• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Presenting and evaluating a new empirical relationship for estimating the rate of infiltration in trenches

Mojtaba Hassanpour Hossein Khozeymehnezhad Abalfazl Akbarpour

Hassanpour M, Khozeymehnezhad H, Akbarpour A. 2025. Presenting and evaluating a new empirical relationship for estimating the rate of infiltration in trenches. Journal of Groundwater Science and Engineering, 13(2): 101-115 doi:  10.26599/JGSE.2025.9280042
Citation: Hassanpour M, Khozeymehnezhad H, Akbarpour A. 2025. Presenting and evaluating a new empirical relationship for estimating the rate of infiltration in trenches. Journal of Groundwater Science and Engineering, 13(2): 101-115 doi:  10.26599/JGSE.2025.9280042

doi: 10.26599/JGSE.2025.9280042

Presenting and evaluating a new empirical relationship for estimating the rate of infiltration in trenches

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  A simple schematic of the laboratory model.

    (a) Side view from the right; (b) Front view

    Figure  2.  How the moisture front moves with 5-minute intervals on the model wall with a trench width of 8 cm and a trench depth of 10 cm (using medium sand materials)

    Figure  3.  Illustration of the moisture front movement in the model wall with 5-minute intervals and a trench width of 8 cm and a trench depth of 10 cm (using fine sand materials)

    Figure  4.  The effect of changes in channel dimensions on flow output in the physical model

    Notes: (a) dimensionless graph with an input flow rate of 2.2 liters per minute, a fixed trench width of 8 cm, and different depths of 5, 7.5, 10, 12.5, and 15 cm in the physical model using medium sand materials; (b) dimensionless graph with an input flow rate of 2.2 liters per minute, a fixed trench depth of 10 cm, and different widths of 4, 6, 8, 10, and 12 cm in the physical model using medium sand materials; (c) dimensionless graph with an input flow rate of 0.82 liters per minute, a fixed trench width of 8 cm, and different depths of 5, 7.5, 10, 12.5, and 15 cm in the physical model using fine sand materials;(d) dimensionless graph with an input flow rate of 0.82 liters per minute, a fixed trench depth of 10 cm, and different widths of 4, 6, 8, 10, and 12 cm in the physical model using fine sand materials.

    Figure  5.  Examining the changes in the volume of the trench and the changes in the output flow in medium sand and fine sand

    (a) according to the changes in the depth of the trench; (b) according to the changes in the width of the trench

    Figure  6.  Examining the changes in the wetted surface of the trench and the changes in the output flow in medium sand and fine sand

    (a) according to the changes in trench depth; (b) according to the changes in trench width

    Figure  7.  Comparison of observed values of $ \mathit{\text{Q}_{\text{out}}} $ and calculated values of $ \mathit{\text{Q}_{\text{out}}} $ from the provided equation

    (a) for medium sand materials against the 45-degree line; (b) for fine sand materials against the 45-degree line.

    Figure  8.  Comparison of the observed values of leakage from the channel with its calculated values form the equation against the 45-degree line

    Table  1.   Data obtained from the experiments conducted on the physical model with medium sand and fine sand materials

    Row Trench width
    /cm
    Trench depth
    /cm
    Trench volume
    /cm3
    The ratio of
    the depth to
    the
    width of
    the trench
    Qoutmax
    (Lit/Min) (Medium sand)
    Qoutmax
    (Lit/Min) (Fine sand)
    Performance
    (Medium sand)
    (Qout to Qin)
    Performance
    (Fine sand)
    (Qout to Qin)
    1 8 10 6,400 1.25 1.990 0.740 0.905 0.902
    2 8 5 3,200 0.63 1.820 0.640 0.827 0.780
    3 8 7.5 4,800 0.94 1.930 0.688 0.877 0.839
    4 8 12.5 8,000 1.56 2.050 0.775 0.932 0.945
    5 8 15 9,600 1.88 2.140 0.810 0.973 0.988
    6 4 10 3,200 2.5 1.960 0.690 0.891 0.841
    7 6 10 4,800 1.67 1.980 0.720 0.900 0.878
    8 10 10 8,000 1 2.010 0.752 0.914 0.917
    9 12 10 9,600 0.83 2.030 0.770 0.923 0.939
    下载: 导出CSV

    Table  2.   Comparison of observed values of $ {{Q}}_{{out}} $ and calculated values of $ {{Q}}_{{out}} $ using the provided equation for different dimensions of the trench in the physical model with medium sand materials

    Row Trench width
    /cm
    Trench depth
    /cm
    Trench
    length
    /cm
    $ \boldsymbol{Q_{out}} $
    (Observational)
    /L/Min
    $ \boldsymbol{Q_{out}} $
    (Computational) /L/Min
    Pearson
    correlation
    (r)
    RMSE
    1 8 10 80 1.990 1.969 0.983 0.073
    2 4 10 80 1.960 1.863
    3 6 10 80 1.980 1.917
    4 10 10 80 2.010 2.019
    5 12 10 80 2.030 2.066
    6 8 5 80 1.820 1.680
    7 8 7.5 80 1.930 1.835
    8 8 12.5 80 2.050 2.089
    9 8 15 80 2.140 2.198
    下载: 导出CSV

    Table  3.   Comparison of observed values of $ {{Q}}_{{out}} $ and calculated values of $ {{Q}}_{{out}} $ using the provided equation for different dimensions of the trench in the physical model with fine sand materials

    Row Trench width
    /cm
    Trench depth
    /cm
    Trench length
    /cm
    $ \boldsymbol{Q_{out}} $ (Observational) /L/Min $ \boldsymbol{Q_{out}} $ (Computational) /L/Min Pearson correlation (r) RMSE
    1 8 10 80 0.740 0.745 0.992 0.012
    2 4 10 80 0.690 0.705
    3 6 10 80 0.720 0.726
    4 10 10 80 0.752 0.764
    5 12 10 80 0.770 0.782
    6 8 5 80 0.640 0.636
    7 8 7.5 80 0.688 0.694
    8 8 12.5 80 0.775 0.791
    9 8 15 80 0.810 0.832
    下载: 导出CSV

    Table  4.   Compares the observed values of leakage from the channel with its calculated values from the given equation

    Row Channel name L/m P/m $ {{D}}{_{50}} $/m Q/m3/d/m2 Observational Q/m3/d/m2 Computational Relative error of the main equation/% Pearson correlation
    (r)
    RMSE
    1 Sharifabad 0.35 2.85 0.0003 1.89 1.62 16 0.981 0.381
    2 Sirian 0.32 3.14 0.0002 1.78 1.36 30
    3 Cichi 0.96 1.04 0.00015 1.96 1.99 −1.5
    4 Nahr Lulham 0.38 2.6 0.0016 5.58 5.02 11
    5 Nahr Sarmast 0.26 3.88 0.0012 3.87 3.24 19
    6 Garkan 1 0.39 2.59 0.00005 0.55 0.55 0
    7 Garkan 2 0.38 2.61 0.00005 0.59 0.55 7
    8 Najafabad 1 0.76 1.32 0.00015 1.12 1.70 −34
    9 Najafabad 2 0.43 2.34 0.00015 0.95 1.18 −19
    下载: 导出CSV
  • Afzali SH, Abedini MJ, Monajemi P. 2009. Simulation of flow in porous media using coupled pressurized-free surface interconnected conduit network 1- network analysis. Iran-Water Resources Research, 5(2): 62–70. (in Persian
    Ali H. 2011. Practices of irrigation & on-farm water management. Springer Science & Business Media, New York, USA, 546. DOI: 10.1007/978-1-4419-7637-6.
    Bagarello V, Sferlazza S, Sgroi A. 2009. Testing laboratory methods to determine the anisotropy of saturated hydraulic conductivity in a sandy–loam soil. Geoderma, 154(1): 52–58. DOI: 10.1016/j.geoderma.2009.09.012.
    Beckwith C, Baird A, Heathwaite AL. 2003. Anisotropy and depth-related heterogeneity of hydraulic conductivity in a bog peat. I: Laboratory measurements. Hydrological Processes, 17(1): 89–101. DOI: 10.1002/hyp.1116.
    Cui YL, Li YH, Mao Z, et al. 2004. Strategies for improving the water supply system in HCID, upper reaches of the Yellow River Basin, China. Agricultural Engineering International: The CIGR Journal of Scientific Research and Development. Manuscript LW 02 005.
    Detay M, L Bersillon J. 1996. La réalimentation artificielle des nappes profondes: Faisabilité et conséquences. La Houille Blanche, Revue Internationale De l'eau, 4: 57–61. (in French) DOI: 10.1051/lhb/1996040.
    El Mansouri B, El Mezouary L. 2015. Enhan-cement of groundwater potential by aquifer artificial recharge techniques: An adaptation to climate change. Proceedings of the Inter- national Association of Hydrological Sci- ences, 366: 155−156. DOI: 10.5194/piahs-366-155-2015.
    Foreman TL. 2014. Managed Aquifer Recharge (MAR) and design and construction of hydraulic barriers against seawater intrusion: The California case. Boletín Geológico y Minero, 125 (2): 133–142.
    Heidarizadeh M, Salemi HR. 2014. Comparison of Wedernikow theoretical method with Ingham empirical method in estimation of seepage from earth channels in Roodasht Region of Isfahan. Agricultural Water Research Journal, 28(4): 703−712. DOI: 10.22092/jwra.2015.100825.
    Hiscock KM, Balashova N, Cooper RJ, et al. 2024. Developing Managed Aquifer Recharge (MAR) to augment irrigation water resources in the sand and gravel (Crag) aquifer of coastal Suffolk, UK. Journal of Environmental Management, 35: 119639. DOI: 10.1016/j.jenvman.2023.119639.
    Iraq Alavi S. 1993. Management of Zayandeh Rud water distribution based on the estimation of water conveyance efficiency in downstream canals. Isfahan University of Technology, Master's Thesis in Irrigation and Drainage, Department of Irrigation and Drainage, 150.
    Karim I, Abd Ali AM. 2018. Artificial recharge of groundwater by injection wells: A case study. International Journal of Science Engineering and Technology, 6(1): 6193–6196.
    Lhassan MS, Bouabid EL M, Badr B, et al. 2019. Improvement of groundwater resources potential by artificial recharge technique: A case study of Charf El Akab aquifer in the Tangier region, Morocco. Journal of Groundwater Science and Engineering, 7(3): 224−236. DOI: 10.19637/j.cnki.2305-7068.2019.03.003shu.
    Li HX, Han SB, Wu X, et al. 2021. Distribution, characteristics and influencing factors of fresh groundwater resources in the Loess Plateau, China. China Geology, 4(3): 509−526. DOI: 10.31035/cg2021057.
    Moghazi HEM, Ismail ES. 1997. A study of losses from field channels under arid region conditions. Irrigation Science, 17(3): 105−110. DOI: 10.1007/s002710050028.
    Murillo Díaz JM. 2004. Recarga de acuíferos. Evaluación y análisis de condicionantes técnicos y económicos. Acuífero aluvial del Bajo Guadalquivir. Minas. (in Spanish
    Nan T, Shao JL, Cui YL. 2016. Column test-based features analysis of clogging in artificial recharge of groundwater in Beijing. Journal of Groundwater Science and Engineering, 4(2): 88−95. DOI: 10.26599/JGSE.2016.9280011.
    Nouri Mohammadieh M, Sohrabi T, Rahimi H. 2010. Evaluation of empirical equations of seepage estimation from earthen canals (Case study: Ghazvin Plain). Iranian Water Research Journal, 4(2): 125–128.
    Pishro F, Morteza Bakhtiari M, Shahni Karamzadeh N. 2017. Laboratory investigation of soil mechanical indices on anisotropic permeability of non-uniform coarse-grained materials: With emphasis on grain size, shape factor and density. Journal of Advanced Applied Geology, Shahid Chamran University of Ahvaz, 7(2): 57–64. (In Persian) DOI: 10.22055/aag.2017.21062.1665.
    Pyne RDG. 2005. Aquifer storage and recovery: A guide to groundwater recharge through wells Edition. ISBN 0-9774337-090000.
    Qabadian R, Khalaj M. 2012. Numerical estimating of earth channel seepage in Nzloo Area of Uromye Province and correction of empirical relation constant coefficient. Journal of Water and Soil (Agricultural Sciences and Industries), 26(1): 193−202. DOI: 10.22067/jsw.v0i0.13648.
    Rognon P. 2000. Comment développer la recharge artificielle des nappes en régions sèches. Sécheresse, 11(4): 289−296. (in French
    Rostamian R, Abedi Koupai J. 2012. Assessment of SEEP/W Model to estimate seepage from earth canals (Case study: Irrigation Network of Downstream Zayandehrud). JWSS-Isfahan University of Technology, 15 (58) : 13–22.
    Salemi HR, Sepaskhah AR. 2006. Estimation of canal seepage loss in Rudasht Region of Isfahan. Journal of Agricultural and Natural Resources Sciences, 10(2): 42–29.
    Scanlon B, Keese K, Flint A, et al. 2006. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes, 20(15): 3335–3370. DOI: 10.1002/hyp.6335.
    Sebbar A. 2013. Etude de la variabilité et de l'évolution de la pluviométrie au Maroc (1935-2005): Réactualisation de la carte des précipitations. Thèse national, Université Hassan II Mohammedia-Casablanca, Maroc. (in French) DOI: 10.13140/2.1.1206.6084.
    Senent-Alonso M. 1984. Problems of the artificial recharge of aquifers. Spanish achievements and their possibilities in the southeast of Spain. Doctoral Thesis, University Polytechnic of Madrid.
    Tavakoli E, Ghorbani B, Samadi Borujeni H, et al. 2017. Modifying empirical equations of seepage estimation using dimensional analysis (Boldaji earth canal, Chaharmahal and Bakhtiari province). Water and Soil Conservation Journal, 6(2): 105–119.
    Zhang G, Lu N, Liu J, et al. 2015. River leakage ratio and leakage amount in the Qaidam Basin. Geological Bulletin of China, 34(11): 2083−2086. (in Chinese)
  • [1] Li-qiang Ge, Xin Yuan, Liu Yang2025:  Application of metagenomics in the study of groundwater microorganisms, Journal of Groundwater Science and Engineering, 13, 90-100. doi: 10.26599/JGSE.2025.9280041
    [2] Hanane Mebarki, Noureddine Maref, Mohammed El-Amine Dris2024:  Modelling the monthly hydrological balance using Soil and Water Assessment Tool (SWAT) model: A case study of the Wadi Mina upstream watershed, Journal of Groundwater Science and Engineering, 12, 161-177. doi: 10.26599/JGSE.2024.9280013
    [3] Mi Tang, Jun Lv, Shi Yu, Yan Liu, Shao-hong You, Ping-ping Jiang2024:  Application of hydrochemistry and strontium isotope for understanding the hydrochemical characteristics and genesis of strontium-rich groundwater in karst area, Gongcheng County, Southwest China, Journal of Groundwater Science and Engineering, 12, 264-280. doi: 10.26599/JGSE.2024.9280020
    [4] Mouna Djellali, Omar Guefaïfia, Chemsedinne Fehdi, Adel Djellali, Amor Hamad2023:  Assessing the impact of artificial recharge on groundwater in an over-exploited aquifer: A case study in the Cheria Basin, North-East of Algeria, Journal of Groundwater Science and Engineering, 11, 263-277. doi: 10.26599/JGSE.2023.9280022
    [5] Guo Jin-xing, Li Zhi-ping, Stefan Catalin2022:  Managed aquifer recharge (MAR) applications in China–achievements and challenges, Journal of Groundwater Science and Engineering, 10, 57-69. doi: 10.19637/j.cnki.2305-7068.2022.01.006
    [6] Vinay Kumar Gautam, Mahesh Kothari, P.K. Singh, S.R. Bhakar, K.K. Yadav2022:  Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan, Journal of Groundwater Science and Engineering, 10, 1-9. doi: 10.19637/j.cnki.2305-7068.2022.01.001
    [7] Juandi Muhammad, Nur Islami2021:  Prediction criteria for groundwater potential zones in Kemuning District, Indonesia using the integration of geoelectrical and physical parameters, Journal of Groundwater Science and Engineering, 9, 12-19. doi: 10.19637/j.cnki.2305-7068.2021.01.002
    [8] Shahbaz Akhtar M, Nakashima Yoshitaka, Nishigaki Makoto2021:  Clogging mechanisms and preventive measures in artificial recharge systems, Journal of Groundwater Science and Engineering, 9, 181-201. doi: 10.19637/j.cnki.2305-7068.2021.03.002
    [9] KHELFAOUI Hakim, DAJBRI Larbi, LAKHAL Fatima Zohra, CHAFFAI Hicham, HANI Azzedine, SAYAD Lamine2020:  Determination of the origin of mineralization and groundwater salinity in the Adrar region in the southwest of Algeria, Journal of Groundwater Science and Engineering, 8, 158-171. doi: 10.19637/j.cnki.2305-7068.2020.02.007
    [10] Muhammad Juandi2020:  Water sustainability model for estimation of groundwater availability in Kemuning district, Riau-Indonesia, Journal of Groundwater Science and Engineering, 8, 20-29. doi: 10.19637/j.cnki.2305-7068.2020.01.003
    [11] Abdulrahman Th Mohammad, Qassem H Jalut, Nadia L Abbas2020:  Predicting groundwater level of wells in the Diyala River Basin in eastern Iraq using artificial neural network, Journal of Groundwater Science and Engineering, 8, 87-96. doi: 10.19637/j.cnki.2305-7068.2020.01.009
    [12] A Muthamilselvan, N Rajasekaran, R Suresh2019:  Mapping of hard rock aquifer system and artificial recharge zonation through remote sensing and GIS approach in parts of Perambalur District of Tamil Nadu, India, Journal of Groundwater Science and Engineering, 7, 264-281. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.007
    [13] SADIKI Moulay Lhassan, EL MANSOURI Bouabid, BENSEDDIK Badr, CHAO Jamal, KILI Malika, EL MEZOUARY Lhoussaine2019:  Improvement of groundwater resources potential by artificial recharge technique: A case study of Charf El Akab aquifer in the Tangier region, Morocco, Journal of Groundwater Science and Engineering, 7, 224-236. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.003
    [14] ZHANG Yu-qin, WANG Guang-wei, WANG Shi-qin, YUAN Rui-qiang, TANG Chang-yuan, SONG Xian-fang2018:  Hydrochemical characteristics and geochemistry evolution of groundwater in the plain area of the Lake Baiyangdian watershed, North China Plain, Journal of Groundwater Science and Engineering, 6, 220-233. doi: 10.19637/j.cnki.2305-7068.2018.03.007
    [15] LI Bo, LI Xue-mei2018:  Characteristics of karst groundwater system in the northern basin of Laiyuan Spring area, Journal of Groundwater Science and Engineering, 6, 261-269. doi: 10.19637/j.cnki.2305-7068.2018.04.002
    [16] BAI Bing, CHENG Yan-pei, JIANG Zhong-cheng, ZHANG Cheng2017:  Climate change and groundwater resources in China, Journal of Groundwater Science and Engineering, 5, 44-52.
    [17] Chamroeun SOK, Sokuntheara CHOUP2017:  Climate change and groundwater resources in Cambodia, Journal of Groundwater Science and Engineering, 5, 31-43.
    [18] YU Kai-ning, LI Jian, LI Hui, CHEN Kang, LV Bing-xu, ZHAO Long-hui2016:  Statistical characteristics of heavy metals content in groundwater and their interrelationships in a certain antimony mine area, Journal of Groundwater Science and Engineering, 4, 284-292.
    [19] ZHANG Chun-chao, WANG Wen-Ke, SUN Yi-bo, LI Xiang-quan,HOU Xin-wei2015:  Processes of hydrogeochemical evolution of groundwater in the Guanzhong Basin, China, Journal of Groundwater Science and Engineering, 3, 136-146.
    [20] Jingli Shao, Yali Cui, Yunzhang Zhao2013:  A Study on Infiltration and Groundwater Development in the Influent Zone of the Perched Lower Yellow River, Journal of Groundwater Science and Engineering, 1, 46-53.
  • 加载中
图(8) / 表ll (4)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  64
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-12
  • 录用日期:  2024-10-21
  • 网络出版日期:  2025-05-10
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回