Groundwater quality assessment for drinking and irrigation purposes in Boumerdes Region, Algeria
-
Abstract: In Algeria, water is a critically limited resource. Rapid demographic, urban and economic development has significantly increased water demand, the particularly for drinking water supply and agriculture. Groundwater serves as the primary source of water in the Boumerdes Region, located in northern Algeria, Therefore evaluating groundwater quality for water supply and irrigation purposes is very crucial. In this study, 49 groundwater samples were collected in 2021 and analyzed based on 17 physicochemical parameters. These results were processed using multivariate analysis and compared against the standards established by both the World Health Organization and Algerian Standards. The findings revealed that the concentrations of Sodium, Calcium, Magnesium, and Nitrate of some samples exceeded acceptable limits, indicating that physicochemical treatment is necessary before use for drinking water supply. For irrigation suitability, several indices were employed, including Sodium Adsorption Rate (SAR), Wilcox diagram, Magnesium Absorption Ratio (MAR), Residual Sodium Bicarbonate (RSB), Permeability Index (PI) and Stuyfzand Index. The results of these indices show that groundwater in the region generally meets irrigation standards with a low risk. However, the groundwater should still be managed carefully to prevent salinity-related issues. This study highlights the current status of groundwater quality the Boumerdes region and offers important insights for the sustainable management of water resources in the area.
-
Table 1. Physico-chemical data of Boumerdes groundwaters (2021)
Variables Minimum Maximum Moyenne Ecart type Variance T 9.00 25.00 20.16 5.30 28.07 pH 6.62 7.84 7.11 0.32 0.10 Cond 114.00 2,050.00 1,167.32 425.55 181,091.96 Turbid 0.30 62.00 5.29 12.69 161.07 Na+ 21.00 80.00 43.74 12.49 155.93 K+ 1.00 7.00 3.58 1.77 3.13 Ca2+ 52.00 216.00 128.39 40.12 1,609.98 Mg2+ 11.00 110.00 42.42 23.45 550.05 NH4+ 0.00 0.77 0.05 0.15 0.02 Fe2+ 0.00 0.37 0.06 0.11 0.01 Mn2+ 0.00 0.24 0.02 0.05 0.00 HCO3− 186.00 689.00 429.06 110.21 12,146.66 Cl− 22.00 184.00 89.74 46.83 2,192.93 SO42− 11.00 312.00 83.65 55.78 3,111.37 NO2− 0.00 0.55 0.05 0.12 0.01 NO3− 0.00 103.00 18.83 21.82 476.19 PO43− 0.00 0.36 0.01 0.06 0.00 Notes: All Data in (mg/L) except (Turbid (NTU), Cond (µS/cm), pH and T (°C)). Table 2. Physicochemical analysis for water supply according to Algerian and World Health Organization Standards (World Health Organization, 2006; Official Journal of the Algerian Republic, 2011)
Parameters Algerian Standards WHO Standards pH 6.5–9 6.5–9.5 Conductivity (μS ⁄cm) 2,800 no guide value Temperature (°C) 25 no guide value SO42−(mg/L) 400 500 HCO3− no guide value no guide value NO3−(mg/L) 50 50 Ca2+(mg/L en CaCO3) 200 30 Mg2+(mg/L) no guide value 100 Na+(mg/L) 200 no guide value K+(mg/L) 12 12 Cl−(mg/L) 500 250 Turbid (NTU) 5 5 Table 3. Kaiser-Meyer-Olkin measure of sampling adequacy
Sampling adequacy tests Value Kaiser-Meyer-Olkin index for measuring sampling quality 0.593 Bartlett's test of sphericity Khi- square approx 249.871 ddl 136 Meaning <0.001 Table 4. Correlation matrix of the physicochemical parameters of Boumerdes groundwater
Variables T pH Cond Turbid Ca2+ Mg2+ Na+ K+ NH4+ Fe2+ Mn2+ Cl− SO42− HCO3− NO2− NO3− PO43− T 1.00 pH 0.00 1.00 Cond −0.17 −0.21 1.00 Turbid −0.01 −0.18 −0.22 1.00 Ca2+ −0.25 −0.21 0.53 0.34 1.00 Mg2+ −0.25 −0.06 0.58 0.09 0.39 1.00 Na+ 0.08 −0.36 0.37 0.27 0.47 0.34 1.00 K+ −0.03 0.16 −0.22 0.07 0.16 −0.30 0.17 1.00 NH4+ −0.41 −0.07 0.11 −0.04 0.09 0.21 −0.06 0.13 1.00 Fe2+ −0.06 0.13 0.45 0.36 0.46 0.40 0.25 0.04 0.08 1.00 Mn2+ −0.02 0.10 −0.20 0.79 0.38 0.18 0.35 0.32 −0.10 0.38 1.00 Cl− −0.31 −0.18 0.32 0.37 0.65 0.48 0.20 −0.05 0.17 0.34 0.46 1.00 SO42− −0.06 −0.08 0.50 0.03 0.54 0.61 0.39 0.02 0.08 0.46 0.24 0.44 1.00 HCO3− 0.04 −0.30 0.42 0.48 0.61 0.58 0.62 0.10 −0.01 0.42 0.52 0.50 0.49 1.00 NO2− 0.27 −0.02 −0.25 −0.15 −0.16 −0.29 0.02 0.31 −0.07 −0.17 −0.17 −0.34 −0.21 −0.08 1.00 NO3− −0.23 −0.03 −0.03 0.08 −0.10 0.08 −0.02 −0.40 0.08 0.06 −0.11 −0.04 −0.04 −0.33 −0.11 1.00 PO43− 0.17 −0.24 0.26 0.01 0.18 0.20 0.18 −0.27 −0.06 0.20 0.14 0.37 0.18 0.32 −0.07 −0.16 1.00 Table 5. Formula of Indices Values
Indices Formula Values Range References Sodium Absorption Ratio (SAR) $ SAR=\dfrac{\left[{Na}^{+}\right]}{\sqrt{\dfrac{\left[{Mg}^{2+}\right]+\left[{Ca}^{2+}\right]}{2}}} $ SAR value: <2=no harm,
2 to 12 =Low hazard,
12 to 22 = Medium hazard,
22 to 32 = High hazardBikundia et al. 2014; Chandra et al. 2017 Kelly's Ratio (KR) $ KR\left(\%\right)=\dfrac{\left[\mathrm{N}\mathrm{a}^+\right]}{\left[\mathrm{C}\mathrm{a}^{2+}\right]+\left[\mathrm{M}\mathrm{g}^{2+}\right]}\times100 $ KR >1, Unsuitable for irrigation
KR <1, Suitable for irrigationKadyampakeni et al. 2017 Sodium percentage (%Na) $ Na\left(\%\right)=\dfrac{\left[\mathrm{N}\mathrm{a}^+\right]}{\left[\mathrm{C}\mathrm{a}^{2+}\right]+\left[\mathrm{M}\mathrm{g}^{2+}\right]+\left[\mathrm{N}\mathrm{a}^+\right]+\left[\mathrm{K}^+\right]}\mathrm{\times}100 $ Excellent (<20),
Good (20–40),
Permissible (40–60),
Doubtful (60–80),
and Unsuitable (>80)Bouderbala et al. 2017Yousuf Mia et al. 2023 Permeability Index (PI) $ PI=\dfrac{\left[Na^+\right]+\sqrt{\left[HCO_3^-\right]}}{\left[Ca^{2+}\right]+\left[Mg^{2+}\right]+\left[Na^+\right]}\times100 $ Class I with >75%,
Class II lying between 25% and 75%,
and Class III with <25%Bouderbala et al. 2017Johnbosco et al. 2021 Magnesium Absorption Ratio (MAR) $ MAR\left(\%\right)=\dfrac{\left[\mathrm{M}\mathrm{g}^{2+}\right]}{\left[\mathrm{C}\mathrm{a}^{2+}\right]+\left[\mathrm{M}\mathrm{g}^{2+}\right]}\times100 $ MH >50% not suitable for irrigation Adimalla et al. 2020 Residual Sodium Bicarbonate (RSBC) $ RS BC=\left[{{HCO}_{3}}^{-}\right]-\left[{Ca}^{2+}\right] $ RSBC index values of <5 meq/L indicates water suitable for irrigation Mallick et al. 2021 Potential Salinity (PS) $ PS=\left[Cl^-\right]-\dfrac{1}{2}\left[SO_4^{2-}\right] $ <3 meq/L indicates water suitable for irrigation Doneen, 1964 Stuyfzand Index Presents the concentration of Chlorides in water < 5 mg/L, Very Oligohaline
between 5 mg/L and 30 mg/L, Oligohaline
between 30 mg/L and 150 mg/L, Fresh
between 150 mg/L and 300 mg/L, Fresh Saumaterbetween 300 mg/L and 1,000 mg/L, Saumaterbetween 1,000 mg/L and 10,000 mg/L, Saumate Saltedbetween 10,000 mg/L and 20,000 mg/L, Salted>20,000 mg/L, Very SaltyCoetsiers et al. 2006 Table 6. Agricultural suitability Index for Boumerdes groundwater
Drilling SAR(%) KR Na(%) PI(%) MAR(%) RSBC PS Cl-(mg/L) F1 85.86 19.26 15.98 37.15 39.74 0.21 2.62 101 F2 104.31 26.61 20.75 46.4 42.84 1.71 0.54 46 F3 94.53 25.05 19.86 49.08 43.92 2.69 0.64 40 F4 109.08 27.36 21.11 46.86 19.66 0.22 1.6 85 F5 95.36 24.31 19.4 44.81 48.12 1.84 0.24 39 F6 55.51 16.87 14.26 52.76 41.02 2.69 0.3 22 F7 92.14 17.43 14.82 34.2 40.02 1.71 3.77 184 F8 73.09 26.7 20.63 57.85 30.74 0.45 0.96 49 F9 128.74 23.82 19.17 36.04 37.16 0.06 1.1 22 F10 110.64 23.85 19.15 40.61 44.35 2.11 3.11 141 F11 89.43 21.38 17.32 41.05 17.87 −0.99 1.06 60 F12 115.53 30.08 22.76 49.68 13.39 0.1 0.83 50 F13 70.11 18.22 15.33 40.59 24.46 −0.74 1.18 68 F14 75.84 20.04 16.59 42.82 27.56 −0.14 0.77 60 F15 83.77 18.76 15.59 39.56 23.93 0.33 2.58 125 F16 71.69 16.88 14.3 40.77 29.19 1.32 1.64 86 F17 100.51 19.35 16.09 37.1 37.83 2.91 3.69 173 F18 50.76 8.23 7.57 22.44 47.56 −0.64 2.21 139 F19 105.52 24.15 19.37 43.6 16.37 0.21 2.77 102 F20 68.75 16.98 14.44 37.48 22.08 −1.54 1.81 94 F21 92.24 16.58 14.12 31.74 41.98 1.01 0.42 129 F22 59.98 11.18 9.97 26.85 25.14 −3.55 3.82 158 F23 113.12 28.84 22.04 50.18 11.77 0.8 0.89 49 F24 78.48 19.14 15.98 43.55 43.04 2.8 1.09 52 F25 69.31 16.24 13.91 41.82 60.54 5.09 1.55 68 F26 81.5 19.09 15.84 40.29 34.3 0.94 2.18 108 F27 96.76 19.22 16.03 34.78 37 −0.04 2.97 149 F28 100.35 25.16 20.05 43.65 37.25 0.5 1.57 73 F29 75.39 17.66 14.9 37.47 34.3 −0.19 0.43 38 F30 48.93 10.19 9.23 27.98 30.7 −2.33 3.23 157 F31 88.74 17.75 15.02 30.87 55.29 −0.18 2.22 115 -
Abdennour MA, Douaoui A, Barrena I, et al. 2020. Geochemical characterization of the salinity of irrigated soils in arid regions (Biskra, SE Algeria). Acta Geochimic, 40: 234−250. DOI: 10.1007/s11631-020-00426-2. Adimalla N, Dhakate R, Kasarla A, et al. 2020. Appraisal of groundwater quality for drinking and irrigation purposes in Central Telangana, India. Groundwater for Sustainable Development, 10: 100334. DOI: 10.1016/j.gsd.2020.100334. Al-Mashreki MH, Eid MH, Saeed O, et al. 2023. Integration of geochemical modeling, multivariate analysis, and irrigation indices for assessing groundwater quality in the Al-Jawf Basin, Yemen. Water, 15: 1496. DOI: 10.3390/w15081496. Aly Marwa M, Fayad Shymaa AK, Abd Elhamid Ahmed MI. 2024. Assessment of groundwater suitability for different activities in Toshka district, south Egypt. Journal of Groundwater Science and Engineering, 12(1): 34−48. DOI: 10.26599/JGSE.2024.9280004. Anazawa K, Ohmori H. 2005. The hydrochemistry of surface waters in andesitic volcanic area, Norikura volcano, central Japan. Chemosphere, 59(5): 605−615. DOI: 10.1016/j.chemosphere.2004.10.018. Athamena A, Gaagai A, Aouissi HA, et al. 2023. Chemometrics of the Environment: Hydrochemical characterization of groundwater in Lioua Plain (North Africa) using time series and multivariate statistical analysis. Sustainability, 15: 20. DOI: 10.3390/su15010020. Belkhiri L, Boudoukha A, Mouni L, et al. 2010. Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater case study: Ain Azel plain (Algeria). Geoderma, 159: 390−398. DOI: 10.1016/j.geoderma.2010.08.016. Bencer S, Boudoukha A, Mouni L, 2016. Multivariate statistical analysis of thegroundwater of Ain Djacer area (Eastern of Algeria). Arabian Journal of Geosciences, 9: 248. DOI : 10.1007/s12517-015-2277-6. Bengherbia A, Hamaidi F, Zahraoui R, et al. 2014. Impact des rejets des eaux usées sur la qualité physico-chimique et bactériologique de l'Oued Beni Aza (Blida, Algérie). Lebanese Science Journal, 15(2): 39−51. (in French Bikundia DS, Mohan D. 2014. Major ion chemistry of the groundwater at the Khoda Village Gaziabad, India. Sustainability of Water Quality and Ecology, 3-4: 133−150. DOI: 10.1016/j.swaqe.2014.12.001. Blake S, Henry T, Murray J, et al. 2016. Compositional multivariate statistical analysis of thermal groundwater provenance: A hydrogeochemical case study from Ireland. Applied Geochemistry, 75: 171−188. DOI: 10.1016/j.apgeochem.2016.05.008. Chaib W, Bouchahm N, Harrat N, et al. 2013. Caractérisation hydrogéochimique des eaux géothermales de la nappe du continental intercalaire de la région de l'Oued Righ. Journal Algérien des Régions Arides, N° Special issue, 55−64. (in French Chen K, Liu Q, Yang T, et al. 2022. Statistical analyses of hydrochemistry in multi-aquifers of the Pansan coalmine, Huainan coalfield, China: Implications for water-rock interaction and hydraulic connection. Heliyon, 8(9): e10690. DOI: 10.1016/j.heliyon.2022.e10690. Coetsiers M, Walraevens K. 2006. Chemical characterization of the Neogene Aquifer, Belgium. Hydrogeology Journal, 14: 1556−1568. DOI: 10.1007/s10040-006-0053-0. Dimple, Mittal HK, Singh PK, et al. 2022. Groundwater quality parameters for irrigation utilization: A review. Indian Journal of Agricultural Sciences, 92(7): 803−810. DOI: 10.56093/ijas.v92i7.114186. Djafer Khodja H, Aichour A, Rezig A, et al. 2022. Application of multivariate statistical methods to the hydrochemical study of groundwater quality in the Sahel Watershed, Algeria. Journal of Ecological Engineering, 23(8): 341−349. DOI: 10.12911/22998993/151147. Djafer Khodja H. 2020. Contribution to the management of water resources in the Isser wadi watershed using a computerized system. PhD thesis, Mohamed Boudiaf University, Oran: Algeria. Docheshmeh GA, Askari Gh, Taghipour AA, et al. 2023. Spatiotemporal forecasting of the groundwater quality for irrigation purposes, using Deep Learning Method: Long Short-Term Memory (LSTM). Agricultural Water Management, 277. DOI: 10.1016/j.agwat.2022.108088. Doneen LD. 1964. Water quality for agriculture. Department of Irrigation, University of California, Davis, 48. Egbueri JC, Mgbenu CN, Digwo DC, et al. 2021. A multi-criteria water quality evaluation for human consumption, irrigation and industrial purposes in Umunya area, southeastern Nigeria. International Journal of Environmental Analytical Chemistry, 103(14): 3351−3375. DOI: 10.1080/03067319.2021.1907360. Ferhati A, Belazreg NH, Dougha M, et al. 2022. Spatio-temporal assessment of groundwater quality: A case study of M'sila province (Algeria). Arabian Journal of Geosciences, 15: 1775. DOI: 10.1007/s12517-022-11044-y. Ferhati A, Mitiche-Kettab R, Belazreg NH, et al. 2023. Hydrochemical analysis of groundwater quality in central Hodna Basin, Algeria: A case study. International Journal of Hydrology Science and Technology, 15(1): 22−39. DOI: 10.1504/IJHST.2023.127889. Hossam SJ, Ahmed SA, Abdellatif DA. 2020. Using multivariate analysis to develop irrigation water quality index for surface water in Kafr El-Sheikh Governorate, Egypt. Environmental Technology & Innovation, 17: 100532. DOI: 10.1016/j.eti.2019.100532. Kadyampakeni D, Barron J, Kofi AR. 2018. Analysis of water quality of selected irrigation water sources in Northern Ghana. Water Science & Technology Water Supply, 18(4): 1308−1317. DOI: 10.2166/ws.2017.195. Khelif S, Boudoukha A. 2018. Multivariate statistical characterization of groundwater quality in Fesdis, East of Algeria. Journal of Water and Land Development, 37(IV-VI): 65−74. DOI: 10.2478/jwld-2018-0026. Khous D, Ait-amar H, Belaid M, et al. 2019. Geochemical and isotopic assessment of groundwater quality in the Alluvial Aquifer of the Eastern Mitidja Plain. Water Resources, 46: 443−453. DOI: 10.1134/S0097807819030060. Lan FN, Zhao Y, Li J, et al. 2024. Health risk assessment of heavy metal pollution in groundwater of a karst basin, SW China. Journal of Groundwater Science and Engineering, 12(1): 49−61. DOI: 10.26599/JGSE.2024.9280005. Li JJ, Lian S, Wang MG, et al. 2023. Hydrochemical characteristics of surface water in Hengduan mountain region of Eastern Tibet and its response to human activities: A case study of Duoqu Basin, Jinsha River. China Geology, 7(4): 630−641. DOI: 10.31035/cg2023053. Li SP. 2019. Distribution and evolution characteristics of national groundwater quality from 2013 to 2017. Hydrogeology & Engineering Geology, 46(6): 1−8. DOI: 10.16030/j.cnki.issn.1000-3665.2019.06.01. Mallick J, Kumar A, Almesfer MK, et al. 2021. An index-based approach to assess groundwater quality for drinking and irrigation in Asir region of Saudi Arabia. Arabian Journal of Geosciences, 14(3): 1−17. DOI: 10.1007/s12517-021-06506-8. Metaiche M, Djafer Khodja H, Aichour A, et al. 2023. Multivariate statistical analysis of groundwater quality of Hassi R'mel, Algeria. Journal of Ecological Engineering, 24(5): 22−31. DOI: 10.12911/22998993/161140. Musaab AAM, Norbert PS, Péter S. 2022. Multivariate statistical and hydrochemical approaches for evaluation of groundwater quality in north Bahri city-Sudan. Heliyon, 8(11): e11308. DOI: 10.1016/j.heliyon.2022.e11308. Nirdesh Kumar R, Pawan Kumar J, Kriti V, et al. 2023. Application of water quality index (WQI) and statistical techniques to assess water quality for drinking, irrigation, and industrial purposes of the Ghaghara River, India. Total Environment Research Themes, 6. DOI: 10.1016/j.totert.2023.100049. Official Journal of the Algerian Republic. 2011. Executive Decree No. 11-125 of 17 Rabie Ethani 1432, corresponding to March 22, 2011 relating to the quality of water for human consumption. Olusola OF, Abiola UA, Mubarak OT, et al. 2022. Assessment of groundwater quality for irrigation purposes in ilesha West local government, Osun State, Nigeria. Water Cycle, 3: 160−170. DOI: 10.1016/j.watcyc.2022.10.001. Rahal O, Gouaidia L, Fidelibus MD, et al. 2021. Hydrogeological and geochemical characterization of groundwater in the F'Kirina plain (eastern Algeria). Applied Geochemistry, 130: 104983. DOI: 10.1016/j.apgeochem.2021.104983. Rehman NU, Ali W, Muhammad S, et al. 2023. Evaluation of drinking and irrigation water quality, and potential risks indices in the Dera Ismail Khan district, Pakistan. Kuwait Journal of Science, 51(1): 100150. DOI: 10.1016/j.kjs.2023.11.001. Ruiz-Pico A, Cuenca AP, Serrano-Agila R, et al. 2019. Hydrochemical characterization of groundwater in the Loja Basin (Ecuador). Applied Geochemistry, 104: 1−9. DOI: 10.1016/j.apgeochem.2019.02.008. Seikhy Narany T, Ramli MR, Aris AZ, et al. 2014. Spatiotemporal variation of groundwater quality using integrated multivariate statistical and geostatistical approaches in Amol-Babol Plain, Iran. Environmental Monitor ing and Assessment, 186: 5797−5815. DOI: 10.1007/s10661-014-3820-8. Sinduja M, Sathya V, Maheswari M, et al. 2023. Groundwater quality assessment for agricultural purposes at Vellore District of Southern India: A geospatial based study. Urban Climate, 47: 101368. DOI: 10.1016/j.uclim.2022.101368. Tegegne AM, Lohani TK, Eshete AA. 2023. Evaluation of groundwater quality for drinking and irrigation purposes using proxy indices in the Gunabay watershed, Upper Blue Nile Basin, Ethiopia. Heliyon, 9(4): e15263. DOI: 10.1016/j.heliyon.2023.e15263. Tiri A, Lahbari N, Boudoukha A. 2014. Multivariate statistical analysis and geochemical modeling to characterize the surface water of Oued Chemora Basin, Algeria. Natural Ressources Research, 23(4): 379−391. DOI: 10.1007/s11053-014-9239-7. World Health Organization. 2006. Quality guidelines for drinking water, third edition. Recommendation. World Health Organization. Geneve, 78. Yahiaoui S, Meddi M, Razack M, et al. 2023. Hydrogeochemical and isotopic assessment for characterizing groundwater quality in the Mitidja plain (northern Algeria). Environmental Science Pollution Ressources, 30: 80029−80054. DOI: 10.1007/s11356-023-27952-9. Yousuf MM, Towfiqul IARM, Nahar JJ, et al. 2023. Identifying factors affecting irrigation metrics in the Haor basin using integrated Shannon's entropy, fuzzy logic and automatic linear model. Environmental Research, 226: 115688. DOI: 10.1016/j.envres.2023.115688.