficient initial concentration; Tracers don't directly measure water flow, leading to over- or under-estimation;Issues with secondary tracer inputs, mixing, and dual flow mechanisms;Technique yields point estimates of recharge through soil matrix only;Low recharge rate calculation due to the slow movement of tracer through root zone. Calculated recharge rates represent the time between application and sampling;Used for local to catchment/regional level estimation providing potential estimates if withdrawals exceed recharge.
    Saturated Zone Techniques Ground Water Dating/Aging All Climatic Regions Easy to implement if the instrument for reading the sample is available;No additional field setting/experiment is needed. Costly instrument;Variation of isotopic signature with depth may occur due to various reasons; Multiple sampling throughout the depth up to aquifer is needed;Neoconservative nature;Lack of mass balance research;Affected by contamination;High cost, and specialized personnel requirements. Used for local to catchment/regional level estimation giving actual recharge values; Range is not limited; The temporal scales represented by the recharge values range from years to long term average.
    Numerical models
    All Hydrological Zones Numerical Modelling All Climatic Regions Requires less data;Can model large areas and complex conditions; Can provide the missing information;Calibrated models can assess spatial and temporal distribution and Scenarios;Can provide a predictive tool to quantify impacts on the system; Higher generalization ability than AI models. Computationally intensive due to iterative techniques; Simulation models may display errors in parameter estimation, measurement errors, and application scale due to inherent assumptions and validation processes;Complexity in model preparation, realistic problem description and result evaluation. Numerical relationship between basiccomponents in the water budget method is used; Provides the recharge estimate as a residual term;Used for catchment to regional level estimation; Range is medium to large basins; Temporal scales represented by the recharge values range from months to years.
    Machine learning algorithms
    All Hydrological Zones Machine Learning/Deep Learning All Climatic Regions Improves calibration of numerical models;Requires fewer input parameters, reducing computational times without sacrificing accuracy of detail;Easy to use with reasonable accuracy without needing to understand the system's physics;Deep learning models are robust, relying on significant predictors, so eliminating any predictor doesn't affect the system. Lack of understanding the underlying physical process; Lower generalization ability due to overtraining; Require a high number of models runs for optimization, sensitivity / uncertainty analysis;Lengthy calibration and prediction time;Spatial recharge dynamics is not covered as it is data intensive;Short forecast time period; Not suitable for large research areas. Effective for groundwater management when used in combination with numerical models;Machine learning models can improve numerical models especially with limited field data, enabling accurate prediction at specific locations using various codes and software.
    下载: 导出CSV
  • Abd-Elmaboud ME, Abdel-Gawad HA, El-Alfy KS, et al. 2021. Estimation of groundwater recharge using simulation-optimization model and cascade forward ANN at East Nile Delta aquifer, Egypt. Journal of Hydrology: Regional Studies, 34: 100784−100790. DOI: 10.1016/j.ejrh.2021.100784.
    Abraham M, Mohan S. 2019. Effectiveness of check dam and percolation pond with percolation wells for artificial groundwater recharge using groundwater models. Water Supply, 19(7): 2107−2115. DOI: 10.2166/ws.2019.091.
    Adomako D, Maloszewski P, Stumpp C, et al. 2010. Estimating groundwater recharge from water isotope (δ2H, δ18O) depth profiles in the Densu River Basin, Ghana. Hydrological Sciences Journal, 55(8): 1405−1416. DOI: 10.1080/02626667.2010.527847.
    Ahmadi A, Olyaei M, Heydari Z, et al. 2022. Groundwater level modeling with machine learning: A systematic review and meta-analysis. Water, 14(6): 949−955. DOI: 10.3390/w14060949.
    Ahmed AN, Yafouz A, Birima AH, et al. 2022. Water level prediction using various machine learning algorithms: A case study of Durian Tunggal River, Malaysia. Engineering Applications of Computational Fluid Mechanics, 16(1): 422−440. DOI: 10.1080/19942060.2021.2019128.
    Ali MH. 2017. Quantifying natural groundwater recharge using tracer and other techniques. Asian Journal of Environment & Ecology, 5(1): 1−12. DOI: 10.9734/AJEE/2017/36811.
    Ali MH, Mubarak S. 2017. Approaches and methods of quantifying natural groundwater recharge–a review. Asian Journal of Environment & Ecology, 5(1): 1−27. DOI: 10.9734/AJEE/2017/36987.
    Ali MH, Islam MA. 2020. Application of tracer method in determining groundwater recharge: A case study at Mymensingh Area, Bangladesh. Research and Development in Agricultural Sciences, 2: 106−116. DOI: 10.9734/bpi/rdas/v2.
    Allison GB, Hughes MW. 1983. The use of natural tracers as indicators of soil-water movement in a temperate semi-arid region. Journal of Hydrology, 60(1-4): 157−173. DOI: 10.1016/0022-1694(83)90019-7.
    Allison GB, Gee GW, Tyler SW. 1994. Vadose-zone techniques for estimating groundwater recharge in arid and semiarid regions. Soil Science Society of America Journal, 58(1): 6−14. DOI: 10.2136/sssaj1994.03615995005800010002x.
    Anh DT, Pandey M, Mishra VN, et al. 2023. Assessment of groundwater potential modeling using support vector machine optimization based on Bayesian multi-objective hyperparameter algorithm. Applied Soft Computing, 132: 109848. DOI: 10.1016/j.asoc.2022.109848.
    Asoka A, Wada Y, Fishman R, et al. 2018. Strong linkage between precipitation intensity and monsoon season groundwater recharge in India. Geophysical Research Letters, 45(11): 5536−5544. DOI: 10.1029/2018GL078466.
    Bak GM, Bae YC. 2019. Groundwater level prediction using ANFIS algorithm. The Journal of the Korea Institute of Electronic Communication Sciences, 14(6): 1235−1240. DOI: 10.13067/JKIECS.2019.14.6.1235.
    Banerjee D, Ganguly S, Kushwaha S. 2024. Forecasting future groundwater recharge from rainfall under different climate change scenarios using comparative analysis of deep learning and ensemble learning techniques. Water Resources Management, 1-19. DOI: 10.1007/s11269-024-03850-8.
    Batelaan O, De Smedt F. 2007. GIS-based recharge estimation by coupling surface–subsurface water balances. Journal of Hydrology, 337(3-4): 337−355. DOI: 10.1016/j.jhydrol.2007.02.001.
    Beyene TD, Zimale FA, Gebrekristos ST. 2024. A review on sources of uncertainties for groundwater recharge estimates: Insight into data scarce tropical, arid, and semiarid regions. Hydrology Research, 55(1): 51−66. DOI: 10.2166/nh.2023.221.
    Breiman L. 2001. Random forests. Machine learning, 45: 5−32. DOI: 10.1023/A:1010933404324.
    Brunner P, Simmons CT. 2012. Hydro Geosphere: A fully integrated, physically based hydrological model. Groundwater, 50(2): 170−176. DOI: 10.1111/j.1745-6584.2011.00882.x.
    Chapman T. 1999. A comparison of algorithms for stream flow recession and baseflow separation. Hydrological Processes, 13(5): 701−714. DOI: 10.1002/(SICI)1099-1085(19990415)13:5%3C701.
    Chaturvedi RS. 1973. A note on the investigation of groundwater resources in western districts of Uttar Pradesh, Annual Report. UP Irrigation Research Institute: 86–122.
    Chen ZY, Wan L, Nie ZL, et al. 2006. Identification of groundwater recharge in the Heihe Basin using environmental isotopes. Hydrogeology & Engineering Geology, 6: 9−14. DOI: 10.3969/j.issn.1000-3665.2006.06.003.
    Chen X, Zhang ZC, Zhang XN, et al. 2008. Estimation of groundwater recharge from precipitation and evapotranspiration by lysimeter measurement and soil moisture model. Journal of Hydrologic Engineering, 13(5): 333−340. DOI: 10.1061/(ASCE)1084-0699(2008)13:5(333).
    Chen X, Huang Y, Ling M, et al. 2012. Numerical modeling groundwater recharge and its implication in water cycles of two interdunal valleys in the Sand Hills of Nebraska. Physics and Chemistry of the Earth, Parts A/B/C, 53-54: 10–18. DOI: 10.1016/j.pce.2011.08.022.
    Cheng D, Wang W, Zhan H, et al. 2020. Quantification of transient specific yield considering unsaturated-saturated flow. Journal of hydrology, 580: 124043. DOI: 10.1016/j.jhydrol.2019.124043.
    Cook PG, Bohlke JK. 2000. Determining timescales for groundwater flow and solute transport. In: Cook PG, Herczeg AL. (eds) Environmental Tracers in Subsurface Hydrology. Springer, Boston, MA: 1–30. DOI: 10.1007/978-1-4615-4557-6_1.
    Cook PG, Solomon DK. 1995. Transport of atmospheric trace gases to the water table: Implications for groundwater dating with chlorofluorocarbons and krypton 85. Water Resources Research, 31(2): 263−270. DOI: 10.1029/94WR02232.
    Cooper JD, Gardner CM, Mackenzie N. 1990. Soil controls on recharge to aquifers. Journal of Soil Science, 41(4): 613−630. DOI: 10.1111/j.1365-2389.1990.tb00231.x.
    Coplen TB. 1993. Uses of environmental isotopes: Regional ground-water quality. van Nostrand Reinhold, 227-254.
    Dang XY, Zhang MS. 2008. Mode of occurrence of karst groundwater in the Northern Shaanxi Energy and Chemical Industry Base and its influence factors. Geological Bulletin of China, 27(08): 1138−1142.
    Daniel EB, Camp JV, LeBoeuf EJ, et al. 2011. Watershed modeling and its applications: A state-of-the-art review. The Open Hydrology Journal, 5: 26−50. DOI: 10.2174/1874378101105010026.
    De Vries JJ, Simmers I. 2002. Groundwater recharge: An overview of processes and challenges. Hydrogeology Journal, 10: 5−17. DOI: 10.1007/s10040-001-0171-7.
    Delin GN, Healy RW, Landon MK, et al. 2000. Effects of topography and soil properties on recharge at two sites in an agricultural Field 1. Journal of the American Water Resources Association, 36(6): 1401−1416. DOI: 10.1111/j.1752-1688.2000.tb05735.x.
    Dereje B, Nedaw D. 2019. Groundwater recharge estimation using WetSpass modeling in Upper Bilate Catchment, Southern Ethiopia. Momona Ethiopian Journal of Science, 11(1): 37−51. DOI: 10.4314/mejs.v11i1.3.
    Derbela M, Nouiri I. 2020. Intelligent approach to predict future groundwater level based on Artificial Neural Networks (ANN). Euro-Mediterranean Journal for Environmental Integration, 5: 51. DOI: 10.1007/s41207-020-00185-9.
    Di Salvo C. 2022. Improving results of existing groundwater numerical models using machine learning techniques: A review. Water, 14(15): 2307−2315. DOI: 10.3390/w14152307.
    Eckhardt K. 2008. A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. Journal of Hydrology, 352(1): 168−173. DOI: 10.1016/j.jhydrol.2008.01.005.
    Edmunds WM, Gaye CB. 1994. Estimating the spatial variability of groundwater recharge in the Sahel using chloride. Journal of Hydrology, 156(1-4): 47−59. DOI: 10.1016/0022-1694(94)90070-1.
    Facchi A, Ortuani B, Maggi D, et al. 2004. Coupled SVAT–groundwater model for water resources simulation in irrigated alluvial plains. Environmental Modelling & Software, 19(11): 1053−1063. DOI: 10.1016/j.envsoft.2003.11.008.
    Fahim AKF, Kamal AM, Shahid S. 2024. Modeling spatial groundwater level patterns of Bangladesh using physio-climatic variables and machine learning algorithms. Groundwater for Sustainable Development, 25: 101142. DOI: 10.1016/j.gsd.2024.101142.
    Feddes RA, Kabat P, Van Bakel P, et al. 1988. Modelling soil water dynamics in the unsaturated zone—state of the art. Journal of Hydrology, 100(1-3): 69−111. DOI: 10.1016/0022-1694(88)90182-5.
    Feddes RA, Kowalik P, Kolinska MK, et al. 1976. Simulation of field water uptake by plants using a soil water dependent root extraction function. Journal of Hydrology, 31(1-2): 13−26. DOI: 10.1016/0022-1694(76)90017-2.
    Flint AL, Flint LE, Kwicklis EM, et al. 2002. Estimating recharge at Yucca Mountain, Nevada, USA: Comparison of methods. Hydrogeology Journal, 10: 180−204. DOI: 10.1007/s10040-001-0169-1.
    Gee GW, Hillel D. 1988. Groundwater recharge in arid regions: Review and critique of estimation methods. Hydrological processes, 2(3): 255−266. DOI: 10.1002/hyp.3360020306.
    Giudici M. 2023. Modeling water flow in variably saturated porous soils and alluvial sediments. Sustainability, 15(22): 15723−15730. DOI: 10.3390/su152215723.
    Gong C, Zhang Z, Wang W, et al. 2021. An assessment of different methods to determine specific yield for estimating groundwater recharge using lysimeters. Science of the Total Environment, 788: 147799. DOI: 10.1016/j.scitotenv.2021.147799.
    Gong C, Cook PG, Therrien R, et al. 2023. On groundwater recharge in variably saturated subsurface flow models. Water Resources Research, 59(9): DOI: 10.1029/2023WR034920.
    Healy RW, Cook PG. 2002. Using groundwater levels to estimate recharge. Hydrogeology Journal, 10(January): 91−109. DOI: 10.1007/s10040-001-0178-0.
    Healy RW. 2010. Estimating groundwater recharge, Cambridge University Press, Cambridge. DOI: 10.1017/CBO9780511780745.
    Hendrickx JMH. 1992. Groundwater recharge. A guide to understanding and estimating natural recharge (Volume 8, International Contributions to Hydrogeology). Journal of Environmental Quality, 21(3): 512–520. DOI: 10.2134/jeq1992.00472425002100030036x.
    Hsieh PA, Wingle WL, Healy RW. 2000. VS2DI-A graphical software package for simulating fluid flow and solute or energy transport in variably saturated porous media. Water-Resources Investigations Report. US Geological Survey. DOI: 10.3133/wri994130.
    Huang X, Gao L, Crosbie RS, et al. 2019. Groundwater recharge prediction using Linear Regression, multi-Layer perception network and deep learning. Water, 11(9): 1879−1897. DOI: 10.3390/w11091879.
    Huang X, Gao L, Zhang N, et al. 2023. A top-down deep learning model for predicting spatio-temporal dynamics of groundwater recharge. Environmental Modelling & Software, 167: 105778. DOI: 10.1016/j.envsoft.2023.105778.
    Hughes A, Mansour M, Ward R, et al. 2021. The impact of climate change on groundwater recharge: National-scale assessment for the British mainland. Journal of Hydrology, 598(July): 126336. DOI: 10.1016/j.jhydrol.2021.126336.
    Hussein EA, Thron C, Ghaziasgar M, et al. 2020. Groundwater prediction using machine-learning tools. Algorithms, 13(11): 300. DOI: 10.3390/a13110300.
    Jasechko S. 2019. Global isotope hydrogeology-review. Reviews of Geophysics, 57(3): 835−965. DOI: 10.1029/2018RG000627.
    Kemper KE. 2004. Groundwater from development to management. Hydrogeology Journal, 12(February): 3−5. DOI: 10.1007/s10040-003-0305-1.
    Kendy E, Gérard-Marchant P, Todd WM, et al. 2003. A soil-water-balance approach to quantify groundwater recharge from irrigated cropland in the North China Plain. Hydrological Processes, 17(10): 2011−2031. DOI: 10.1002/hyp.1240.
    Khalil M, Sakai M, Mizoguchi M, et al. 2003. Current and prospective applications of Zero Flux Plane (ZFP) method. Journal of the Japanese Society of Soil Physics, 95: 75−90. DOI: 10.34467/jssoilphysics.95.0_75.
    Kinzelbach W, Aeschbach W, Alberich C, et al. 2002. A survey of methods for analyzing groundwater recharge in arid and semi-arid regions (Vol. 2). Early Warning and Assessment Report Series, UNEP/DEWA/RS. 02-2. United Nations Environment Programme, Nairobi, ISBN 92-80702131-80702133.
    Kumar CP, Seethapathi PV. 2002. Assessment of natural groundwater recharge in Upper Ganga Canal command area. Journal of Applied Hydrology, 15(4): 13-20.
    Kumar CP. 2004. Groundwater flow models: An overview. In groundwater modelling and management. Ghosh NC, Sharma KD (Eds.), Capital Publishing Company: New Delhi: 153–178.
    Kumar CP. 2012. Climate change and its impact on groundwater resources. International Journal of Engineering and Science, 1(5): 43–60.
    Kuruppath N, Raviraj A, Kannan B, et al. 2018. Estimation of groundwater recharge using water table fluctuation method. International Journal of Current Microbiology and Applied Sciences, 7(10): 3404−3412. DOI: 10.20546/ijcmas.2018.710.395.
    Kurylyk BL, Irvine DJ, Carey SK, et al. 2017. Heat as a groundwater tracer in shallow and deep heterogeneous media: Analytical solution, spreadsheet tool, and field applications. Hydrological Processes, 31(4): 2648−2661. DOI: 10.1002/hyp.11216.
    Lapham W. 1989. Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity. Technical Report NO.2337, Department of the Interior, US Geological Survey Open-File Report, USGPO: 5–44. DOI: 10.3133/wsp2337.
    Lee DR, Cherry JA. 1979. A field exercise on groundwater flow using seepage meters and mini-piezometers. Journal of Geological Education, 27(1): 6−10. DOI: 10.5408/0022-1368-27.1.6.
    Leibundgut C, Maloszewski P, Külls C, et al. 2009. Tracers in hydrology. John Wiley & Sons, Ltd. 5−12. DOI: 10.1002/9780470747148.
    Lerner DN. 1990. Groundwater recharge in urban areas. Atmospheric Environment. Part B. Urban Atmosphere, 24(1): 29−33. DOI: 10.1016/0957-1272(90)90006-G.
    Liaw A, Wiener M. 2002. Classification and regression by random Forest. R news, 2(3): 18−22. DOI: 10.32614/RJ-2002-028.
    McConville C, Kalin RM, Johnston H, et al. 2001. Evaluation of recharge in a small temperate catchment using natural and applied δ18O profiles in the unsaturated zone. Groundwater, 39(4): 616−623. DOI: 10.1111/j.1745-6584.2001.tb02349.x.
    McDonald MG, Harbaugh AW. 1988. A modular three-dimensional finite-difference ground-water flow model. Techniques of Water-Resources Investigations 06-A1. US Geological Survey. DOI: 10.3133/twri06A1.
    Mekonen SS, Boyce SE, Mohammed AK, et al. 2023. Recharge estimation approach in a Data-Scarce semi-arid region, Northern Ethiopian Rift Valley. Sustainability, 15(22): 15887. DOI: 10.3390/su152215887.
    Moeck C, Grech-Cumbo N, Podgorski J, et al. 2020. A global-scale dataset of direct natural groundwater recharge rates: A review of variables, processes and relationships. Science of the Total Environment, 717: 137042. DOI: 10.1016/j.scitotenv.2020.137042.
    Mogaji KA, Lim HS, Abdullah K. 2015. Modeling of groundwater recharge using a Multiple Linear Regression (MLR) recharge model developed from geophysical parameters: A case of groundwater resources management. Environmental Earth Sciences, 73(July): 1217−1230. DOI: 10.1007/s12665-014-3476-2.
    Mohan S, Abraham M. 2010. Derivations of simple site-specific recharge-precipitation relationships: A case study from the Cuddalore Basin, India. Environmental Geosciences, 17(1): 37−44. DOI: 10.1306/eg.07170909010.
    Mohan S, Pramada SK. 2023. Natural groundwater recharge estimation using multiple methods combined with an experimental study. Water Supply, 23(5): 1972−1986. DOI: 10.2166/ws.2023.090.
    Naghibi SA, Moghaddam DD, Kalantar B, et al. 2017. A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping. Journal of Hydrology, 548(May): 471−483. DOI: 10.1016/j.jhydrol.2017.03.020.
    Nathan RJ, McMahon TA. 1990. Evaluation of automated techniques for base flow and recession analyses. Water Resources Research, 26(7): 1465−1473. DOI: 10.1029/WR026i007p01465.
    Nativ R, Adar E, Dahan O, et al. 1995. Water recharge and solute transport through the vadose zone of fractured chalk under desert conditions. Water Resources Research, 31(2): 253−261. DOI: 10.1029/94WR02536.
    Nimmo JR, Healy RW, Stonestrom DA. 2005. Aquifer Recharge. Encyclopedia of Hydrological Science: Part 13, Groundwater, 4: 2229–2246. DOI: 10.1002/0470848944.hsa161a.
    Osman AI, Ahmed AN, Chow MF, et al. 2021. Extreme gradient boosting (Xgboost) model to predict the groundwater levels in Selangor Malaysia. Ain Shams Engineering Journal, 12(2): 1545−1556. DOI: 10.1016/j.asej.2020.11.011.
    Park E. 2012. Delineation of recharge rate from a hybrid water table fluctuation method. Water Resources Research, 48(7): 1−6. DOI: 10.1029/2011WR011696.
    Rajaee T, Ebrahimi H, Nourani V. 2019. A review of the artificial intelligence methods in groundwater level modeling. Journal of hydrology, 572(May): 336−351. DOI: 10.1016/j.jhydrol.2018.12.037.
    Reichstein M, Camps-Valls G, Stevens B, et al. 2019. Deep learning and process understanding for data-driven Earth system science. Nature, 566(7743): 195−204. DOI: 10.1038/s41586-019-0912-1.
    Reynolds D. 2009. Gaussian mixture models, Encyclopedia of Biometrics, Springer US, Boston, MA: 659–663. DOI: 10.1007/978-0-387-73003-5_196.
    Richards LA. 1931. Capillary conduction of liquids through porous mediums. Journal of Applied Physics, 1(5): 318−333. DOI: 10.1063/1.1745010.
    Rosenberry DO, Duque C, Lee DR. 2020. History, and evolution of seepage meters for quantifying flow between groundwater and surface water: Part 1 – Freshwater settings. Earth-Science Reviews, 204(May): 103167. DOI: 10.1016/j.earscirev.2020.103167.
    Ross PJ. 1990. SWIM: A simulation model for soil water infiltration and movement: Reference manual. CSIRO Division of Soils, Report No. 59.
    Sajil Kumar PJ, Schneider M, Elango L, et al. 2021. The State-of-the-Art estimation of groundwater recharge and water balance with a special emphasis on India: A critical review. Sustainability, 14(1): 340. DOI: 10.3390/su14010340.
    Sanford W. 2002. Recharge and groundwater models: An overview. Hydrogeology Journal, 10(1): 110−120. DOI: 10.1007/s10040-001-0173-5.
    Scanlon BR. 2000. Uncertainties in estimating water fluxes and residence times using environmental tracers in an arid unsaturated zone. Water Resources Research, 36(2): 395−409. DOI: 10.1029/1999WR900240.
    Scanlon BR, Healy RW, Cook PG. 2002. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10(January): 18−39. DOI: 10.1007/s10040-001-0176-2.
    Sehgal SR. 1973. Ground water resources of Punjab State. Third Annual Research Session, Central Board of Irrigation and Power, New Delhi, India.
    Sena D, Nagwani NK. 2016. A time-series forecasting-based prediction model to estimate groundwater levels in India. Current Science, 111(6): 1083−1090. DOI: 10.18520/cs/v111/i6/1083-1090.
    Shamsi E, Ziaei AN, Naghedifar SM, et al. 2020. Groundwater recharge assessment of different irrigation scenarios by using unsaturated zone modeling (case study: Neishabour plain). Iranian Journal of Soil and Water Research, 51(2): 311−323. DOI: 10.22059/ijswr.2019.282466.668222.
    Sharafati A, Asadollah SB, Neshat A. 2020. A new artificial intelligence strategy for predicting the groundwater level over the Rafsanjan aquifer in Iran. Journal of Hydrology, 591(December): 125468. DOI: 10.1016/j.jhydrol.2020.125468.
    Shu Y, Wang HQ. 2005. The development of groundwater management models. Hydrogeology and Engineering Geology, 32 (6): 85-90. DOI: 10.3969/j.issn.1000-3665.2005.06.021.
    Sihag P, Angelaki A, Chaplot B. 2020. Estimation of the recharging rate of groundwater using random forest technique. Applied Water Science, 10(182): 1−11. DOI: 10.1007/s13201-020-01267-3.
    Simmers I. 1998. Groundwater recharge: An overview of estimation 'problems' and recent developments. Geological Society, London, Special Publications, 130: 107–115. DOI: 10.1144/GSL.SP.1998.130.01.10.
    Simunek J, Sejna M, Van Genuchten MT. 1998. The Hydrus-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media, Version 1.0, IGWMC - TPS - 70, International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado: 186.
    Simunek J, Van Genuchten MT, Sejna M. 2005. The HYDRUS software package for simulating one-, two-, and three-dimensional movement of water, heat, and multiple solutes in variably-saturated porous media, technical manual II, Hydrus 2D/3D. Version 5.0, PC Progress, Prague, Czech Republic: 283.
    Sophocleous M, Perkins SP. 2000. Methodology and application of combined watershed and ground-water models in Kansas. Journal of Hydrology, 236(3-4): 185−201. DOI: 10.1016/S0022-1694(00)00293-6.
    Sophocleous M. 2002. Interactions between groundwater and surface water: The state of the science. Hydrogeology Journal, 10(January): 52−67. DOI: 10.1007/s10040-001-0170-8.
    Sophocleous MA. 1991. Combining the soil-water balance and water-level fluctuation methods to estimate natural groundwater recharge: Practical aspects. Journal of Hydrology, 124(3-4): 229−241. DOI: 10.1016/0022-1694(91)90016-B.
    Stepanov S, Spiridonov D, Mai T. 2023. Prediction of numerical homogenization using deep learning for the Richards equation. Journal of Computational and Applied Mathematics, 424(May): 114980. DOI: 10.1016/j.cam.2022.114980.
    Stern MA, Flint LE, Flint AL et al. 2021. A Basin-scale approach to estimating recharge in the desert: Anza-Cahuilla groundwater Basin, CA. Journal of the American Water Resources Association, 57(6): 990–1003. DOI: 10.1111/1752-1688.12971.
    Stonestrom DA, Constantz J. 2003. Heat as a tool for studying the movement of groundwater near streams. Technical Report US Geological Survey Circular, 1260: 1−96. DOI: 10.3133/cir1260.
    Sun FQ, Yin LH, Jia WH, et al. 2020. Soil water movement and deep drainage through thick vadose ones on the northern slope of the Tianshan Mountain: Croplands vs natural lands. China Geology, 3(1): 113−123. DOI: 10.31035/cg2020008.
    Tao H, Hameed MM, Marhoon HA, et al. 2022. Groundwater level prediction using machine learning models: A comprehensive review. Neurocomputing, 489(June): 271−308. DOI: 10.1016/j.neucom.2022.03.014.
    Tladi TM, Ndambuki JM, Olwal TO, et al. 2023. Groundwater level trend analysis and prediction in the Upper Crocodile (West) Basin, South Africa. Water, 15(17): 3025. DOI: 10.3390/w15173025.
    Trefry MG, Muffels C. 2007. FEFLOW: A finite-element groundwater flow and transport modeling tool. Groundwater, 45(5): 525−528. DOI: 10.1111/j.1745-6584.2007.00358.x.
    Van Genuchten MT. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5): 892–898. DOI: 10.2136/sssaj1980.03615995004400050002x.
    Wang D, Tang Y. 2024. Analysis of groundwater level dynamic characteristics and influencing factors in Valley Plain of Lhasa City. Geological Bulletin of China, 43(6): 971−983. (in Chinese) DOI: 10.12097/gbc.2022.07.051.
    Wood WW, Sanford WE. 1995. Chemical and isotopic methods for quantifying ground-water recharge in a regional, semiarid environment. Groundwater, 33(3): 458−468. DOI: 10.1111/j.1745-6584.1995.tb00302.x.
    Yeh GT, Huang G, Cheng HP, et al. 2006. A first-principle, physics-based watershed model: WASH123D. Watershed models, 211: 244. DOI: 10.1201/9781420037432.ch9.
    Zeinali M, Azari A, Heidari MM. 2020. Simulating unsaturated zone of soil for estimating the recharge rate and flow exchange between a river and an aquifer. Water Resources Management, 34(1-2): 425−443. DOI: 10.1007/s11269-019-02458-7.
    Zeng J, Xie L, Liu ZQ. 2008. Type-2 Fuzzy Gaussian Mixture models. Pattern Recognition, 41(12): 3636−3643. DOI: 10.1016/j.patcog.2008.06.006.
    Zhang L, Walker GR, Fleming M. 2002. Surface water balance for recharge estimation-Part 9. Csiro Publishing. DOI: 10.1071/9780643105416.
    Zhang X, Wang N, Cao L, et al. 2024. Analysis of the contribution of rainfall to recharge in the Mu Us Desert (China) based on lysimeter data. Hydrogeology Journal, 32(1): 279−288. DOI: 10.1007/s10040-023-02750-2.
    Zhao W, Lin YZ, Zhou PP, et al. 2021. Characteristics of groundwater in Northeast Qinghai-Tibet Plateau and its response to climate change and human activities: A case study of Delingha, Qaidam Basin. China Geology, 4(3): 377−388. DOI: 10.31035/cg2021053.
    Zyvoloski G. 2007. FEHM: A control volume finite element code for simulating subsurface multi-phase multi-fluid heat and mass transfer. The subsurface flow and transport team at the Los Alamos National Laboratory (LANL). LAUR-07-3359.
  • [1] Jwan Sabah Mustafa, Dana Khider Mawlood2024:  Developing three-dimensional groundwater flow modeling for the Erbil Basin using Groundwater Modeling System (GMS), Journal of Groundwater Science and Engineering, 12, 178-189. doi: 10.26599/JGSE.2024.9280014
    [2] Jun Zhang, Rong-zhe Hou, Kun Yu, Jia-qiu Dong, Li-he Yin2024:  Impact of water table on hierarchically nested groundwater flow system, Journal of Groundwater Science and Engineering, 12, 119-131. doi: 10.26599/JGSE.2024.9280010
    [3] Zhe Wang, Li-juan Wang, Jian-mei Shen, Zhen-long Nie, Le Cao, Ling-qun Meng2024:  Groundwater recharge via precipitation in the Badain Jaran Desert, China, Journal of Groundwater Science and Engineering, 12, 109-118. doi: 10.26599/JGSE.2024.9280009
    [4] Yi-hang Gao, Jun-hui Shen, Lin Chen, Xiao Li, Shuang Jin, Zhen Ma, Qing-hua Meng2023:  Influence of underground space development mode on the groundwater flow field in Xiong’an new area, Journal of Groundwater Science and Engineering, 11, 68-80. doi: 10.26599/JGSE.2023.9280007
    [5] Rui-fang Meng, Hui-feng Yang, Xi-lin Bao, Bu-yun Xu, Hua Bai, Jin-cheng Li, Ze-xin Liang2023:  Optimizing groundwater recharge plan in North China Plain to repair shallow groundwater depression zone, China, Journal of Groundwater Science and Engineering, 11, 133-145. doi: 10.26599/JGSE.2023.9280012
    [6] Abebe Wondmagegn Taye2022:  Evaluation of groundwater resource potential by using water balance model: A case of Upper Gilgel Gibe Watershed, Ethiopia, Journal of Groundwater Science and Engineering, 10, 209-222. doi: 10.19637/j.cnki.2305-7068.2022.03.001
    [7] Yu Chu, Wu Li-jie, Zhang Yi-long, Wang Xiu-ya, Wang Zhan-chuan, Zhang Zhou2022:  Effect of groundwater on the ecological water environment of typical inland lakes in the Inner Mongolian Plateau, Journal of Groundwater Science and Engineering, 10, 353-366. doi: 10.19637/j.cnki.2305-7068.2022.04.004
    [8] Zhang Han, Chen Zong-yu, Tang Chang-yuan2021:  Quantifying groundwater recharge and discharge for the middle reach of Heihe River of China using isotope mass balance method, Journal of Groundwater Science and Engineering, 9, 225-232. doi: 10.19637/j.cnki.2305-7068.2021.03.005
    [9] Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip2020:  Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand, Journal of Groundwater Science and Engineering, 8, 10-19. doi: 10.19637/j.cnki.2305-7068.2020.01.002
    [10] SADIKI Moulay Lhassan, EL MANSOURI Bouabid, BENSEDDIK Badr, CHAO Jamal, KILI Malika, EL MEZOUARY Lhoussaine2019:  Improvement of groundwater resources potential by artificial recharge technique: A case study of Charf El Akab aquifer in the Tangier region, Morocco, Journal of Groundwater Science and Engineering, 7, 224-236. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.003
    [11] LI Lu-lu, SU Chen, HAO Qi-chen, SHAO Jing-li2018:  Numerical simulation of response of groundwater flow system in inland basin to density changes, Journal of Groundwater Science and Engineering, 6, 7-17. doi: 10.19637/j.cnki.2305-7068.2018.01.002
    [12] SONG Chao, HAN Gui-lin, WANG Pan, SHI Ying-chun, HE Ze2017:  Hydrochemical and isotope characteristics of spring water discharging from Qiushe Loess Section in Lingtai, northwestern China and their implication to groundwater recharge, Journal of Groundwater Science and Engineering, 5, 364-373.
    [13] NAN Tian, SHAO Jing-li, CUI Ya-li2016:  Column test-based features analysis of clogging in artificial recharge of groundwater in Beijing, Journal of Groundwater Science and Engineering, 4, 88-95.
    [14] CHENG Tang-pei, LIU Xing-wei, SHAO Jing-Li, CUI Ya-li2016:  Review of the algebraic linear methods and parallel implementation in numerical simulation of groundwater flow, Journal of Groundwater Science and Engineering, 4, 12-17.
    [15] WANG Shi-qin, SONG Xian-fang, WEI Shou-cai, SHAO Jing-li2016:  Application of HYDRUS-1D in understanding soil water movement at two typical sites in the North China Plain, Journal of Groundwater Science and Engineering, 4, 1-11.
    [16] Xiu-yan WANG, Yu-hong FEI2014:  Environmental Effect Caused by Over-exploitation of Deep Groundwater in North China, Journal of Groundwater Science and Engineering, 2, 12-20.
    [17] 2014:  The Experimental Investigations on Motion Features of Groundwater Flow near the Pumping Well, Journal of Groundwater Science and Engineering, 2, 1-11.
    [18] 2013:  Structural Control on Groundwater Distribution and Flow in the South of Ningxia Hui Autonomous Region, China, Journal of Groundwater Science and Engineering, 1, 1-8.
    [19] Wang Ping, Han Zhantao, Li Yasong, Chen Kang, Lv Xiaoli, Jian Ming2013:  The Role of Groundwater Leakage through Deep Wells for the Deformation of Groundwater Flow: a Case Study in Cangzhou Area, Journal of Groundwater Science and Engineering, 1, 80-87.
    [20] Zong-jun Gao, Yong-gui Liu2013:  Groundwater Flow Driven by Heat, Journal of Groundwater Science and Engineering, 1, 22-27.
  • 加载中
计量
  • 文章访问数:  42
  • HTML全文浏览量:  20
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-14
  • 录用日期:  2024-08-20
  • 网络出版日期:  2024-12-06
  • 刊出日期:  2024-12-15

目录

    /

    返回文章
    返回