• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Groundwater quality assessment for drinking and irrigation purposes in Boumerdes Region, Algeria

Djafer Khodja Hakim Aichour Amina Metaiche Mehdi Ferhati Ahmed

Hakim DK, Amina A, Mehdi M, et al. 2024. Groundwater quality assessment for drinking and irrigation purposes in Boumerdes Region, Algeria. Journal of Groundwater Science and Engineering, 12(4): 397-410 doi:  10.26599/JGSE.2024.9280030
Citation: Hakim DK, Amina A, Mehdi M, et al. 2024. Groundwater quality assessment for drinking and irrigation purposes in Boumerdes Region, Algeria. Journal of Groundwater Science and Engineering, 12(4): 397-410 doi:  10.26599/JGSE.2024.9280030

doi: 10.26599/JGSE.2024.9280030

Groundwater quality assessment for drinking and irrigation purposes in Boumerdes Region, Algeria

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Geographic location of Boumerdes region

    Figure  2.  Lithological map of Boumerdes region

    Figure  3.  Cartographic of 49 boreholes of the study area

    Figure  4.  Cartography of the physic-chemical parameters of the study area

    Figure  5.  Individual's diagrams of Boumerdes groundwater

    Figure  6.  Cluster Dendrogram for physicochemical and boreholes parameters.

    Figure  7.  Piper diagram of Boumerdes groundwater

    Figure  8.  Schoeller-Berkaloff diagram of Boumerdes groundwater diagram (F1-F10), (F11-F20) and (F20-F31)

    Figure  9.  Cartography of irrigation water quality indices.

    Table  1.   Physico-chemical data of Boumerdes groundwaters (2021)

    Variables Minimum Maximum Moyenne Ecart type Variance
    T 9.00 25.00 20.16 5.30 28.07
    pH 6.62 7.84 7.11 0.32 0.10
    Cond 114.00 2,050.00 1,167.32 425.55 181,091.96
    Turbid 0.30 62.00 5.29 12.69 161.07
    Na+ 21.00 80.00 43.74 12.49 155.93
    K+ 1.00 7.00 3.58 1.77 3.13
    Ca2+ 52.00 216.00 128.39 40.12 1,609.98
    Mg2+ 11.00 110.00 42.42 23.45 550.05
    NH4+ 0.00 0.77 0.05 0.15 0.02
    Fe2+ 0.00 0.37 0.06 0.11 0.01
    Mn2+ 0.00 0.24 0.02 0.05 0.00
    HCO3 186.00 689.00 429.06 110.21 12,146.66
    Cl 22.00 184.00 89.74 46.83 2,192.93
    SO42− 11.00 312.00 83.65 55.78 3,111.37
    NO2 0.00 0.55 0.05 0.12 0.01
    NO3 0.00 103.00 18.83 21.82 476.19
    PO43− 0.00 0.36 0.01 0.06 0.00
    Notes: All Data in (mg/L) except (Turbid (NTU), Cond (µS/cm), pH and T (°C)).
    下载: 导出CSV

    Table  2.   Physicochemical analysis for water supply according to Algerian and World Health Organization Standards (World Health Organization, 2006; Official Journal of the Algerian Republic, 2011)

    Parameters Algerian Standards WHO Standards
    pH 6.5–9 6.5–9.5
    Conductivity (μS ⁄cm) 2,800 no guide value
    Temperature (°C) 25 no guide value
    SO42−(mg/L) 400 500
    HCO3 no guide value no guide value
    NO3(mg/L) 50 50
    Ca2+(mg/L en CaCO3) 200 30
    Mg2+(mg/L) no guide value 100
    Na+(mg/L) 200 no guide value
    K+(mg/L) 12 12
    Cl(mg/L) 500 250
    Turbid (NTU) 5 5
    下载: 导出CSV

    Table  3.   Kaiser-Meyer-Olkin measure of sampling adequacy

    Sampling adequacy tests Value
    Kaiser-Meyer-Olkin index for measuring sampling quality 0.593
    Bartlett's test of sphericity Khi- square approx 249.871
    ddl 136
    Meaning <0.001
    下载: 导出CSV

    Table  4.   Correlation matrix of the physicochemical parameters of Boumerdes groundwater

    Variables T pH Cond Turbid Ca2+ Mg2+ Na+ K+ NH4+ Fe2+ Mn2+ Cl SO42− HCO3 NO2 NO3 PO43−
    T 1.00
    pH 0.00 1.00
    Cond −0.17 −0.21 1.00
    Turbid −0.01 −0.18 −0.22 1.00
    Ca2+ −0.25 −0.21 0.53 0.34 1.00
    Mg2+ −0.25 −0.06 0.58 0.09 0.39 1.00
    Na+ 0.08 −0.36 0.37 0.27 0.47 0.34 1.00
    K+ −0.03 0.16 −0.22 0.07 0.16 −0.30 0.17 1.00
    NH4+ −0.41 −0.07 0.11 −0.04 0.09 0.21 −0.06 0.13 1.00
    Fe2+ −0.06 0.13 0.45 0.36 0.46 0.40 0.25 0.04 0.08 1.00
    Mn2+ −0.02 0.10 −0.20 0.79 0.38 0.18 0.35 0.32 −0.10 0.38 1.00
    Cl −0.31 −0.18 0.32 0.37 0.65 0.48 0.20 −0.05 0.17 0.34 0.46 1.00
    SO42− −0.06 −0.08 0.50 0.03 0.54 0.61 0.39 0.02 0.08 0.46 0.24 0.44 1.00
    HCO3 0.04 −0.30 0.42 0.48 0.61 0.58 0.62 0.10 −0.01 0.42 0.52 0.50 0.49 1.00
    NO2 0.27 −0.02 −0.25 −0.15 −0.16 −0.29 0.02 0.31 −0.07 −0.17 −0.17 −0.34 −0.21 −0.08 1.00
    NO3 −0.23 −0.03 −0.03 0.08 −0.10 0.08 −0.02 −0.40 0.08 0.06 −0.11 −0.04 −0.04 −0.33 −0.11 1.00
    PO43− 0.17 −0.24 0.26 0.01 0.18 0.20 0.18 −0.27 −0.06 0.20 0.14 0.37 0.18 0.32 −0.07 −0.16 1.00
    下载: 导出CSV

    Table  5.   Formula of Indices Values

    Indices Formula Values Range References
    Sodium Absorption Ratio (SAR) $ SAR=\dfrac{\left[{Na}^{+}\right]}{\sqrt{\dfrac{\left[{Mg}^{2+}\right]+\left[{Ca}^{2+}\right]}{2}}} $ SAR value: <2=no harm,
    2 to 12 =Low hazard,
    12 to 22 = Medium hazard,
    22 to 32 = High hazard
    Bikundia et al. 2014; Chandra et al. 2017
    Kelly's Ratio (KR) $ KR\left(\%\right)=\dfrac{\left[\mathrm{N}\mathrm{a}^+\right]}{\left[\mathrm{C}\mathrm{a}^{2+}\right]+\left[\mathrm{M}\mathrm{g}^{2+}\right]}\times100 $ KR >1, Unsuitable for irrigation
    KR <1, Suitable for irrigation
    Kadyampakeni et al. 2017
    Sodium percentage (%Na) $ Na\left(\%\right)=\dfrac{\left[\mathrm{N}\mathrm{a}^+\right]}{\left[\mathrm{C}\mathrm{a}^{2+}\right]+\left[\mathrm{M}\mathrm{g}^{2+}\right]+\left[\mathrm{N}\mathrm{a}^+\right]+\left[\mathrm{K}^+\right]}\mathrm{\times}100 $ Excellent (<20),
    Good (20–40),
    Permissible (40–60),
    Doubtful (60–80),
    and Unsuitable (>80)
    Bouderbala et al. 2017Yousuf Mia et al. 2023
    Permeability Index (PI) $ PI=\dfrac{\left[Na^+\right]+\sqrt{\left[HCO_3^-\right]}}{\left[Ca^{2+}\right]+\left[Mg^{2+}\right]+\left[Na^+\right]}\times100 $ Class I with >75%,
    Class II lying between 25% and 75%,
    and Class III with <25%
    Bouderbala et al. 2017Johnbosco et al. 2021
    Magnesium Absorption Ratio (MAR) $ MAR\left(\%\right)=\dfrac{\left[\mathrm{M}\mathrm{g}^{2+}\right]}{\left[\mathrm{C}\mathrm{a}^{2+}\right]+\left[\mathrm{M}\mathrm{g}^{2+}\right]}\times100 $ MH >50% not suitable for irrigation Adimalla et al. 2020
    Residual Sodium Bicarbonate (RSBC) $ RS BC=\left[{{HCO}_{3}}^{-}\right]-\left[{Ca}^{2+}\right] $ RSBC index values of <5 meq/L indicates water suitable for irrigation Mallick et al. 2021
    Potential Salinity (PS) $ PS=\left[Cl^-\right]-\dfrac{1}{2}\left[SO_4^{2-}\right] $ <3 meq/L indicates water suitable for irrigation Doneen, 1964
    Stuyfzand Index Presents the concentration of Chlorides in water < 5 mg/L, Very Oligohaline
    between 5 mg/L and 30 mg/L, Oligohaline
    between 30 mg/L and 150 mg/L, Fresh
    between 150 mg/L and 300 mg/L, Fresh Saumaterbetween 300 mg/L and 1,000 mg/L, Saumaterbetween 1,000 mg/L and 10,000 mg/L, Saumate Saltedbetween 10,000 mg/L and 20,000 mg/L, Salted>20,000 mg/L, Very Salty
    Coetsiers et al. 2006
    下载: 导出CSV

    Table  6.   Agricultural suitability Index for Boumerdes groundwater

    Drilling SAR(%) KR Na(%) PI(%) MAR(%) RSBC PS Cl-(mg/L)
    F1 85.86 19.26 15.98 37.15 39.74 0.21 2.62 101
    F2 104.31 26.61 20.75 46.4 42.84 1.71 0.54 46
    F3 94.53 25.05 19.86 49.08 43.92 2.69 0.64 40
    F4 109.08 27.36 21.11 46.86 19.66 0.22 1.6 85
    F5 95.36 24.31 19.4 44.81 48.12 1.84 0.24 39
    F6 55.51 16.87 14.26 52.76 41.02 2.69 0.3 22
    F7 92.14 17.43 14.82 34.2 40.02 1.71 3.77 184
    F8 73.09 26.7 20.63 57.85 30.74 0.45 0.96 49
    F9 128.74 23.82 19.17 36.04 37.16 0.06 1.1 22
    F10 110.64 23.85 19.15 40.61 44.35 2.11 3.11 141
    F11 89.43 21.38 17.32 41.05 17.87 −0.99 1.06 60
    F12 115.53 30.08 22.76 49.68 13.39 0.1 0.83 50
    F13 70.11 18.22 15.33 40.59 24.46 −0.74 1.18 68
    F14 75.84 20.04 16.59 42.82 27.56 −0.14 0.77 60
    F15 83.77 18.76 15.59 39.56 23.93 0.33 2.58 125
    F16 71.69 16.88 14.3 40.77 29.19 1.32 1.64 86
    F17 100.51 19.35 16.09 37.1 37.83 2.91 3.69 173
    F18 50.76 8.23 7.57 22.44 47.56 −0.64 2.21 139
    F19 105.52 24.15 19.37 43.6 16.37 0.21 2.77 102
    F20 68.75 16.98 14.44 37.48 22.08 −1.54 1.81 94
    F21 92.24 16.58 14.12 31.74 41.98 1.01 0.42 129
    F22 59.98 11.18 9.97 26.85 25.14 −3.55 3.82 158
    F23 113.12 28.84 22.04 50.18 11.77 0.8 0.89 49
    F24 78.48 19.14 15.98 43.55 43.04 2.8 1.09 52
    F25 69.31 16.24 13.91 41.82 60.54 5.09 1.55 68
    F26 81.5 19.09 15.84 40.29 34.3 0.94 2.18 108
    F27 96.76 19.22 16.03 34.78 37 −0.04 2.97 149
    F28 100.35 25.16 20.05 43.65 37.25 0.5 1.57 73
    F29 75.39 17.66 14.9 37.47 34.3 −0.19 0.43 38
    F30 48.93 10.19 9.23 27.98 30.7 −2.33 3.23 157
    F31 88.74 17.75 15.02 30.87 55.29 −0.18 2.22 115
    下载: 导出CSV
  • Abdennour MA, Douaoui A, Barrena I, et al. 2020. Geochemical characterization of the salinity of irrigated soils in arid regions (Biskra, SE Algeria). Acta Geochimic, 40: 234−250. DOI: 10.1007/s11631-020-00426-2.
    Adimalla N, Dhakate R, Kasarla A, et al. 2020. Appraisal of groundwater quality for drinking and irrigation purposes in Central Telangana, India. Groundwater for Sustainable Development, 10: 100334. DOI: 10.1016/j.gsd.2020.100334.
    Al-Mashreki MH, Eid MH, Saeed O, et al. 2023. Integration of geochemical modeling, multivariate analysis, and irrigation indices for assessing groundwater quality in the Al-Jawf Basin, Yemen. Water, 15: 1496. DOI: 10.3390/w15081496.
    Aly Marwa M, Fayad Shymaa AK, Abd Elhamid Ahmed MI. 2024. Assessment of groundwater suitability for different activities in Toshka district, south Egypt. Journal of Groundwater Science and Engineering, 12(1): 34−48. DOI: 10.26599/JGSE.2024.9280004.
    Anazawa K, Ohmori H. 2005. The hydrochemistry of surface waters in andesitic volcanic area, Norikura volcano, central Japan. Chemosphere, 59(5): 605−615. DOI: 10.1016/j.chemosphere.2004.10.018.
    Athamena A, Gaagai A, Aouissi HA, et al. 2023. Chemometrics of the Environment: Hydrochemical characterization of groundwater in Lioua Plain (North Africa) using time series and multivariate statistical analysis. Sustainability, 15: 20. DOI: 10.3390/su15010020.
    Belkhiri L, Boudoukha A, Mouni L, et al. 2010. Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater case study: Ain Azel plain (Algeria). Geoderma, 159: 390−398. DOI: 10.1016/j.geoderma.2010.08.016.
    Bencer S, Boudoukha A, Mouni L, 2016. Multivariate statistical analysis of thegroundwater of Ain Djacer area (Eastern of Algeria). Arabian Journal of Geosciences, 9: 248. DOI :  10.1007/s12517-015-2277-6.
    Bengherbia A, Hamaidi F, Zahraoui R, et al. 2014. Impact des rejets des eaux usées sur la qualité physico-chimique et bactériologique de l'Oued Beni Aza (Blida, Algérie). Lebanese Science Journal, 15(2): 39−51. (in French
    Bikundia DS, Mohan D. 2014. Major ion chemistry of the groundwater at the Khoda Village Gaziabad, India. Sustainability of Water Quality and Ecology, 3-4: 133−150. DOI: 10.1016/j.swaqe.2014.12.001.
    Blake S, Henry T, Murray J, et al. 2016. Compositional multivariate statistical analysis of thermal groundwater provenance: A hydrogeochemical case study from Ireland. Applied Geochemistry, 75: 171−188. DOI: 10.1016/j.apgeochem.2016.05.008.
    Chaib W, Bouchahm N, Harrat N, et al. 2013. Caractérisation hydrogéochimique des eaux géothermales de la nappe du continental intercalaire de la région de l'Oued Righ. Journal Algérien des Régions Arides, N° Special issue, 55−64. (in French
    Chen K, Liu Q, Yang T, et al. 2022. Statistical analyses of hydrochemistry in multi-aquifers of the Pansan coalmine, Huainan coalfield, China: Implications for water-rock interaction and hydraulic connection. Heliyon, 8(9): e10690. DOI: 10.1016/j.heliyon.2022.e10690.
    Coetsiers M, Walraevens K. 2006. Chemical characterization of the Neogene Aquifer, Belgium. Hydrogeology Journal, 14: 1556−1568. DOI: 10.1007/s10040-006-0053-0.
    Dimple, Mittal HK, Singh PK, et al. 2022. Groundwater quality parameters for irrigation utilization: A review. Indian Journal of Agricultural Sciences, 92(7): 803−810. DOI: 10.56093/ijas.v92i7.114186.
    Djafer Khodja H, Aichour A, Rezig A, et al. 2022. Application of multivariate statistical methods to the hydrochemical study of groundwater quality in the Sahel Watershed, Algeria. Journal of Ecological Engineering, 23(8): 341−349. DOI: 10.12911/22998993/151147.
    Djafer Khodja H. 2020. Contribution to the management of water resources in the Isser wadi watershed using a computerized system. PhD thesis, Mohamed Boudiaf University, Oran: Algeria.
    Docheshmeh GA, Askari Gh, Taghipour AA, et al. 2023. Spatiotemporal forecasting of the groundwater quality for irrigation purposes, using Deep Learning Method: Long Short-Term Memory (LSTM). Agricultural Water Management, 277. DOI: 10.1016/j.agwat.2022.108088.
    Doneen LD. 1964. Water quality for agriculture. Department of Irrigation, University of California, Davis, 48.
    Egbueri JC, Mgbenu CN, Digwo DC, et al. 2021. A multi-criteria water quality evaluation for human consumption, irrigation and industrial purposes in Umunya area, southeastern Nigeria. International Journal of Environmental Analytical Chemistry, 103(14): 3351−3375. DOI: 10.1080/03067319.2021.1907360.
    Ferhati A, Belazreg NH, Dougha M, et al. 2022. Spatio-temporal assessment of groundwater quality: A case study of M'sila province (Algeria). Arabian Journal of Geosciences, 15: 1775. DOI: 10.1007/s12517-022-11044-y.
    Ferhati A, Mitiche-Kettab R, Belazreg NH, et al. 2023. Hydrochemical analysis of groundwater quality in central Hodna Basin, Algeria: A case study. International Journal of Hydrology Science and Technology, 15(1): 22−39. DOI: 10.1504/IJHST.2023.127889.
    Hossam SJ, Ahmed SA, Abdellatif DA. 2020. Using multivariate analysis to develop irrigation water quality index for surface water in Kafr El-Sheikh Governorate, Egypt. Environmental Technology & Innovation, 17: 100532. DOI:  10.1016/j.eti.2019.100532.
    Kadyampakeni D, Barron J, Kofi AR. 2018. Analysis of water quality of selected irrigation water sources in Northern Ghana. Water Science & Technology Water Supply, 18(4): 1308−1317. DOI: 10.2166/ws.2017.195.
    Khelif S, Boudoukha A. 2018. Multivariate statistical characterization of groundwater quality in Fesdis, East of Algeria. Journal of Water and Land Development, 37(IV-VI): 65−74. DOI: 10.2478/jwld-2018-0026.
    Khous D, Ait-amar H, Belaid M, et al. 2019. Geochemical and isotopic assessment of groundwater quality in the Alluvial Aquifer of the Eastern Mitidja Plain. Water Resources, 46: 443−453. DOI: 10.1134/S0097807819030060.
    Lan FN, Zhao Y, Li J, et al. 2024. Health risk assessment of heavy metal pollution in groundwater of a karst basin, SW China. Journal of Groundwater Science and Engineering, 12(1): 49−61. DOI: 10.26599/JGSE.2024.9280005.
    Li JJ, Lian S, Wang MG, et al. 2023. Hydrochemical characteristics of surface water in Hengduan mountain region of Eastern Tibet and its response to human activities: A case study of Duoqu Basin, Jinsha River. China Geology, 7(4): 630−641. DOI: 10.31035/cg2023053.
    Li SP. 2019. Distribution and evolution characteristics of national groundwater quality from 2013 to 2017. Hydrogeology & Engineering Geology, 46(6): 1−8. DOI: 10.16030/j.cnki.issn.1000-3665.2019.06.01.
    Mallick J, Kumar A, Almesfer MK, et al. 2021. An index-based approach to assess groundwater quality for drinking and irrigation in Asir region of Saudi Arabia. Arabian Journal of Geosciences, 14(3): 1−17. DOI: 10.1007/s12517-021-06506-8.
    Metaiche M, Djafer Khodja H, Aichour A, et al. 2023. Multivariate statistical analysis of groundwater quality of Hassi R'mel, Algeria. Journal of Ecological Engineering, 24(5): 22−31. DOI: 10.12911/22998993/161140.
    Musaab AAM, Norbert PS, Péter S. 2022. Multivariate statistical and hydrochemical approaches for evaluation of groundwater quality in north Bahri city-Sudan. Heliyon, 8(11): e11308. DOI: 10.1016/j.heliyon.2022.e11308.
    Nirdesh Kumar R, Pawan Kumar J, Kriti V, et al. 2023. Application of water quality index (WQI) and statistical techniques to assess water quality for drinking, irrigation, and industrial purposes of the Ghaghara River, India. Total Environment Research Themes, 6. DOI:  10.1016/j.totert.2023.100049.
    Official Journal of the Algerian Republic. 2011. Executive Decree No. 11-125 of 17 Rabie Ethani 1432, corresponding to March 22, 2011 relating to the quality of water for human consumption.
    Olusola OF, Abiola UA, Mubarak OT, et al. 2022. Assessment of groundwater quality for irrigation purposes in ilesha West local government, Osun State, Nigeria. Water Cycle, 3: 160−170. DOI: 10.1016/j.watcyc.2022.10.001.
    Rahal O, Gouaidia L, Fidelibus MD, et al. 2021. Hydrogeological and geochemical characterization of groundwater in the F'Kirina plain (eastern Algeria). Applied Geochemistry, 130: 104983. DOI: 10.1016/j.apgeochem.2021.104983.
    Rehman NU, Ali W, Muhammad S, et al. 2023. Evaluation of drinking and irrigation water quality, and potential risks indices in the Dera Ismail Khan district, Pakistan. Kuwait Journal of Science, 51(1): 100150. DOI: 10.1016/j.kjs.2023.11.001.
    Ruiz-Pico A, Cuenca AP, Serrano-Agila R, et al. 2019. Hydrochemical characterization of groundwater in the Loja Basin (Ecuador). Applied Geochemistry, 104: 1−9. DOI: 10.1016/j.apgeochem.2019.02.008.
    Seikhy Narany T, Ramli MR, Aris AZ, et al. 2014. Spatiotemporal variation of groundwater quality using integrated multivariate statistical and geostatistical approaches in Amol-Babol Plain, Iran. Environmental Monitor ing and Assessment, 186: 5797−5815. DOI: 10.1007/s10661-014-3820-8.
    Sinduja M, Sathya V, Maheswari M, et al. 2023. Groundwater quality assessment for agricultural purposes at Vellore District of Southern India: A geospatial based study. Urban Climate, 47: 101368. DOI: 10.1016/j.uclim.2022.101368.
    Tegegne AM, Lohani TK, Eshete AA. 2023. Evaluation of groundwater quality for drinking and irrigation purposes using proxy indices in the Gunabay watershed, Upper Blue Nile Basin, Ethiopia. Heliyon, 9(4): e15263. DOI: 10.1016/j.heliyon.2023.e15263.
    Tiri A, Lahbari N, Boudoukha A. 2014. Multivariate statistical analysis and geochemical modeling to characterize the surface water of Oued Chemora Basin, Algeria. Natural Ressources Research, 23(4): 379−391. DOI: 10.1007/s11053-014-9239-7.
    World Health Organization. 2006. Quality guidelines for drinking water, third edition. Recommendation. World Health Organization. Geneve, 78.
    Yahiaoui S, Meddi M, Razack M, et al. 2023. Hydrogeochemical and isotopic assessment for characterizing groundwater quality in the Mitidja plain (northern Algeria). Environmental Science Pollution Ressources, 30: 80029−80054. DOI: 10.1007/s11356-023-27952-9.
    Yousuf MM, Towfiqul IARM, Nahar JJ, et al. 2023. Identifying factors affecting irrigation metrics in the Haor basin using integrated Shannon's entropy, fuzzy logic and automatic linear model. Environmental Research, 226: 115688. DOI: 10.1016/j.envres.2023.115688.
  • [1] Aida H Baghanam, Vahid Nourani, Zohre Khodaverdi, Amirreza T Vakili2024:  Assessment of water quality suitability for agriculture in a potentially leachate-contaminated region, Journal of Groundwater Science and Engineering, 12, 281-292. doi: 10.26599/JGSE.2024.9280021
    [2] Allia Zineb, Lalaoui Meriem2024:  Formation mechanism of hydrochemical and quality evaluation of shallow groundwater in the Upper Kebir sub-basin, Northeast Algeria, Journal of Groundwater Science and Engineering, 12, 78-91. doi: 10.26599/JGSE.2024.9280007
    [3] Yan-pei Cheng, Fa-wang Zhang, Hua Dong, Xue-ru Wen2024:  Groundwater and environmental challenges in Asia, Journal of Groundwater Science and Engineering, 12, 223-236. doi: 10.26599/JGSE.2024.9280017
    [4] Mei-hui Zhang, Shi-yang Zhou, Dan-dan Liu, Ying Zhang, Yu-xi Zhang, Xi Chen, Hui-wei Wang, Bei Li, Wei Kang, Bing Yi, Wan-peng Shi2024:  Characteristics and genesis of groundwater salinization in coastal areas of the Lower Reaches of Oujiang Basin, Journal of Groundwater Science and Engineering, 12, 190-204. doi: 10.26599/JGSE.2024.9280015
    [5] Benadela Laouni, Bekkoussa Belkacem, Gaidi Laouni2022:  Multivariate analysis and geochemical investigations of groundwater in a semi-arid region, case of superficial aquifer in Ghriss Basin, Northwest Algeria, Journal of Groundwater Science and Engineering, 10, 233-249. doi: 10.19637/j.cnki.2305-7068.2022.03.003
    [6] Tanzeel Khan, Muhammad Akhtar Malik, Gohram Malghani, Rabia Akhtar2022:  Comparative analysis of bacterial contamination in tap and groundwater: A case study on water quality of Quetta City, an arid zone in Pakistan, Journal of Groundwater Science and Engineering, 10, 153-165. doi: 10.19637/j.cnki.2305-7068.2022.02.005
    [7] Cherif Kessar, Yamina Benkesmia, Bilal Blissag, Lahsen Wahib Kébir2021:  Delineation of groundwater potential zones in Wadi Saida Watershed of NW-Algeria using remote sensing, geographic information system-based AHP techniques and geostatistical analysis, Journal of Groundwater Science and Engineering, 9, 45-64. doi: 10.19637/j.cnki.2305-7068.2021.01.005
    [8] KHELFAOUI Hakim, DAJBRI Larbi, LAKHAL Fatima Zohra, CHAFFAI Hicham, HANI Azzedine, SAYAD Lamine2020:  Determination of the origin of mineralization and groundwater salinity in the Adrar region in the southwest of Algeria, Journal of Groundwater Science and Engineering, 8, 158-171. doi: 10.19637/j.cnki.2305-7068.2020.02.007
    [9] Negar Fathi, Mohammad Bagher Rahnama, Mohammad Zounemat Kermani2020:  Spatial analysis of groundwater quality for drinking purpose in Sirjan Plain, Iran by fuzzy logic in GIS, Journal of Groundwater Science and Engineering, 8, 67-78. doi: 10.19637/j.cnki.2305-7068.2020.01.007
    [10] Ahmed Mohammad Tofayal, Monir Minhaj Uddin, Hasan Md Yeasir, Rahman Md Mominur, Rifat Md Shamiul Islam, Islam Md Naim, Khan Abu Shamim, Rahman Md Mizanur, Islam Md Shajidul2020:  Hydro-geochemical evaluation of groundwater with studies on water quality index and suitability for drinking in Sagardari, Jashore, Journal of Groundwater Science and Engineering, 8, 259-273. doi: 10.19637/j.cnki.2305-7068.2020.03.006
    [11] Bahrami Mehdi, Khaksar Elmira, Khaksar Elahe2020:  Spatial variation assessment of groundwater quality using multivariate statistical analysis(Case Study: Fasa Plain, Iran), Journal of Groundwater Science and Engineering, 8, 230-243. doi: 10.19637/j.cnki.2305-7068.2020.03.004
    [12] HU Zun-fang, KANG Feng-xin, ZOU An-de, YU Lin-song, LI Yang, TIAN Tong-liang, KANG Gui-ling2019:  Evolution trend of the water quality in Dongping Lake after South-North Water Transfer Project in China, Journal of Groundwater Science and Engineering, 7, 333-339. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.004
    [13] T K G P Ranasinghe, R U K Piyadasa2019:  Visualizing the spatial water quality of Bentota, Sri Lanka in the presence of seawater intrusion, Journal of Groundwater Science and Engineering, 7, 340-353. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.005
    [14] LI Wen-yon, FU Li, ZHU Zheng-feng2019:  Numerical simulation and land subsidence control for deep foundation pit dewatering of Longyang Road Station on Shanghai Metro Line 18, Journal of Groundwater Science and Engineering, 7, 133-144. doi: 10.19637/j.cnki.2305-7068.2019.02.004
    [15] WU Ting-wen, WANG Li-huan, WANG Lin-shu, KONG Qing-xuan2018:  Evaluation of groundwater quality and pollution in Daqing Oilfield, Journal of Groundwater Science and Engineering, 6, 40-48. doi: 10.19637/j.cnki.2305-7068.2018.01.005
    [16] TAO Hong, ZHENG Miao-miao, FAN Li-min, LI Wen-li, DING Jia, LI Hui, HE Xu-bo, TAO Fu-ping2017:  Research on quality changes and influencing factors of groundwater in the Guanzhong Basin, Journal of Groundwater Science and Engineering, 5, 296-302.
    [17] YI Qing, GE Li-qiang, CHENG Yan-pei, DONG Hua, LIU Kun, ZHANG Jian-kang, YUE Chen2015:  Compilation of Groundwater Quality Map and study of hydrogeochemical characteristics of groundwater in Asia, Journal of Groundwater Science and Engineering, 3, 176-185.
    [18] FEI Yu-hong, ZHANG Zhao-ji, LI Ya-song, GUO Chun-yan, TIAN Xia2015:  Quality evaluation of groundwater in the North China Plain, Journal of Groundwater Science and Engineering, 3, 306-315.
    [19] CUI Qiu-ping, LIU Zhi-gang, LIU Li-jun, ZHANG Shao-cai, CHEN Yun-qian2014:  Emergency water supply capacity analysis of major cities in Hebei, Journal of Groundwater Science and Engineering, 2, 76-86.
    [20] Aizhong Ding, Lirong Cheng, Steve Thornton, Wei Huang, David Lerner2013:  Groundwater quality Management in China, Journal of Groundwater Science and Engineering, 1, 54-59.
  • 加载中
图(9) / 表ll (6)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  35
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-22
  • 录用日期:  2024-09-21
  • 网络出版日期:  2024-12-06
  • 刊出日期:  2024-12-09

目录

    /

    返回文章
    返回