Zoning of development and utilization and evaluation of deep geothermal resources in Xiong'an New Area
-
Abstract: Xiong'an New Area boasts abundant geothermal resources, with widespread Jixianian geothermal reservoirs serving as key targets for exploration and development. Zoning geothermal resources helps characterize their distribution and attributes, offering critical guidance for their sustainable exploitation and utilization. This study integrates data from drilling and production tests across 21 geothermal wells to analyze the Jixianian strata, including depth, thickness, temperature, single-well water yield, Groundwater Level Depth (GWD), and Total Dissolved Solids (TDS). Employing fuzzy mathematics, a zoning analysis was performed, yielding quantitative evaluation scores and delineating favorable zones for development. Key findings include: (1) Geothermal reservoirs in the Rongcheng and Niutuozhen uplifts exhibit shallow burial depths, substantial thicknesses, high productivity, and relatively low temperatures, making them highly suitable for large-scale geothermal exploitation; (2) Zones with high resource potential but uncertain conditions require further exploration to mitigate development risks; (3) Areas near the Rongcheng fault or Jixianian strata buried deeper than 4,000 m are recommended for deferred exploitation; (4) Comprehensive evaluation reveals that the Jixianian carbonate geothermal reservoirs in Xiong'an New Area manifest geothermal resources of 5,370.31×1016 J, geothermal fluid reserves of 101.17×108 m3, and recoverable fluid reserves of 93.41×104 m3/d under balanced extraction and reinjection. Recoverable geothermal heat amounts to 9.36×1016 J/a, equivalent to 319.4×104 t/a of standard coal. This study provides valuable insights into the exploration and sustainable exploitation of deep geothermal reservoirs in Xiong'an New Area, enhancing resource utilization and contributing to the development of a green and sustainable Xiong'an New Area.
-
Figure 1. The location and geological conditions of Xiong′an New Area (Zhu et al. 2023)
Table 1. The data set of selected evaluation indicators
The data set of evaluation indicators C1 Single-well water yield of Jixianian geothermal reservoirs (m3/h) C2 Central temperature of Jixianian geothermal reservoirs (°C) C3 Roof burial depth of Jixianian strata (m) C4 Groundwater level depth of Jixianian geothermal reservoirs (m) C5 Thickness of Jixianian strata (m) C6 TDS content of geothermal fluids in in Jixianian geothermal reservoirs (mg/L) Table 2. Index weighted evaluation matrix
Evaluation indicators C1 C2 C3 C4 C5 C6 C1 1 2 2 3 3 4 C2 1/2 1 3 3 4 2 C3 1/2 1/2 1 4 5 4 C4 1/2 1/3 1/4 1 2 3 C5 1/2 1/3 1/5 1/2 1 2 C6 1/3 1/4 1/4 1/3 1/2 1 Table 3. Index weighted evaluation matrix
Evaluation indicators Grade R1
(excellent)R2 (good) R3
(moderate)R4 (poor) R5 (very poor) C1 Single-well water yield of Jixianian geothermal reservoirs (m3/h) 120 100 80 60 40 C2 Central temperature of Jixianian geothermal reservoirs (°C) 100 80 60 40 20 C3 Roof burial depth of Jixianian strata (m) 500 1,500 2,500 3,500 4,500 C4 Groundwater level depth of Jixianian geothermal reservoirs (m) 85 95 105 115 125 C5 Thickness of Jixianian strata (m) 1,600 1,300 1,000 700 400 C6 TDS content of geothermal fluids in Jixianian geothermal reservoirs (mg/L) 2,100 2,300 2,500 2,700 2,900 Table 4. Summary of main calculation parameters in the study area
Layer Score Structure position Zoning area (km2) Thickness of
Jixianian
strata (m)Thickness of geothermal
reservoir (m)GWD (m) Porosity (%) Geothermal reservoir temperature (°C) Specific heat of water (kg/m3) Water density
(J/kg·°C)Density of rocks (kg/m3) Specific heat of rocks (J/kg·°C) Elastic storativity (10−5) Wumishan Formation >6.8 Central uplifted area of the Rongcheng Uplift 64.77 800 240 120 4.0 70 980.00 4,186.8 2,600 879.23 3.32 Axis of the Niutuozhen Uplift 70.16 1,000 250 115 3.5 70 971.82 4,186.8 2,600 879.23 3.00 Axis of the Niutuozhen Uplift 45.48 800 200 115 3.5 80 971.82 4,186.8 2,600 879.23 2.40 The Dianbei trough the southern Niutuozhen Uplift 14.84 1,000 200 110 3.0 80 971.83 4,186.8 2,600 879.23 2.06 5.6
-6.8Central uplifted area of the Rongcheng Uplift 83.08 400 120 110 4.0 62 983.00 4,186.8 2,600 879.23 1.67 the western slope area of the Rongcheng Uplift 86.25 600 240 114 3.5 62 980.00 4,186.8 2,600 879.23 2.91 The western slope area of the Niutuozhen Uplift 64.99 1,000 250 110 3.5 75 971.82 4,186.8 2,600 879.23 3.00 The transition zone between the Niutuozhen Uplift and the Bazhou Sag 88.39 400 60 110 3.0 75 971.82 4,186.8 2,600 879.23 0.62 The transition zone between the Niutuozhen Uplift and the Bazhou Sag 78.39 1,000 200 110 3.0 75 971.82 4,186.8 2,600 879.23 2.06 The western area of the Gaoyang Low Uplift 180.72 600 120 125 3.0 110 942.80 4,186.8 2,600 879.23 1.20 The eastern area of the Gaoyang Low Uplift 151.10 1,000 160 125 3.0 105 943.00 4,186.8 2,600 879.23 1.60 4.4
-5.6The western slope area of the Rongcheng Uplift 55.41 400 120 114 3.5 72 980.00 4,186.8 2,600 879.23 1.45 The eastern trough area of the Rongcheng Uplift 39.12 800 240 112 3.5 85 968.00 4,186.8 2,600 879.23 2.87 The eastern trough area of the Rongcheng Uplift 54.43 1,000 250 105 3.5 80 971.82 4,186.8 2,600 879.23 3.00 The western slope area of the Niutuozhen Uplift 66.99 800 200 110 3.5 75 971.82 4,186.8 2,600 879.23 2.40 The Bazhou Sag 99.66 200 40 110 3.0 85 971.82 4,186.8 2,600 879.23 0.41 The eastern of the Gaoyang Low Uplift---the Lixian slope 64.32 1,000 160 120 3.0 105 943.00 4,186.8 2,600 879.23 1.60 The eastern area of the Gaoyang Low Uplift 92.40 800 80 100 3.0 105 943.00 4,186.8 2,600 879.23 0.80 The western area of the Gaoyang Low Uplift 85.20 300 60 125 3.0 110 942.80 4,186.8 2,600 879.23 0.60 4.1-4.4 The eastern area of the Rong-cheng Uplift 18.51 600 120 125 3.0 110 942.8 4,186.8 2,600 879.228 1.20 The Bazhou Sag 68.01 150 30 110 3.0 85 971.82 4,186.8 2,600 879.23 0.31 <3.5 The eastern trough area of the Rongcheng Uplift 33.41 100 30 112 3.5 70 974.00 4,186.8 2,600 879.23 0.36 Gaoyuzh-uang Formation >6.8 Central uplifted area of the Rongcheng Uplift 64.77 1,000 150 120 2.0 70 978.00 4,186.8 2,600 879.23 1.04 Axis of the Niutuozhen Uplift 45.48 500 75 115 2.0 85 965.32 4,186.8 2,600 879.23 0.51 Axis of the Niutuozhen Uplift 70.16 1,000 150 115 2.0 90 965.32 4,186.8 2,600 879.23 1.02 5.6
-6.8Central uplifted area of the Rongcheng Uplift 83.08 800 160 110 2.0 75 980.00 4,186.8 2,600 879.23 1.11 The western slope area of the Rongcheng Uplift 86.25 900 135 116 3.0 70 980.00 4,186.8 2,600 879.23 1.40 The western slope area of the Niutuozhen Uplift 64.99 1,000 150 110 2.0 90 965.32 4,186.8 2,600 879.23 1.02 The transition zone between the Niutuozhen Uplift and the Bazhou Sag 88.39 800 104 115 2.0 90 965.32 4,186.8 2,600 879.23 0.71 The transition zone between the Niutuozhen Uplift and the Bazhou Sag 78.39 500 65 115 2.0 90 965.32 4,186.8 2,600 879.23 0.44 4.4
-5.6The western area of the Rong-cheng Uplift 55.41 800 120 119 3.0 70 980.00 4,186.8 2,600 879.23 1.25 The western slope area of the Niutuozhen Uplift 34.04 600 90 112 2.0 90 965.32 4,186.8 2,600 879.23 0.61 The eastern trough area of the Rongcheng Uplift 39.12 600 90 112 2.0 90 961.00 4,186.8 2,600 879.23 0.61 The eastern trough area of the Rongcheng Uplift 54.43 800 120 110 2.0 80 965.32 4,186.8 2,600 879.23 0.82 The Bazhou Sag 99.66 500 65 115 2.0 90 965.32 4,186.8 2,600 879.23 0.44 4.1-4.4 The Bazhou Sag 68.01 500 65 115 2.0 90 965.32 4,186.8 2,600 879.23 0.44 <3.5 The eastern trough area of the Rongcheng Uplift 33.41 150 23 110 2.0 75 968.00 4,186.8 2,600 879.23 0.15 Table 5. Results of resource calculations
Regionalization score Zoning area
(km2)Geothermal resources (1016J) Geothermal fluid reserves (108 m3) Recoverable reserves of geothermal fluids
(104 m3/d)Recoverable heat of geothermal fluids (1016 J/a) >6.8 195.25 948.31 20.86 18.78 1.69 5.6-6.8 732.93 2,624.65 48.33 45.31 4.569 4.4-5.6 557.53 1,613.06 29.28 26.47 2.788 3.5-4.4 86.52 160.66 2.19 2.35 0.274 <3.5 33.41 23.62 0.50 0.50 0.042 total 1,605.64 5,370.31 101.17 93.41 9.36 -
Chang J, Qiu NS, Zhao XZ, et al. 2016. Present-day geothermal regime of the Jizhong depression on Bohai Bay Basin, East China. Chinese Journal of Geophysics, 59(3): 1003−1016. (in Chinese) DOI: 10.6038/cjg20160322. Chen MX. 1988. Geothermal in North China. Beijing: Science Press. (in Chinese) Cui Y, Zhu CQ, Qiu NS, et al. 2022. The heat source origin of geothermal resources in Xiong'an New Area, North China, in View of the Influence of Igneous Rocks. Frontiers in Earth Science, 10: 2022. DOI: 10.3389/feart.2022.818129. Hebei Regional Geological and Mineral Research Institute. 2017. Regional geology of China. Hebei. Beijing: Geological Publishing House. (in Chinese) Kong YL, Pang ZH, Pang JM, et al. 2017. Stable isotopes of deep groundwater in the Xiongxian Geothermal Field. Procedia Earth & Planetary Science, 17: 512−515. DOI: 10.1016/j.proeps.2016.12.129. Lindsey CR, Neupane G, Spycher N, et al. 2018. Cluster analysis as a tool for evaluating the exploration potential of Known geothermal resource areas. Geothermics, 72: 358−370. DOI: 10.1130/abs/2017AM-300924. Liu F, Zhang W, Wang GL, et al. 2023. Geothermal anomalies in the Xianshuihe Area: Implications for tunnel construction along the Sichuan-Tibet railway, China. Journal of Groundwater Science and Engineering, 11(3): 237−248. DOI: 10.26599/JGSE.2023.9280020. Liu K, Ye C, Liu YZ, et al. 2018. Regionalization of geothermal resource potential in Beijing. Journal of Engineering Geology, 26(2): 551−560. (in Chinese) DOI: 10.13544/j.cnki.jeg.-2017-047. Liu ML, He T, Wu QF, et al. 2020. Hydrogeochemistry of geothermal waters from Xiong'an New Area and its indicating significance. Earth Science, 45(6): 2221−2231. (in Chinese) DOI: 10.3799/dqkx.2019.270. Liu ZM, Liang JY, Liu CL. 2016. Assessment method of geothermal fluid exploitable reserve under condition of reinjection. Ground Water, 38(2): 61−63(in Chinese). Lund JW, Toth AN (2021). Direct utilization of geothermal energy 2020 Worldwide Review. Geothermics, 90: 101915. DOI: 10.1016/j.geothermics.2020.101915. Ministry of natural resources, People's Republic of China. 2020. DZ/T 0331-2020 Specification for estimation and evaluation of geothermal recources. Beijing: Ministry of Natural Recources, People's Republic of China. (in Chinese) Pang ZH, Luo J, Cheng, Y Z, et al. 2020. Evaluation of geological conditions for the development of deep geothermal energy in China. Earth Science Frontiers, 27(1): 134-151. (in Chinese) DOI: 10.13745/j.esf.2020.1.15. Pei FG, He MX, Fang H, et al. 2023. Evaluation of deep geothermal resources potential in the Songliao Basin based on the Fuzzy Mathematics. Earth Science, 48(3): 1058−1079. (in Chinese) DOI: 10.3799/dqkx.2022.179. Shang YN, Gao MZ, Wu LJ, et al. 2012. Division of geothermal resources in Northern Jinan. Geology in China, 39(03): 778−783. (in Chinese) DOI: 10.3969/j.issn.10003657.2012.03.019. Siler DL, Zhang Y, Spycher N F, et al. 2017. Play-fairway analysis for geothermal resources and exploration risk in the Modoc Plateau Region. Geothermics, 69: 15−33. DOI: 10.1016/j.geothermics.2017.04.003. Sun J X, Yue G F, Zhang W. 2023. Simulation of thermal breakthrough factors affecting carbonate geothermal-to-well systems. Journal of Groundwater Science and Engineering, 11(4): 379−390. DOI: 10.26599/JGSE.2023.9280030. Wang GL, Gao J, Zhang BJ, et al. 2020. Study on the thermal storage characteristics of the Wumishan Formation and huge capacity geothermal well parameters in the Gaoyang low uplift Area of Xiong'an New Area. Acta Geologica Sinica, 94(7): 1970−1980. (in Chinese) DOI: 10.19762/j.cnki.dizhixuebao.2020235. Wang GL, Lin WJ. 2020. Main hydro-geothermal systems and their genetic models in China. Acta Geologica Sinica, 94(7): 1923−1937. (in Chinese) DOI: 10.19762/j.cnki.dizhi-xuebao.2020224. Wang GL, Liu YG, Zhu X, et al. 2020. The status and development trend of geothermal resources in China. Earth Science Frontiers, 27(1): 1−9. (in Chinese) DOI: 10.13745/j.esf.2020.1.1. Wang GL, Zhang W, Liang JY, et al. 2017. Evaluation of geothermal resources potential in China. Acta Geoscientica Sinica, 38(4): 449-450; 134; 451-459. (in Chinese) DOI: 10.3975/cagsb.2017.04.02. Wang XD, Li XX, Gong JZ, et al. 2019. Geochemical regional planning of geothermal resource prospect in Beijing-Tianjin-Hebei Bedrock Region. Geophysical and Geochemical Exploration, 43(6): 1246−1253. (in Chinese) DOI: 10.11720/wtyht.2019.1151. Wang YJ, Ma F, Xie HP, et al. 2021. Fracture characteristics and heat accumulation of Jixianian carbonate reservoirs in the Rongcheng ggeothermal field, Xiong'an New Area. Acta Geologica Sinica - English Edition, 95. DOI: 10.1111/1755-6724.14878. Wang ZT, Zhang C, Jiang GZ, et al. 2019. Present-day geothermal field of Xiong'an New Area and its heat source mechanism. Chinese Journal of Geophysics, 62(11): 4313−4322. (in Chinese) DOI: 10.6038/cjg2019M0326. Wei SC, Liu F, Zhang W, et al. 2022. Research on the characteristics and influencing factors of terrestrial heat flow in Guizhou Province. Journal of Groundwater Science and Engineering, 10(2): 166−183. DOI: 10.19637/j.cnki.2305-7068.2022.02.006. Wu AM, Ma F, Wang GL, et al. 2018. A study of deep-seated Karst geothermal reservoir exploration and huge capacity geothermal well parameters in Xiong'an New Area. Acta Geoscientica Sinica, 39(5): 14−23. (in Chinese) DOI: 10.3975/cagsb.2018.071104. Xing YF, Wang HQ, Li J, et al. 2022. Chemical field of geothermal water in Xiong'an NewArea and analysis of influencing factors. Geology in China, 49(6): 1711−1722. (in Chinese) DOI: 10.12029/gc20220601. Yu MX, Wang GL, Ma F, et al. 2022. Geochemical characteristics of geothermal fluids of a deep ancient buried hill in the Xiong'an New Area of China. Water, 14(19): 1−18. DOI: 10.3390/w14193182. Yu MX, Tian X, Zhang HX, et al. 2023. Hydrogeochemical characteristics of geothermal water in ancient deeply buried hills in the Northern Jizhong Depression, Bohai Bay Basin, China. Water, 15(22): 3881. DOI: 10.3390/w15223881. Zhang W, Wang GL, Liu F, et al. 2019. Characteristics of geothermal resources in sedimentary basins. Geology in China, 46(2): 255−268. (in Chinese) DOI: 10.12029/gc20190204. Zhao JY, Zhang W, Ma F, et al. 2020. Geothermal characteristics of the geo-thermal fluid in the Rongcheng geothermal filed, Xiong'an New Area. Acta Geologica Sinica, 94(7): 1991−2001. DOI: 10.19762/j.cnki.dizhixue. Zhu X, Wang GL, Wang XY, et al. 2022. Hydrogeochemical and isotopic analyses of deep geothermal fluids in the Wumishan Formation in Xiong'an New Area, China. Lithosphere, 2022: 1−20. DOI: 10.2113/2022/2576752. Zhu X, Wang GL, Ma F, et al. 2023. Evaluation of geothermal resources of the Xiong'an New Area. Earth Science, 48(3): 1093−1106. (in Chinese) DOI: 10.3799/dqkx.2022.200. Zhu YQ, Li DQ, Hu YF, et al. 2023. Deep structure of the Rongcheng geothermal field, Xiong'an New Area: Constraints from resistivity data and boreholes. Geothermics, 114: 102776. DOI: 10.1016/j.geothermics.2023.102776. -