• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantitative study on vertical distribution of heat flow in Niutuozhen geothermal field, Xiong'an New Area—Evidence from heat flow determination in the Archean of D01 well

Ya-hui Yao Xiao-feng Jia Sheng-tao Li Jun-yan Cui Hong Xiang Dong-dong Yue Qiu-xia Zhang Zhao-long Feng

Yao YH, Jia XF, Li ST, et al. 2025. Quantitative study on vertical distribution of heat flow in Niutuozhen geothermal field, Xiong'an New Area—Evidence from heat flow determination in the Archean of D01 well. Journal of Groundwater Science and Engineering, 13(1): 22-33 doi:  10.26599/JGSE.2025.9280036
Citation: Yao YH, Jia XF, Li ST, et al. 2025. Quantitative study on vertical distribution of heat flow in Niutuozhen geothermal field, Xiong'an New Area—Evidence from heat flow determination in the Archean of D01 well. Journal of Groundwater Science and Engineering, 13(1): 22-33 doi:  10.26599/JGSE.2025.9280036

doi: 10.26599/JGSE.2025.9280036

Quantitative study on vertical distribution of heat flow in Niutuozhen geothermal field, Xiong'an New Area—Evidence from heat flow determination in the Archean of D01 well

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Location of Xiong'an New Area and D01 Well.

    Figure  2.  Tectonic units and major fault distribution in the study area

    (F1: Rongcheng fault, F2: Xushui fault, F3: Niudong fault, F4: Anxin south fault, F5: Niunan fault, F6: Daxing fault, F7: Baoding-Shijiazhuang fault, F8: Gaoyang-Boye fault, F9: Renqiu fault, F10: Renxi fault). (Adapted from Dai et al. 2019)

    Figure  3.  Stratigraphic histogram of D01 well

    Figure  4.  Temperature curve of D01 well in near steady state

    Figure  5.  Linear fitting of temperature measurement data for Neogene and Archean heat flow calculation sections

    Figure  7.  The vertical heat flow difference and relationship in D01, D09, XZ1 and XZ2 well

    Figure  6.  Temperature curves of D09, XZ1 and XZ2 wells located within Niudong fault zone (adapted from Wang et al. 2023b)

    Figure  8.  The geothermal geological conceptual model of Niutuozhen Uplift (adapted from Wang et al. 2018a; Yao et al. 2022; Wang et al. 2023b)

    Table  1.   Thermal conductivity of Archean gneiss core samples in D01 well

    Depth (m) Number of samples Test value of thermal conductivity at room temperature (W/(K·m)) Temperature at different depths (°C) Thermal conductivity correction value according to temperature (W/(K·m))
    Transient plane heat source method Transient hot wire method Average value of two methods
    2,355.47–2,356.47 4 3.15 3.26 3.20 87.4 2.94
    2,445.65–2,447.85 8 2.07 2.06 2.07 89.1 2.05
    2,533.56–2,536.26 12 2.94 2.91 2.92 90.7 2.71
    2,581.76–2,584.46 14 2.24 2.20 2.22 91.5 2.16
    2,603.58–2,605.58 12 2.29 2.25 2.27 91.9 2.20
    下载: 导出CSV

    Table  2.   Radiogenic heat production values for core samples from the D01 well

    Sample number Depth(m) ρ (kg/m3) CU (μg/g) CTh (μg/g) CK (%) Radiogenic heat
    production (μW/m3)
    Lithology
    1 1,185.98 2,810.3 0.071 0.421 0.459 0.09 Dolomite
    2 1,191.335 2,814.6 0.278 0.7 0.642 0.19 Dolomite
    3 1,322.64 2,756.1 0.247 0.521 0.22 0.12 Dolomite
    4 1,401.445 2,711.5 0.143 0.372 0.08 0.07 Dolomite
    5 1,500.68 2,763.4 0.597 2.33 0.683 0.39 Dolomite
    6 1,498.93 2,745.1 1.57 5.54 1.17 0.91 Dolomite
    7 1,717.24 2,801.7 3.01 5.86 0.214 1.24 Gneiss
    8 1,915 2,843.7 2.77 6.16 0.142 1.21 Gneiss
    9 2,017.83 2,834.1 3.59 0.631 2.86 1.30 Gneiss
    10 2,144.2 2,934.1 2.06 6.51 1.44 1.21 Gneiss
    11 2,237.73 2,853.7 4.8 9.86 11.3 3.15 Gneiss
    12 2,355.97 2,689.3 6.72 2.47 0.835 1.97 Gneiss
    13 2,446.75 2,853.1 1.42 12.8 3.28 1.65 Gneiss
    14 2,534.905 2,859.4 1.66 0.476 0.511 0.54 Gneiss
    15 2,581.96 2,897.3 2.2 0.013 0.381 0.65 Gneiss
    16 2,604.38 2,853.4 2.9 2.31 0.694 1.03 Gneiss
    17 2,725 2,893.1 1.45 1.07 1.38 0.62 Gneiss
    18 2,817.87 2,836.7 3.53 0.548 0.867 1.08 Gneiss
    19 2,893.52 2,854.3 3.52 5.32 1.94 1.54 Gneiss
    下载: 导出CSV

    Table  3.   Heat flow of the Neogene and Archean formations from the D01 well

    Stratum Depth (m) Average value of heat flow (mW/m2)
    233 days after the cessation of drilling 551 daysafter the cessation of drilling
    N 400–800 84.6 88.6
    Ar 2,300–2,700 44.1 43.9
    下载: 导出CSV

    Table  4.   Burial depth of karst reservoir roof, geothermal gradient and heat flow of the Cenozoic sedimentary cap in the three wells within Niudong fault zone

    Well Depth of well (m) Burial depth of karst reservoir roof (m) Geothermal gradient of the Cenozoic sedimentary cap (°C/km) Rock thermal conductivity of
    of the Cenozoic sedimentary cap (W/(K·m))
    Heat flow of the Cenozoic sedimentary cap (mW/m2)
    D09 1,653.2 1,015 49.3 1.74 85.8
    XZ1 1,407.9 893.5 62.4 1.74 108.6
    XZ2 1,282.6 778 72.8 1.74 126.7
    下载: 导出CSV
  • Chen MX, Huang GS, Zhang WR, et al. 1982. The temperature distribution pattern and the utilization of geothermal water at Niutuozhen basement protrusion of central Hebei province. Chinese Journal of Geology, 17(3): 239−252. (in Chinese)
    Cui Y, Zhu CQ, Qiu NS, et al. 2019. Radioactive heat production and terrestrial heat flow in the Xiong'an Area, North China. Energies, 12(24): 4608. DOI: 10.3390/en12244608.
    Dai MG, Lei HF, Hu JG, et al. 2019. Evaluation of recoverable geothermal resources and development parameters of Mesoproterozoic thermal reservoir with the top surface depth of 3500m and shallow in Xiong'an New Area. Acta Geologica Sinica, 93(11): 2874−2888. (in Chinese) DOI: 10.19762/j.cnki.dizhixuebao.2019200.
    Furlong KP, Chapman DS. 2013. Heat flow, heat generation, and the thermal state of the lithosphere. Annual Review of Earth and Planetary Sciences, 41(1): 385−410. DOI: 10.1146/annurev.earth.031208.100051.
    Guo SS, Zhu CQ, Qiu NS, et al. 2019. Present Geothermal Characteristics and Influencing Factors in the Xiong'an New Area, North China. Energies, 12(20). DOI: 10.3390/en12203884.
    Guo SS. 2020. Present geothermal characteristics and its influencing factors in Xiong'an New Area. M. S. thesis. Beijing: China University of Petroleum: 54−58. (in Chinese) DOI: 10.27643/d.cnki.gsybu.2020.001411.
    Hao ZJ. 2021. Geothermal field characteristics and influencing factors of Niutuozhen Uplift area in Jizhong Depression. M. S. thesis. Beijing: China University of Petroleum: 44−52. (in Chinese) DOI: 10.27643/d.cnki.gsybu.2021.001474.
    He LJ, Hu SB, Huang SP, et al. 2008. Heat flow study at the Chinese Continental Scientific Drilling site: Borehole temperature, thermal conductivity, and radiogenic heat production. Journal of Geophysics Research, 113(B2). DOI: 10.1029/2007JB004958.
    He LJ, Wang JY. 2021. Concept and application of some important terms in Geothermics and Geophysics such as terrestrial heat flow. China Terminology, 23(03): 3−9. (in Chinese) DOI: 10.12339/j.issn.1673-8578.2021.03.001.
    Jiang GZ, Gao P, Rao S, et al. 2016. Compilation of heat flow data in the continental area of China (4th edition). Chinese Journal of Geophysics, 59(8): 2892−2910. (in Chinese) DOI: 10.6038/cjg20160815.
    Li WW, Rao S, Tang XY, et al. 2014. Borehole temperature logging and temperature field in the Xiongxian geothermal field, Hebei Province. Chinese Journal of Geology, 49(03): 850−863. (in Chinese) DOI: 10.3969/j.issn.0563-5020.2014.03.012.
    Liu YG, Long XT, Liu F. 2022. Tracer test and design optimization of doublet system of carbonate geothermal reservoirs. Geothermics, 105: 102533. DOI: 10.1016/j.geothermics.2022.102533.
    Norden B, Förster A, Förster H, et al. 2020. Temperature and pressure corrections applied to rock thermal conductivity: Impact on subsurface temperature prognosis and heat-flow determination in geothermal exploration. Geothermal energy (Heidelberg), 8(1): 1−19. DOI: 10.1186/s40517-020-0157-0.
    Pang ZH, Kong YL, Pang JM, et al. 2017. Geothermal resources and development in Xiong'an New Area. Bulletin of Chinese Academy of Sciences, 32(11): 1224−1230. (in Chinese) DOI: 10.16418/j.issn.1000-3045.2017.11.007.
    Pang ZH, Pang JM, Kong YL, et al. 2020. Large-scale karst thermal storage identification method and large-scale sustainable mining technology. Science and Technology for Development, 16(Z1): 299−306. (in Chinese) DOI: 10.11842/chips.20200516001.
    Pribnow D, Williams CF, Sass JH, et al. 1996. Thermal conductivity of water-saturated rocks from the KTB Pilot Hole at temperatures of 25 to 300°C. Geophysical Research Letters, 23(4): 391−394. DOI: 10.1029/95GL00253.
    Rao S, Luo Y, Huang SD, et al. 2024. Heat accumulation effect of groundwater convective activity in karst geotherma reservoir in Jizhong Depression, Bohai Bay Basin. Chinese Journal of Geophysics, 67(08): 3075−3088. (in Chinese) DOI: 10.6038/cig2024S0016.
    Rybach L. 1988. Determination of heat production rate, in handbook of terrestrial heat flow density determination, edited by R. Haenel et al. Kluwer Acad., Dordrecht, Netherlands: 125−142.
    Sass JH, Lachenbruch AH, Moses TH, et al. 1992. Heat flow from a scientific research well at Cajon Pass, California. Journal of Geophysical Research, 97(B4): 5017−5030. DOI: 10.1029/91JB01504.
    Seipold U, Huenges E. 1998. Thermal properties of gneisses and amphibolites — high pressure and high temperature investigations of KTB-rock samples. Tectonophysics, 291(1): 173−178. DOI: 10.1016/S0040-1951(98)00038-9
    Sun JX, Yue GF, Zhang W. 2023. Simulation of thermal breakthrough factors affecting carbonate geothermal-to-well systems. Journal of Groundwater Science and Engineering, 11(4): 379−390. DOI: 10.26599/JGSE.2023.9280030.
    Wang GL, Li J, Wu AM, et al. 2018a. A study of the thermal storage characteristics of Gaoyuzhuang Formation, A new layer system of thermal reservoir in Rongcheng uplift area, Hebei province. Acta Geoscientica Sinica, 39(05): 533−541. (in Chinese) DOI: 10.3975/cagsb.2018.071901.
    Wang GL, Liu YG, Duan HX, et al. 2023a. Crust-mantle differentiation and thermal accumulation mechanisms in the north China plain. Renewable Energy, 213: 63−74. DOI: 10.1016/j.renene.2023.05.136.
    Wang GL, Wang WL, Zhang W, et al. 2020. The status quo and prospect of geothermal resources exploration and development in Beijing-Tianjin-Hebei region in China. China Geology, 3(1): 173−181. DOI: 10.31035/cg2020013.
    Wang JY, Huang SP. 1988. Compilation of heat flow data in the China Continental area. Chinese Journal of Geology (Scientia Geologica Sinica), 23(2): 196−204. (in Chinese)
    Wang K, Zhang J, Bai DW, et al. 2021a. Geothermal-geological model of Xiong'an New Area: Evidence from geophysics. Geology in China, 48(05): 1453−1468. (in Chinese) DOI: 10.12029/gc20210511.
    Wang K. 2022. Study on the geothermal geological structure and deep geothermal source mechanism of Xiong'an New Area based on comprehensive geophysical exploration. Ph. D. thesis. Chang Chun: Jilin University: 117−122. (in Chinese) DOI: 10.27162/d.cnki.gjlin.2022.007525.
    Wang SF, Liu JR, Sun Y, et al. 2018b. Study on the geothermal production and reinjection mode in Xiong County. Journal of Groundwater Science and Engineering, 6(3): 178−186. DOI: 10.19637/j.cnki.2305-7068.2018.03.003.
    Wang XW, Guo SY, Gao NA, et al. 2023b. Detection of carbonate geothermal reservoir in Niudong fault zone of Xiong'an New Area and its geothermal exploration significance. Geological Bulletin of China, 42(1): 14−26. (in Chinese) DOI: 10.12097/j.issn.1671-2552.2023.01.002.
    Wang ZT, Gao P, Jiang GZ, et al. 2021b. Heat flow correction for the high-permeability formation: A Case Study for Xiong'an New Area. Lithosphere, 2021(Special 5). DOI:  10.2113/2021/9171191
    Wang ZT, Hu SB, Wang YB, et al. 2022. Influence of the groundwater convection within the high permeability formation on the overlying temperature field in Niutuozhen uplift. Chinese Journal of Geophysics, 65(2): 726−736. (in Chinese) DOI: 10.6038/cjg2022P0341.
    Wang ZT, Jiang GZ, Zhang C, et al. 2019a. Thermal regime of the lithosphere and geothermal potential in Xiong'an New Area. Energy Exploration & Exploitation, 37(2): 787−810. DOI: 10.1177/0144598718778163.
    Wang ZT, Zhang C, Jiang GZ, et al. 2019b. Present-day geothermal field of Xiong'an New Area and its heat source mechanism. Chinese Journal of Geophysics, 62(11): 4313−4322. (in Chinese) DOI: 10.6038/cig2019M0326.
    Wollenberg HA, Smith AR. 1987. Radiogenic heat production of crustal rocks: An assessment based on geochemical data. Geophysical Research Letters, 14(3): 295−298. DOI: 10.1029/GL014i003p00295.
    Wu AM, Ma F, Wang GL, et al. 2018. A study of deep-seated karst geothermal reservoir exploration and huge capacity geothermal well parameters in Xiongan New Area. Acta Geoscientica Sinica, 39(05): 523−532. (in Chinese) DOI: 10.3975/cagsb.2018.071104.
    Wang YB, Liu SW, Chen CQ, et al. 2024. Compilation of terrestrial heat flow data in continental China (5th edition). Chinese Journal of Geophysics, 67(11): 4233−4265. (in Chinese) DOI: 10.6038/cjg2024S0284.
    Xing YF, Wang HQ, Li J, et al. 2022. Chemical field of geothermal water in Xiong'an New Area and analysis of influencing factors. Geology in China, 49(06): 1711−1722. (in Chinese) DOI: 10.12029/gc20220601.
    Yao YH, Jia XF, Li ST, et al. 2022. Heat flow determination of Archean strata under the karst thermal reservoir of D01 well in Xiong'an New Area. Geology in China, 49(6): 1723−1731. (in Chinese) DOI: 10.12029/gc20220602.
  • [1] Xin Wang, Guo-qiang Zhou, Yan-guang Liu, Ying-nan Zhang, Mei-hua Wei, Kai Bian2024:  Research progress on temperature field evolution of hot reservoirs under low-temperature tailwater reinjection, Journal of Groundwater Science and Engineering, 12, 205-222. doi: 10.26599/JGSE.2024.9280016
    [2] Meng-lei Ji, Shuai-chao Wei, Wei Zhang, Feng Liu, Yu-zhong Liao, Ruo-xi Yuan, Xiao-xue Yan, Long Li2024:  Characterization of rock thermophysical properties and factors affecting thermal conductivity−A case study of Datong Basin, China, Journal of Groundwater Science and Engineering, 12, 4-15. doi: 10.26599/JGSE.2024.9280002
    [3] Yi-hang Gao, Jun-hui Shen, Lin Chen, Xiao Li, Shuang Jin, Zhen Ma, Qing-hua Meng2023:  Influence of underground space development mode on the groundwater flow field in Xiong’an new area, Journal of Groundwater Science and Engineering, 11, 68-80. doi: 10.26599/JGSE.2023.9280007
    [4] Jia-xing Sun, Gao-fan Yue, Wei Zhang2023:  Simulation of thermal breakthrough factors affecting carbonate geothermal-to-well systems, Journal of Groundwater Science and Engineering, 11, 379-390. doi: 10.26599/JGSE.2023.9280030
    [5] Sun Yu-kun, Liu Feng, Wang Hua-jun, Gao Xin-zhi2022:  Numerical simulation of operation performance on production and injection of a double well geothermal system in Kailu Basin, Inner Mongolia, Journal of Groundwater Science and Engineering, 10, 196-208. doi: 10.19637/j.cnki.2305-7068.2022.02.008
    [6] Liu Chun-lei, Lu Chen-ming, Li Ya-song, Hao Qi-chen, Cao Sheng-wei2022:  Genetic model and exploration target area of geothermal resources in Hongtang Area, Xiamen, China, Journal of Groundwater Science and Engineering, 10, 128-137. doi: 10.19637/j.cnki.2305-7068.2022.02.003
    [7] Wei Shuai-chao, Liu Feng, Zhang Wei, Wang Gui-ling, Yuan Ruo-xi, Liao Yu-zhong, Yan Xiao-xue2022:  Research on the characteristics and influencing factors of terrestrial heat flow in Guizhou Province, Journal of Groundwater Science and Engineering, 10, 166-183. doi: 10.19637/j.cnki.2305-7068.2022.02.006
    [8] WANG Yan, LIU Yan-guang, BIAN Kai, ZHANG Hong-liang, QIN Shen-jun, WANG Xiao-jun2020:  Seepage-heat transfer coupling process of low temperature return water injected into geothermal reservoir in carbonate rocks in Xian County, China, Journal of Groundwater Science and Engineering, 8, 305-314. doi: 10.19637/j.cnki.2305-7068.2020.04.001
    [9] NAN Tian, GUO Si-jia2019:  Influence of borehole quantity and distribution on lithology field simulation, Journal of Groundwater Science and Engineering, 7, 295-308. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.001
    [10] ZHOU Bo, WEI Shan-ming, WANG Tao, NIE Yu-peng, WANG Chuan-qi2019:  Discussion on establishing monitoring networks for temperature fields of shallow thermal energy in Shandong, China, Journal of Groundwater Science and Engineering, 7, 86-93. doi: 10.19637/j.cnki.2305-7068.2019.01.009
    [11] MAO Xiao-ping, LI Ke-wen, WANG Xin-wei2019:  Causes of geothermal fields and characteristics of ground temperature fields in China, Journal of Groundwater Science and Engineering, 7, 15-28. doi: 10.19637/j.cnki.2305-7068.2019.01.002
    [12] LIU Yan-guang, LIU Bing, LU Chuan, ZHU Xi, WANG Gui-ling2017:  Reconstruction of deep fluid chemical constituents for estimation of geothermal reservoir temperature using chemical geothermometers, Journal of Groundwater Science and Engineering, 5, 173-181.
    [13] GAN Hao-nan, LIN Wen-jing, YUE Gao-fan, WANG Xiao, MA Feng, WANG Gui-ling2017:  Research on the fault controlling mechanism of geothermal water in Zhangzhou Basin, Journal of Groundwater Science and Engineering, 5, 326-335.
    [14] MA Zhi-yuan, XU Yong, ZHAI Mei-jing, WU Min2017:  Clogging mechanism in the process of reinjection of used geothermal water: A simulation research on Xianyang No.2 reinjection well in a super-deep and porous geothermal reservoir, Journal of Groundwater Science and Engineering, 5, 311-325.
    [15] ZHANG Pei-feng2016:  Thermal stresses analysis of casing string used in enhanced geothermal systems wells, Journal of Groundwater Science and Engineering, 4, 293-300.
    [16] FENG Guan-hong, XU Tian-fu, ZHU Hui-xing2016:  Dynamics of fluid and heat flow in a CO2-based injection-production geothermal system, Journal of Groundwater Science and Engineering, 4, 377-388.
    [17] Wang Bin, LI Bai-xiang, LI Fu-cheng2015:  Discussion on heat source mechanism and geothermal system of Qinghai Gonghe-Guide Basin, Journal of Groundwater Science and Engineering, 3, 86-97.
    [18] SHANG Xiao-gang, YU Xiang-hui, LI Cheng-ying, CHAI Hui-peng, JIANG Nan-jie2015:  Geochemical characteristics of geothermal water in Weiyuan geothermal field, Huzhu County, Qinghai Province, Journal of Groundwater Science and Engineering, 3, 59-69.
    [19] Patsakron Assiri2013:  Artesian Flowing Wells Field of Phu Tok Aquifer, Journal of Groundwater Science and Engineering, 1, 95-98.
    [20] Zong-jun Gao, Yong-gui Liu2013:  Groundwater Flow Driven by Heat, Journal of Groundwater Science and Engineering, 1, 22-27.
  • 加载中
图(8) / 表ll (4)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-05
  • 录用日期:  2024-10-16
  • 网络出版日期:  2025-02-10
  • 刊出日期:  2025-03-10

目录

    /

    返回文章
    返回