• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Zoning of development and utilization and evaluation of deep geothermal resources in Xiong'an New Area

Ming-xiao Yu Xi Zhu Gui-ling Wang Wei Zhang Feng Ma

Yu MX, Zhu X, Wang GL, et al. 2025. Zoning of development and utilization and evaluation of deep geothermal resources in Xiong'an New Area. Journal of Groundwater Science and Engineering, 13(1): 47-61 doi:  10.26599/JGSE.2025.9280038
Citation: Yu MX, Zhu X, Wang GL, et al. 2025. Zoning of development and utilization and evaluation of deep geothermal resources in Xiong'an New Area. Journal of Groundwater Science and Engineering, 13(1): 47-61 doi:  10.26599/JGSE.2025.9280038

doi: 10.26599/JGSE.2025.9280038

Zoning of development and utilization and evaluation of deep geothermal resources in Xiong'an New Area

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The location and geological conditions of Xiong′an New Area (Zhu et al. 2023)

    Figure  2.  Geological profile of the study area

    Figure  3.  Evaluation index map of geothermal resources zoning in Xiong′an New Area

    Figure  4.  Flowchart of the research

    Figure  5.  The regionalization score of Xiong′an New Area

    Table  1.   The data set of selected evaluation indicators

    The data set of evaluation indicators
    C1 Single-well water yield of Jixianian geothermal reservoirs (m3/h)
    C2 Central temperature of Jixianian geothermal reservoirs (°C)
    C3 Roof burial depth of Jixianian strata (m)
    C4 Groundwater level depth of Jixianian geothermal reservoirs (m)
    C5 Thickness of Jixianian strata (m)
    C6 TDS content of geothermal fluids in in Jixianian geothermal reservoirs (mg/L)
    下载: 导出CSV

    Table  2.   Index weighted evaluation matrix

    Evaluation indicators C1 C2 C3 C4 C5 C6
    C1 1 2 2 3 3 4
    C2 1/2 1 3 3 4 2
    C3 1/2 1/2 1 4 5 4
    C4 1/2 1/3 1/4 1 2 3
    C5 1/2 1/3 1/5 1/2 1 2
    C6 1/3 1/4 1/4 1/3 1/2 1
    下载: 导出CSV

    Table  3.   Index weighted evaluation matrix

    Evaluation indicatorsGrade
    R1
    (excellent)
    R2 (good)R3
    (moderate)
    R4 (poor)R5 (very poor)
    C1Single-well water yield of Jixianian geothermal reservoirs (m3/h)120100806040
    C2Central temperature of Jixianian geothermal reservoirs (°C)10080604020
    C3Roof burial depth of Jixianian strata (m)5001,5002,5003,5004,500
    C4Groundwater level depth of Jixianian geothermal reservoirs (m)8595105115125
    C5Thickness of Jixianian strata (m)1,6001,3001,000700400
    C6TDS content of geothermal fluids in Jixianian geothermal reservoirs (mg/L)2,1002,3002,5002,7002,900
    下载: 导出CSV

    Table  4.   Summary of main calculation parameters in the study area

    Layer Score Structure position Zoning area (km2) Thickness of
    Jixianian
    strata (m)
    Thickness of geothermal
    reservoir (m)
    GWD (m) Porosity (%) Geothermal reservoir temperature (°C) Specific heat of water (kg/m3) Water density
    (J/kg·°C)
    Density of rocks (kg/m3) Specific heat of rocks (J/kg·°C) Elastic storativity (10−5)
    Wumishan Formation >6.8 Central uplifted area of the Rongcheng Uplift 64.77 800 240 120 4.0 70 980.00 4,186.8 2,600 879.23 3.32
    Axis of the Niutuozhen Uplift 70.16 1,000 250 115 3.5 70 971.82 4,186.8 2,600 879.23 3.00
    Axis of the Niutuozhen Uplift 45.48 800 200 115 3.5 80 971.82 4,186.8 2,600 879.23 2.40
    The Dianbei trough the southern Niutuozhen Uplift 14.84 1,000 200 110 3.0 80 971.83 4,186.8 2,600 879.23 2.06
    5.6
    -6.8
    Central uplifted area of the Rongcheng Uplift 83.08 400 120 110 4.0 62 983.00 4,186.8 2,600 879.23 1.67
    the western slope area of the Rongcheng Uplift 86.25 600 240 114 3.5 62 980.00 4,186.8 2,600 879.23 2.91
    The western slope area of the Niutuozhen Uplift 64.99 1,000 250 110 3.5 75 971.82 4,186.8 2,600 879.23 3.00
    The transition zone between the Niutuozhen Uplift and the Bazhou Sag 88.39 400 60 110 3.0 75 971.82 4,186.8 2,600 879.23 0.62
    The transition zone between the Niutuozhen Uplift and the Bazhou Sag 78.39 1,000 200 110 3.0 75 971.82 4,186.8 2,600 879.23 2.06
    The western area of the Gaoyang Low Uplift 180.72 600 120 125 3.0 110 942.80 4,186.8 2,600 879.23 1.20
    The eastern area of the Gaoyang Low Uplift 151.10 1,000 160 125 3.0 105 943.00 4,186.8 2,600 879.23 1.60
    4.4
    -5.6
    The western slope area of the Rongcheng Uplift 55.41 400 120 114 3.5 72 980.00 4,186.8 2,600 879.23 1.45
    The eastern trough area of the Rongcheng Uplift 39.12 800 240 112 3.5 85 968.00 4,186.8 2,600 879.23 2.87
    The eastern trough area of the Rongcheng Uplift 54.43 1,000 250 105 3.5 80 971.82 4,186.8 2,600 879.23 3.00
    The western slope area of the Niutuozhen Uplift 66.99 800 200 110 3.5 75 971.82 4,186.8 2,600 879.23 2.40
    The Bazhou Sag 99.66 200 40 110 3.0 85 971.82 4,186.8 2,600 879.23 0.41
    The eastern of the Gaoyang Low Uplift---the Lixian slope 64.32 1,000 160 120 3.0 105 943.00 4,186.8 2,600 879.23 1.60
    The eastern area of the Gaoyang Low Uplift 92.40 800 80 100 3.0 105 943.00 4,186.8 2,600 879.23 0.80
    The western area of the Gaoyang Low Uplift 85.20 300 60 125 3.0 110 942.80 4,186.8 2,600 879.23 0.60
    4.1-4.4 The eastern area of the Rong-cheng Uplift 18.51 600 120 125 3.0 110 942.8 4,186.8 2,600 879.228 1.20
    The Bazhou Sag 68.01 150 30 110 3.0 85 971.82 4,186.8 2,600 879.23 0.31
    <3.5 The eastern trough area of the Rongcheng Uplift 33.41 100 30 112 3.5 70 974.00 4,186.8 2,600 879.23 0.36
    Gaoyuzh-uang Formation >6.8 Central uplifted area of the Rongcheng Uplift 64.77 1,000 150 120 2.0 70 978.00 4,186.8 2,600 879.23 1.04
    Axis of the Niutuozhen Uplift 45.48 500 75 115 2.0 85 965.32 4,186.8 2,600 879.23 0.51
    Axis of the Niutuozhen Uplift 70.16 1,000 150 115 2.0 90 965.32 4,186.8 2,600 879.23 1.02
    5.6
    -6.8
    Central uplifted area of the Rongcheng Uplift 83.08 800 160 110 2.0 75 980.00 4,186.8 2,600 879.23 1.11
    The western slope area of the Rongcheng Uplift 86.25 900 135 116 3.0 70 980.00 4,186.8 2,600 879.23 1.40
    The western slope area of the Niutuozhen Uplift 64.99 1,000 150 110 2.0 90 965.32 4,186.8 2,600 879.23 1.02
    The transition zone between the Niutuozhen Uplift and the Bazhou Sag 88.39 800 104 115 2.0 90 965.32 4,186.8 2,600 879.23 0.71
    The transition zone between the Niutuozhen Uplift and the Bazhou Sag 78.39 500 65 115 2.0 90 965.32 4,186.8 2,600 879.23 0.44
    4.4
    -5.6
    The western area of the Rong-cheng Uplift 55.41 800 120 119 3.0 70 980.00 4,186.8 2,600 879.23 1.25
    The western slope area of the Niutuozhen Uplift 34.04 600 90 112 2.0 90 965.32 4,186.8 2,600 879.23 0.61
    The eastern trough area of the Rongcheng Uplift 39.12 600 90 112 2.0 90 961.00 4,186.8 2,600 879.23 0.61
    The eastern trough area of the Rongcheng Uplift 54.43 800 120 110 2.0 80 965.32 4,186.8 2,600 879.23 0.82
    The Bazhou Sag 99.66 500 65 115 2.0 90 965.32 4,186.8 2,600 879.23 0.44
    4.1-4.4 The Bazhou Sag 68.01 500 65 115 2.0 90 965.32 4,186.8 2,600 879.23 0.44
    <3.5 The eastern trough area of the Rongcheng Uplift 33.41 150 23 110 2.0 75 968.00 4,186.8 2,600 879.23 0.15
    下载: 导出CSV

    Table  5.   Results of resource calculations

    Regionalization score Zoning area
    (km2)
    Geothermal resources (1016J) Geothermal fluid reserves (108 m3) Recoverable reserves of geothermal fluids
    (104 m3/d)
    Recoverable heat of geothermal fluids (1016 J/a)
    >6.8 195.25 948.31 20.86 18.78 1.69
    5.6-6.8 732.93 2,624.65 48.33 45.31 4.569
    4.4-5.6 557.53 1,613.06 29.28 26.47 2.788
    3.5-4.4 86.52 160.66 2.19 2.35 0.274
    <3.5 33.41 23.62 0.50 0.50 0.042
    total 1,605.64 5,370.31 101.17 93.41 9.36
    下载: 导出CSV
  • Chang J, Qiu NS, Zhao XZ, et al. 2016. Present-day geothermal regime of the Jizhong depression on Bohai Bay Basin, East China. Chinese Journal of Geophysics, 59(3): 1003−1016. (in Chinese) DOI: 10.6038/cjg20160322.
    Chen MX. 1988. Geothermal in North China. Beijing: Science Press. (in Chinese)
    Cui Y, Zhu CQ, Qiu NS, et al. 2022. The heat source origin of geothermal resources in Xiong'an New Area, North China, in View of the Influence of Igneous Rocks. Frontiers in Earth Science, 10: 2022. DOI: 10.3389/feart.2022.818129.
    Hebei Regional Geological and Mineral Research Institute. 2017. Regional geology of China. Hebei. Beijing: Geological Publishing House. (in Chinese)
    Kong YL, Pang ZH, Pang JM, et al. 2017. Stable isotopes of deep groundwater in the Xiongxian Geothermal Field. Procedia Earth & Planetary Science, 17: 512−515. DOI: 10.1016/j.proeps.2016.12.129.
    Lindsey CR, Neupane G, Spycher N, et al. 2018. Cluster analysis as a tool for evaluating the exploration potential of Known geothermal resource areas. Geothermics, 72: 358−370. DOI: 10.1130/abs/2017AM-300924.
    Liu F, Zhang W, Wang GL, et al. 2023. Geothermal anomalies in the Xianshuihe Area: Implications for tunnel construction along the Sichuan-Tibet railway, China. Journal of Groundwater Science and Engineering, 11(3): 237−248. DOI: 10.26599/JGSE.2023.9280020.
    Liu K, Ye C, Liu YZ, et al. 2018. Regionalization of geothermal resource potential in Beijing. Journal of Engineering Geology, 26(2): 551−560. (in Chinese) DOI: 10.13544/j.cnki.jeg.-2017-047.
    Liu ML, He T, Wu QF, et al. 2020. Hydrogeochemistry of geothermal waters from Xiong'an New Area and its indicating significance. Earth Science, 45(6): 2221−2231. (in Chinese) DOI: 10.3799/dqkx.2019.270.
    Liu ZM, Liang JY, Liu CL. 2016. Assessment method of geothermal fluid exploitable reserve under condition of reinjection. Ground Water, 38(2): 61−63(in Chinese).
    Lund JW, Toth AN (2021). Direct utilization of geothermal energy 2020 Worldwide Review. Geothermics, 90: 101915. DOI: 10.1016/j.geothermics.2020.101915.
    Ministry of natural resources, People's Republic of China. 2020. DZ/T 0331-2020 Specification for estimation and evaluation of geothermal recources. Beijing: Ministry of Natural Recources, People's Republic of China. (in Chinese)
    Pang ZH, Luo J, Cheng, Y Z, et al. 2020. Evaluation of geological conditions for the development of deep geothermal energy in China. Earth Science Frontiers, 27(1): 134-151. (in Chinese) DOI:  10.13745/j.esf.2020.1.15.
    Pei FG, He MX, Fang H, et al. 2023. Evaluation of deep geothermal resources potential in the Songliao Basin based on the Fuzzy Mathematics. Earth Science, 48(3): 1058−1079. (in Chinese) DOI: 10.3799/dqkx.2022.179.
    Shang YN, Gao MZ, Wu LJ, et al. 2012. Division of geothermal resources in Northern Jinan. Geology in China, 39(03): 778−783. (in Chinese) DOI: 10.3969/j.issn.10003657.2012.03.019.
    Siler DL, Zhang Y, Spycher N F, et al. 2017. Play-fairway analysis for geothermal resources and exploration risk in the Modoc Plateau Region. Geothermics, 69: 15−33. DOI: 10.1016/j.geothermics.2017.04.003.
    Sun J X, Yue G F, Zhang W. 2023. Simulation of thermal breakthrough factors affecting carbonate geothermal-to-well systems. Journal of Groundwater Science and Engineering, 11(4): 379−390. DOI: 10.26599/JGSE.2023.9280030.
    Wang GL, Gao J, Zhang BJ, et al. 2020. Study on the thermal storage characteristics of the Wumishan Formation and huge capacity geothermal well parameters in the Gaoyang low uplift Area of Xiong'an New Area. Acta Geologica Sinica, 94(7): 1970−1980. (in Chinese) DOI: 10.19762/j.cnki.dizhixuebao.2020235.
    Wang GL, Lin WJ. 2020. Main hydro-geothermal systems and their genetic models in China. Acta Geologica Sinica, 94(7): 1923−1937. (in Chinese) DOI: 10.19762/j.cnki.dizhi-xuebao.2020224.
    Wang GL, Liu YG, Zhu X, et al. 2020. The status and development trend of geothermal resources in China. Earth Science Frontiers, 27(1): 1−9. (in Chinese) DOI: 10.13745/j.esf.2020.1.1.
    Wang GL, Zhang W, Liang JY, et al. 2017. Evaluation of geothermal resources potential in China. Acta Geoscientica Sinica, 38(4): 449-450; 134; 451-459. (in Chinese) DOI: 10.3975/cagsb.2017.04.02.
    Wang XD, Li XX, Gong JZ, et al. 2019. Geochemical regional planning of geothermal resource prospect in Beijing-Tianjin-Hebei Bedrock Region. Geophysical and Geochemical Exploration, 43(6): 1246−1253. (in Chinese) DOI: 10.11720/wtyht.2019.1151.
    Wang YJ, Ma F, Xie HP, et al. 2021. Fracture characteristics and heat accumulation of Jixianian carbonate reservoirs in the Rongcheng ggeothermal field, Xiong'an New Area. Acta Geologica Sinica - English Edition, 95. DOI: 10.1111/1755-6724.14878.
    Wang ZT, Zhang C, Jiang GZ, et al. 2019. Present-day geothermal field of Xiong'an New Area and its heat source mechanism. Chinese Journal of Geophysics, 62(11): 4313−4322. (in Chinese) DOI: 10.6038/cjg2019M0326.
    Wei SC, Liu F, Zhang W, et al. 2022. Research on the characteristics and influencing factors of terrestrial heat flow in Guizhou Province. Journal of Groundwater Science and Engineering, 10(2): 166−183. DOI: 10.19637/j.cnki.2305-7068.2022.02.006.
    Wu AM, Ma F, Wang GL, et al. 2018. A study of deep-seated Karst geothermal reservoir exploration and huge capacity geothermal well parameters in Xiong'an New Area. Acta Geoscientica Sinica, 39(5): 14−23. (in Chinese) DOI: 10.3975/cagsb.2018.071104.
    Xing YF, Wang HQ, Li J, et al. 2022. Chemical field of geothermal water in Xiong'an NewArea and analysis of influencing factors. Geology in China, 49(6): 1711−1722. (in Chinese) DOI: 10.12029/gc20220601.
    Yu MX, Wang GL, Ma F, et al. 2022. Geochemical characteristics of geothermal fluids of a deep ancient buried hill in the Xiong'an New Area of China. Water, 14(19): 1−18. DOI: 10.3390/w14193182.
    Yu MX, Tian X, Zhang HX, et al. 2023. Hydrogeochemical characteristics of geothermal water in ancient deeply buried hills in the Northern Jizhong Depression, Bohai Bay Basin, China. Water, 15(22): 3881. DOI: 10.3390/w15223881.
    Zhang W, Wang GL, Liu F, et al. 2019. Characteristics of geothermal resources in sedimentary basins. Geology in China, 46(2): 255−268. (in Chinese) DOI: 10.12029/gc20190204.
    Zhao JY, Zhang W, Ma F, et al. 2020. Geothermal characteristics of the geo-thermal fluid in the Rongcheng geothermal filed, Xiong'an New Area. Acta Geologica Sinica, 94(7): 1991−2001. DOI: 10.19762/j.cnki.dizhixue.
    Zhu X, Wang GL, Wang XY, et al. 2022. Hydrogeochemical and isotopic analyses of deep geothermal fluids in the Wumishan Formation in Xiong'an New Area, China. Lithosphere, 2022: 1−20. DOI: 10.2113/2022/2576752.
    Zhu X, Wang GL, Ma F, et al. 2023. Evaluation of geothermal resources of the Xiong'an New Area. Earth Science, 48(3): 1093−1106. (in Chinese) DOI: 10.3799/dqkx.2022.200.
    Zhu YQ, Li DQ, Hu YF, et al. 2023. Deep structure of the Rongcheng geothermal field, Xiong'an New Area: Constraints from resistivity data and boreholes. Geothermics, 114: 102776. DOI: 10.1016/j.geothermics.2023.102776.
  • [1] Man Li, Wei Zhang, Yu-zhong Liao, Feng Liu, Long Li2025:  Evaluation of the scaling and corrosion in Tai'an geothermal water, Journal of Groundwater Science and Engineering. doi: 10.26599/JGSE.2025.9280044
    [2] Jing Hu, Yan-guang Liu, Xin Wang, Ying-nan Zhang, Mei-hua Wei2024:  Progress and prospect of mid-deep geothermal reinjection technology, Journal of Groundwater Science and Engineering, 12, 321-338. doi: 10.26599/JGSE.2024.9280024
    [3] Xiang Gao, Tai-lu Li, Yu-wen Qiao, Yao Zhang, Ze-yu Wang2024:  A combined method using Lattice Boltzmann Method (LBM) and Finite Volume Method (FVM) to simulate geothermal reservoirs in Enhanced Geothermal System (EGS), Journal of Groundwater Science and Engineering, 12, 132-146. doi: 10.26599/JGSE.2024.9280011
    [4] Ma Feng, Wang Gui-ling, Sun Hong-li, Sun Zhan-xue2022:  Indication of hydrogen and oxygen stable isotopes on the characteristics and circulation patterns of medium-low temperature geothermal resources in the Guanzhong Basin, China, Journal of Groundwater Science and Engineering, 10, 70-86. doi: 10.19637/j.cnki.2305-7068.2022.01.007
    [5] Liu Chun-lei, Lu Chen-ming, Li Ya-song, Hao Qi-chen, Cao Sheng-wei2022:  Genetic model and exploration target area of geothermal resources in Hongtang Area, Xiamen, China, Journal of Groundwater Science and Engineering, 10, 128-137. doi: 10.19637/j.cnki.2305-7068.2022.02.003
    [6] Yuan Ruo-xi, Wang Gui-ling, Liu Feng, Zhang Wei, Wang Wan-li, Cao Sheng-wei2021:  Evaluation of shallow geothermal energy resources in the Beijing-Tianjin-Hebei Plain based on land use, Journal of Groundwater Science and Engineering, 9, 129-139. doi: 10.19637/j.cnki.2305-7068.2021.02.005
    [7] ZHANG Ying, LUO Jun, FENG Jian-yun2020:  Characteristics of geothermal reservoirs and utilization of geothermal resources in the southeastern coastal areas of China, Journal of Groundwater Science and Engineering, 8, 134-142. doi: 10.19637/j.cnki.2305-7068.2020.02.005
    [8] KANG Wen-kai, LIU Feng, YANG Fei-fan, WANG Hua-jun2020:  Simulation of heat transfer performance using middle-deep coaxial borehole heat exchangers by FEFLOW, Journal of Groundwater Science and Engineering, 8, 315-327. doi: 10.19637/j.cnki.2305-7068.2020.04.002
    [9] FENG Jian-yun, ZHANG Ying, HE Zhi-liang, SUN Zi-ming, LUO Jun2019:  Discussion on evaluation methodology of hydrothermal geothermal reservoir, Journal of Groundwater Science and Engineering, 7, 29-41. doi: 10.19637/j.cnki.2305-7068.2019.01.003
    [10] TAN Xiao-bo, WEI Shan-ming, BO Ben-yu, JIANG Dian-qing2019:  Analysis of occurrence characteristics of geothermal resources and its relation to control structures in Zibo City,China, Journal of Groundwater Science and Engineering, 7, 70-76. doi: 10.19637/j.cnki.2305-7068.2019.01.007
    [11] LI Jun-ya, WANG Yu-jue, HE Xue-wen, XUE Guo-dong, XU Huan, TIAN Yan-hong, ZHAO Li-li, CUI Qi-hang2019:  Geothermal resources formation conditions and preferred target areas in a certain county of Western Sichuan,China, Journal of Groundwater Science and Engineering, 7, 61-69. doi: 10.19637/j.cnki.2305-7068.2019.01.006
    [12] XING Hui, DI Yan-song, YONG Yi2019:  Analysis on the law of occurrence of shallow geothermal energy in Zhoukou City of Henan Province, China, Journal of Groundwater Science and Engineering, 7, 282-287. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.008
    [13] WANG Shu-fang, LIU Jiu-rong, SUN Ying, LIU Shi-liang, GAO Xiao-rong, SUN Cai-xia, LI Hai-kui2018:  Study on the geothermal production and reinjection mode in Xiong County, Journal of Groundwater Science and Engineering, 6, 178-186. doi: 10.19637/j.cnki.2305-7068.2018.03.003
    [14] ZHU Wei, TANG Wen, LIU Qiang, ZHANG Mei-gui2017:  Analysis on variation characteristics of geothermal response in Liaoning Province, Journal of Groundwater Science and Engineering, 5, 336-342.
    [15] MA Zhi-yuan, XU Yong, ZHAI Mei-jing, WU Min2017:  Clogging mechanism in the process of reinjection of used geothermal water: A simulation research on Xianyang No.2 reinjection well in a super-deep and porous geothermal reservoir, Journal of Groundwater Science and Engineering, 5, 311-325.
    [16] LIU Qi, JIANG Si-min, PU Ye-feng, ZHANG Wei2016:  Hydro-geochemical simulation of the mixing balance of exploitation and reinjection of geothermal fluid, Journal of Groundwater Science and Engineering, 4, 81-87.
    [17] YUE Gao-fan, LV Wen-bin, ZHANG Wei, SU Ran, LIN Wen-jing2016:  Optimization of geothermal water exploitation in Xinji, Hebei Province, P. R. China, Journal of Groundwater Science and Engineering, 4, 197-203.
    [18] ZHU Xi, ZHANG Qing-lian, WANG Wan-li, LIU Yan-guang2015:  Study on the influencing factors of rock-soil thermophysical parameters in shallow geothermal energy, Journal of Groundwater Science and Engineering, 3, 256-267.
    [19] LIU Kai, SUN Ying,  LI Yu, LIU Jiu-rong, LIU Ying-chao2014:  Zonation for exploitation and utilization of geothermal water in Beijing, Journal of Groundwater Science and Engineering, 2, 94-104.
    [20] LIU Zhi-ming, LIN Wen-jing, LIU Qin-xuan, ZHANG Wei, LIU Chun-lei, MA Feng, WANG Gui-ling2014:  Evaluation and reasonable utilization of geothermal resources of Shenze County, Hebei Province, Journal of Groundwater Science and Engineering, 2, 17-27.
  • 加载中
图(5) / 表ll (5)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-11
  • 录用日期:  2024-11-18
  • 网络出版日期:  2025-02-13
  • 刊出日期:  2025-03-10

目录

    /

    返回文章
    返回