• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Causes and health risk assessment of fluorine in the Red bed groundwater and adjacent geothermal water of the Guang'an Area, Southwest China

Yu-xiang Shao Wei Zhang Wen-bin Chen Li Chen Jian Li Guang-long Tian Li-cheng Quan Bu-qing Yan Yu-jie Liu

Shao YX, Zhang W, Chen WB, et al. 2025. Causes and health risk assessment of fluorine in the Red bed groundwater and adjacent geothermal water of the Guang'an Area, Southwest China. Journal of Groundwater Science and Engineering, 13(2): 116-132 doi:  10.26599/JGSE.2025.9280043
Citation: Shao YX, Zhang W, Chen WB, et al. 2025. Causes and health risk assessment of fluorine in the Red bed groundwater and adjacent geothermal water of the Guang'an Area, Southwest China. Journal of Groundwater Science and Engineering, 13(2): 116-132 doi:  10.26599/JGSE.2025.9280043

doi: 10.26599/JGSE.2025.9280043

Causes and health risk assessment of fluorine in the Red bed groundwater and adjacent geothermal water of the Guang'an Area, Southwest China

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  (a) Map of Guang'an area; (b) Regional geology, distribution of sampling points and spatial distribution of fluoride in groundwater within the study area; (c) Typical geological profile in the study area.

    Notes: This figure was modified from the regional geological map released by the GeoCloud Platform of the China Geological Survey and the Guang'an Hydrogeological Report by Xie et al. (1981). 1. Quaternary: Clay and gravel; 2. Suining Fm (Formation): Mudstone with sandstone, containing thin layers of gypsum; 3. Upper Shaximiao Fm: Mudstone with sandstone, containing thin layers of carbonate and gypsum; 4. Lower Shaximiao Fm: Variegated mudstone and shale with sandstone, small amounts of limestone, containing carbonate and fluorite; 5. Xintiangou Fm: Variegated mudstone and shale with limestone, containing carbonate and fluorite; 6. Ziliujing Fm: Variegated mudstone and shale with limestone, containing carbonate and fluorite; 7. Zhenzhuchong Fm: Mudstone and shale with limestone, containing carbonate and fluorite; 8. Xujiahe Fm: Sandstone with shale and thin coal seams, containing sulfide, sulfate, and carbonate; 9. Leikoupo Fm: Dolomite interspersed with shale, containing halite, sylvite, carbonate, and fluorite; 10. Jialingjiang Fm: Dolomite interspersed with shale, containing halite, sylvite, carbonate, and fluorite; 11. Feixianguan Fm: Argillaceous limestone with shale and coal seams, containing carbonate, sulfide, halite, sulfate, and fluorite; 12. Changxing Fm: Argillaceous limestone with shale, containing halite, carbonate, and fluorite; 13. Longtan Fm: Argillaceous limestone with shale, containing halite, carbonate, and fluorite; 14. Lower Permian Series: Mudstone and shales; 15. Lower Silurian Serie: Mudstone and shales; 16. Lower Ordovician Series: Dolomite and siliceous limestone; 17. Emei Mountain basalt; 18. Red bed groundwater samples of this study; 19. Geothermal water (Li et al. 2020; Xiao et al. 2011); 20. Rock samples.

    Figure  2.  Schematic map of hydrogeology and shallow groundwater level of the study area

    Figure  3.  Correlation coefficients of the major water parameters and elements in Red beds (n=68) and geothermal water (n=17)

    (Note:** P < 0.01; * P < 0.05)

    Figure  4.  Piper plots of water samples in the study area

    Figure  5.  Gibbs plots: (a) Comparison of natural processes that define the water chemistry of water on the Gibbs plots; (b) TDS versus Na+/(Na++Ca2+); (c) TDS versus Cl/(Cl+HCO3)

    Figure  6.  Saturation indices of minerals: (a) F vs. SI-fluorite, (b) SI-fluorite vs. SI-calcite, (c) SI-fluorite vs. SI-gypsum, and (d) SI-fluorite vs. SI-halite (The bubble sizes represent the F concentration)

    Figure  7.  The relationship between the activities of F and Ca2+ of the groundwater in the study area

    Figure  8.  (a) Relationship between CAI1 and CAI2 in the groundwater sample (the bubble size corresponds to the concentration of fluoride in the sample); (b) Relationships between γ((Ca2++Mg2+)−(HCO3 + SO42−)) and γ(K+ +Na+ −Cl) in groundwater

    Figure  9.  Relationships between Na/Cl and F (a) and between NO3 and F (b) in groundwater from the study area

    Figure  10.  Genetic model of high-fluoride groundwater in the study area

    Figure  11.  Noncarcinogenic evaluation for fluoride concentrations in Red bed groundwater: (a) Children and (b) Adults

    Table  1.   Parameters for the calculation of the HRA model in this study

    Parameters C IR EF ED BW AT RfD
    Unit mg·L−1 L·d−1 d·a−1 a kg d mg·kg−1·d−1
    Adult Measured 3 120 30 57 EF×ED 0.06
    Children Measured 1.5 30 6 26 EF×ED 0.06
    下载: 导出CSV

    Table  2.   Contents of major chemical compositions and fluoride in the different types of groundwater

    Sample type pH TDS Na+ K+ Ca2+ Mg2+ Cl SO42− HCO3 NO3 F Data source
    Limit 6.5–8.5 1,000 200 - - - 250 250 - 20 1.0 (GB/T 14848–2017)
    Red beds(n=68) Min 6.30 146 5.0 0.63 8.79 1.63 0.66 6.30 26.00 0.7 0.08 This study
    Max 9.19 2,520 635.0 50.40 220.00 45.80 1,030.00 520.00 511.00 186.0 3.76
    Ave 7.34 482 58.0 4.60 80.97 16.38 58.58 69.47 280.35 29.3 0.58
    SD 0.49 319 91.6 7.85 39.39 8.22 140.42 76.87 114.91 33.5 0.74
    CV 0.07 0.66 1.6 1.71 0.49 0.50 2.40 1.11 0.41 1.14 1.27
    % > Limit 4 3 4 - - - 4 3 - 46 9
    Geothermal water (n=17) Min 6.45 448 2.4 1.88 226.00 43.90 1.35 335.00 91.53 - 0.10 (Li et al. 2020; Xiao et al. 2011)
    Max 7.69 1,512 355.0 37.30 817.00 178.00 70.89 2,114.00 317.30 - 14.71
    Ave 7.14 808 41.6 14.91 556.86 112.87 18.45 1,429.56 188.35 - 7.62
    SD 0.32 274 78.49 10.78 216.55 46.46 14.95 638.32 51.84 - 5.35
    CV 0.04 0.34 1.89 0.72 0.39 0.41 0.81 0.45 0.28 - 0.70
    % > Limit 6 18 6 - - - 0 100 - - 94 -
    Note: The units for ion and TDS concentrations are mg·L−1. CV is the coefficient of variation, %. pH, dimensionless.
    下载: 导出CSV

    Table  3.   F contents in the various rocks of the study area/(mg·kg−1)

    Rock type Marl (n=2) Limestone (n=6) Mudstone (n=8) Carbonaceous mudstone (n=3) Siltstone (n=3) Sandstone (n=4) Basalt (n=1) All samples (n=27)
    Min 767 200 598 542 645 408 645 200
    Max 767 476 854 767 767 476 645 854
    Ave 767 365 722 671 705 432 645 593
    SD - 122 80 116 61 30 - 178
    Average value of continental crust (Wedepohl, 1995) 525
    下载: 导出CSV

    Table  4.   Statistics of groundwater mineral saturation indices in the study area

    Mineral category Calcite
    (CaCO3)
    Fluorite
    (CaF2)
    Gypsum
    (CaSO4·2H2O)
    Halite
    (NaCl)
    Sylvite
    (KCl)
    Geothermal water (n=17) Max 1.00 1.80 0.09 −6.72 −7.23
    Min −0.27 −2.66 −0.82 −10.12 −9.65
    Ave 0.40 0.78 −0.13 −8.28 −8.11
    Red beds (n=68) Low F level (n=62) Max 1.18 −1.03 −0.81 −6.66 −6.48
    Min −1.88 −4.00 −3.08 −9.48 −9.90
    Ave 0.03 −2.00 −1.91 −7.67 −8.33
    High F level (n=6) Max 0.38 0.24 −0.76 −4.84 −7.05
    Min −0.69 −0.96 −2.00 −8.59 −8.94
    Ave 0.04 −0.37 −1.55 −6.31 −7.92
    下载: 导出CSV
  • Aghapour S, Bina B, Tarrahi MJ, et al. 2018. Distribution and health risk assessment of natural fluoride of drinking groundwater resources of Isfahan, Iran, using GIS. Environmental Monitoring and Assessment, 190: 137. DOI: 10.1007/s10661-018-6467-z.
    Ali S, Thakur SK, Sarkar A, et al. 2016. Worldwide contamination of water by fluoride. Environmental Chemistry Letters, 14(3): 563−568. DOI: 10.1007/s10311-016-0563-5.
    Chae GT, Yun ST, Mayer B, et al. 2007. Fluorine geochemistry in bedrock groundwater of South Korea. Science of the Total Environment, 385(1-3): 272−283. DOI: 10.1016/j.scitotenv.2007.06.038.
    Chen JN, Mao XG, Shi YH, et al. 2020. Study on the late Cretaceous paleoenvironment documented by red beds in the western Fujian province. Chinese Journal of Geophysics, 63(4): 1553−1568. DOI: 10.6038/cjg2020N0375.
    Dey RK, Swain SK, Mishra S, et al. 2012. Hydrogeochemical processes controlling the high fluoride concentration in groundwater: A case study at the Boden block area, Orissa, India. Environmental Monitoring and Assessment, 184(5): 3279−3291. DOI: 10.1007/s10661-011-2188-2.
    Dong JX, Sun D, Wei LS, et al. 2021. Discussion on the development regularity of salt water in red beds in the southern margin of Sichuan Basin. Geological Bulletin of China, 40(8): 1394−1401. (in Chinese)
    Duan X. 2015. Highlights of the Chinese exposure factors handbook (adults). Academic Press. (in Chinese)
    Durrani TS, Farooqi A. 2021. Groundwater fluoride concentrations in the watershed sedimentary basin of Quetta Valley, Pakistan. Environmental monitoring and assessment, 193(10): 644. DOI: 10.1007/s10661-021-09365-8.
    Feng F, Jia YF, Yang Y, et al. 2020. Hydrogeochemical and statistical analysis of high fluoride groundwater in northern China. Environmental Science and Pollution Research, 27(28): 34840−34861. DOI: 10.1007/s11356-020-09784-z.
    Gao ZJ, Zhu ZH, Liu XD, et al. 2014. The formation and model of high fluoride groundwater and in-situ dispelling fluoride assumption in Gaomi City of Shandong Province. Journal of Groundwater Science and Engineering, 2(2): 34−39. DOI: 10.26599/JGSE.2014.9280016.
    Gibbs RJ. 1970. Mechanisms controlling world water chemistry. Science, 170(3962): 1088−1090. DOI: 10.1126/science.170.3962.1088.
    Güler C, Thyne GD. 2004. Delineation of hydrochemical facies distribution in a regional groundwater system by means of fuzzy c-means clustering. Water Resources Research, 40(12): W12503. DOI: 10.1029/2004wr003299.
    Hao AB, Zhang YL, Zhang EY, et al. 2018. Review: Groundwater resources and related environmental issues in China. Hydrogeology Journal, 26(5): 1325−1337. DOI: 10.1007/s10040-018-1787-1.
    He XD, Li PY, Ji YJ, et al. 2020. Groundwater Arsenic and Fluoride and Associated Arsenicosis and Fluorosis in China: Occurrence, Distribution and Management. Exposure and Health, 12(3): 355−368. DOI: 10.1007/s12403-020-00347-8.
    Jacks G, Bhattacharya P, Chaudhary V, et al. 2005. Controls on the genesis of some high-fluoride groundwaters in India. Applied Geochemistry, 20(2): 221−228. DOI: 10.1016/j.apgeochem.2004.07.002.
    Jia H, Qian H, Qu W, et al. 2019. Fluoride occurrence and human health risk in drinking water wells from southern edge of Chinese Loess Plateau. International Journal of Environmental Research and Public Health, 16(10): 1683−1695. DOI: 10.3390/ijerph16101683.
    Kammoun A, Abidi M, Zairi M. 2022. Hydrochemical characteristics and groundwater quality assessment for irrigation and drinking purposes: A case of Enfidha aquifer system, Tunisia. Environmental Earth Sciences, 81(41): 1−10. DOI: 10.1007/s12665-021-10163-1.
    Khatri N, Tyagi S. 2015. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science, 8(1): 23−39. DOI: 10.1080/21553769.2014.933716.
    Kumar M, Goswami R, Patel AK, et al. 2020. Scenario, perspectives and mechanism of arsenic and fluoride Co-occurrence in the groundwater: A review. Chemosphere, 249(12): 2−20. DOI: 10.1016/j.chemosphere.2020.126126.
    Lan FN, Zhao Y, Li J, et al. 2024. Health risk assessment of heavy metal pollution in groundwater of a karst basin, SW China. Journal of Groundwater Science and Engineering, 12(1): 49−61. DOI: 10.26599/jgse.2024.9280005.
    Lei FH, Liu CZ. 2022. Report of geochemical survey of land quality in Guang'an City: Chengdu Geological Survey Center, China Geological Survey. (in Chinese)
    Li CC, Gao XB, Wang YX. 2015. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China. Science of the Total Environment, 508(1): 155−165. DOI: 10.1016/j.scitotenv.2014.11.045.
    Li MH, Yuan JF, Huang CJ, et al. 2020. A study of the characteristics of geothermal reservoir and genesis of thermal groundwater in the Tongluoshan anticline near Guang'an in east Sichuan. Hydrogeology & Engineering Geology, 47(6): 36−46. (in Chinese) DOI: 10.16030/j.cnki.issn.1000-3665.202008038.
    Lia Q, Tao HF, Aihemaiti M, et al. 2021. Spatial distribution characteristics and enrichment factors of high-fluorine groundwater in the Kuitun River Basin of Xinjiang Uygur Autonomous Region in China. Desalination and Water Treatment, 223: 208−217. DOI: 10.5004/dwt.2021.27138.
    Liu RP, Liu F, Chen HQ, et al. 2024. Arsenic and fluoride co-enrichment of groundwater in the loess areas and associated human health risks: A case study of Dali County in the Guanzhong Basin. China Geology, 7(3): 445−459. DOI: 10.31035/cg2024015.
    Liu RP, Zhu H, Liu F, et al. 2021. Current situation and human health risk assessment of fluoride enrichment in groundwater in the Loess Plateau: A case study of Dali County, Shaanxi Province, China. China Geology, 4(3): 487−497. DOI: 10.31035/cg2021051.
    Lyu XL, Liu JT, Zhou B, et al. 2021. Distribution characteristics and enrichment mechanism of fluoride in the shallow aquifer of the Tacheng Basin. Earth Science Frontiers, 28(2): 426−436. (in Chinese) DOI: 10.13745/j.esf.sf.2020.10.29.
    Luo JL. 2020. Regional distribution characteristies and genesis analysis of fluorinecontent in groundwater in South Jiangxi. Mineral Resources and Geology, 34(3): 590−595. (in Chinese) DOI: 10.19856/j.cnki.issn.1001-5663.2020.03.026.
    Mao RY, Cuo HM, Jia YF. 2016. Distribution characteristics and genesis of fluoride groundwater in the Hetao basin, Inner Mongolia. Earth Science Frontiers, 23(2): 260−268. (in Chinese) DOI: 10.13745/j.esf.2016.02.024.
    Piper M. 1944. A graphic procedure in the geochemical interpretation of water-analyses. Transactions-American Geophysical Union, 25(6): 914−923. DOI: 10.1029/TR025i006p00914.
    Podgorski J, Berg M. 2022. Global analysis and prediction of fluoride in groundwater. Nature Communications, 13(1): 4232. DOI: 10.1038/s41467-022-31940-x.
    Qian LJ, Chen HD, Lin LB, et al. 2012. Geochemical characteristics and environmental implications of Middle Jurassic Shaximiao Formation, western margin of Sichuan Basin. Acta Sedimentologica Sinica, 30(6): 1061−1071. (in Chinese) DOI: 10.14027/j.cnki.cjxb.2012.06.020.
    Schoeller H. 1967. Qualitative evaluation of groundwater resources. In methods and technics of groundwater investigation and development. Water Research, 33: 44−52.
    Sheldon ND. 2005. Do red beds indicate paleoclimatic conditions? A Permian case study. Palaeogeography, Palaeoclimatology, Palaeoecology, 228(3-4): 305–319. DOI: 10.1016/j.palaeo.2005.06.009.
    Sikdar PK, Sarkar SS, Palchoudhury S. 2001. Geochemical evolution of groundwater in the Quaternary aquifer of Calcutta and Howrah, India. Journal of Asian Earth Sciences, 19(5): 579−594. DOI: 10.1016/s1367-9120(00)00056-0.
    Silva GM, Liang X, Kontogeorgis GM. 2022. On the derivations of the Debye–Hückel equations. Molecular Physics, 120(10): 1−22. DOI: 10.1080/00268976.2022.2064353.
    Su H, Kang WD, Kang N, et al. 2021. Hydrogeochemistry and health hazards of fluoride-enriched groundwater in the Tarim Basin, China. Environmental Research, 200(3): 111−130. DOI: 10.1016/j.envres.2021.111476.
    USEPA. 1987. Integrated Risk Information System, Chemical Assessment Summary, Fluorine (soluble fluoride); CASRN 7782-41-4. Available on https://iris.epa.gov/static/pdfs/0053_summary.pdf.
    Wedepohl KH. 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7): 1217−1232. DOI: 10.1016/0016-7037(95)00038-2.
    Wen DG, Zhang FC, Zhang EY, et al. 2013. Arsenic, fluoride and iodine in groundwater of China (Review). Journal of Geochemical Exploration, 135: 1−21. DOI: 10.1016/j.gexplo.2013.10.012.
    Xiao J, Zhang F, Jin ZD. 2016. Spatial characteristics and controlling factors of chemical weathering of loess in the dry season in the middle Loess Plateau, China. Hydrological Processes, 30(25): 4855−4869. DOI: 10.1002/hyp.10959.
    Xiao Q, Shen LC, Yuan DX, et al. 2011. Using δ18O and δ34S isotopic techniques to trace the recycling process of hot springs in Chongqing metropolitan. Journal of Chongqing University, 34(5): 89−94. (in Chinese) DOI: 10.11835/j.issn.1000-582X.2011.05.016.
    Xie YX, Tan KO, Zuo ZH. 1981. Report on the hydrogeological survey of the Guang'an amplitude region: Nanjiang Hydrogeological Brigade of Sichuan Geological Bureau. (in Chinese)
    Xing SP, Wu P, Hu XD, et al. 2023. Ceochemical characteristics of aquifer sediments and their influence on fluoride enrichment in groundwater in the Hualong-Xunhua Basin. Earth Science Frontiers, 30(2): 526−538. (in Chinese) DOI: 10.13745/j.esf.sf.2022.9.10.
    Yan ZX, Feng MG. 2022. Hydrochemical characteristics and driving factors of surface water in the mining area of Changhe River Basin. Environmental Chemistry, 41(2): 632−642. (in Chinese) DOI: 10.7524/j.issn.0254-6108.2020101505.
    Zhang LQ, Dong DL, Lv S, et al. 2023. Spatial evolution analysis of groundwater chemistry, quality, and fluoride health risk in southern Hebei Plain, China. Environmental Science and Pollution Research, 30(21): 32−51. DOI: 10.1007/s11356-023-26316-7.
    Zhang MH, Zhou SY, Liu DD, et al. 2024. Characteristics and genesis of groundwater salinization in coastal areas of the Lower Reaches of Oujiang Basin. Journal of Groundwater Science and Engineering, 12(2): 190−204. DOI: 10.26599/jgse.2024.9280015.
    Zhang W, Hao CM, Lin DJ, et al. 2021. Study on the fluorine distribution and formation of high fluorine middle-level groundwater in Sulin mining area, Anhui. Environmental Pollution and Control, 43(8): 1022−1027. (in Chinese) DOI: 10.15985/j.cnki.1001-3865.2021.08.017.
    Zhang YT, Wu JH, Xu B. 2018. Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environmental Earth Sciences, 77(7): 1. DOI: 10.1007/s12665-018-7456-9.
    Zhang ZX, Xu M, Zhang Q, et al. 2018. Hydrogeochemistry, genesis and water quality analysis of shallow groundwater in red-bed area of the Mianyang city. Science Technology and Engineering, 18(3): 168−173. (in Chinese)
    Zhao X, Duan X, Wang B, et al. 2016. Environmental exposure related activity patterns survey of Chinese population (Children). China: Beijing: China Environmental Science Press. (in Chinese)
    Zhou YZ, Zeng YY, Zhou JL, et al. 2016. Distribution of groundwater arsenic in Xinjiang, P. R. China. Applied Geochemistry, 77(2): 116−125. DOI: 10.1016/j.apgeochem.2016.09.005.
    Zhu YP, Su CL, Liang C, et al. 2015. Effects of sediment lithology and groundwater hydrochemical characteristics on fluorine transport at water soil interface. Geological Science and Technology Information, 34(5): 160−165. (in Chinese)
  • [1] Ming-xiao Yu, Xi Zhu, Gui-ling Wang, Wei Zhang, Feng Ma2025:  Zoning of development and utilization and evaluation of deep geothermal resources in Xiong'an New Area, Journal of Groundwater Science and Engineering, 13, 47-61. doi: 10.26599/JGSE.2025.9280038
    [2] Mei Han, Wei Zhang, Na Jia, Ke Li, Chen-ling Zhang, Jia Liu, Xiang-ke Kong2025:  Rapid determination of Ferrum, Manganese, Strontium and Barium in geothermal water by ICP-OES, Journal of Groundwater Science and Engineering, 13, 170-179. doi: 10.26599/JGSE.2025.9280047
    [3] Masoud H Hamed, Rebwar N Dara, Marios C Kirlas2024:  Groundwater vulnerability assessment using a GIS-based DRASTIC method in the Erbil Dumpsite area (Kani Qirzhala), Central Erbil Basin, North Iraq, Journal of Groundwater Science and Engineering, 12, 16-33. doi: 10.26599/JGSE.2024.9280003
    [4] Fu-ning Lan, Yi Zhao, Jun Li, Xiu-qun Zhu2024:  Health risk assessment of heavy metal pollution in groundwater of a karst basin, SW China, Journal of Groundwater Science and Engineering, 12, 49-61. doi: 10.26599/JGSE.2024.9280005
    [5] Liu Chun-lei, Lu Chen-ming, Li Ya-song, Hao Qi-chen, Cao Sheng-wei2022:  Genetic model and exploration target area of geothermal resources in Hongtang Area, Xiamen, China, Journal of Groundwater Science and Engineering, 10, 128-137. doi: 10.19637/j.cnki.2305-7068.2022.02.003
    [6] Yang Hui-feng, Meng Rui-fang, Bao Xi-lin, Cao Wen-geng, Li Ze-yan, Xu Bu-yun2022:  Assessment of water level threshold for groundwater restoration and over-exploitation remediation the Beijing-Tianjin-Hebei Plain, Journal of Groundwater Science and Engineering, 10, 113-127. doi: 10.19637/j.cnki.2305-7068.2022.02.002
    [7] Tanzeel Khan, Muhammad Akhtar Malik, Gohram Malghani, Rabia Akhtar2022:  Comparative analysis of bacterial contamination in tap and groundwater: A case study on water quality of Quetta City, an arid zone in Pakistan, Journal of Groundwater Science and Engineering, 10, 153-165. doi: 10.19637/j.cnki.2305-7068.2022.02.005
    [8] Rabiranjan Prusty, Trinath Biswal2020:  Physico-chemical, bacteriological and health hazard effect analysis of the water in Taladanda Canal, Paradip area, Odisha, India, Journal of Groundwater Science and Engineering, 8, 338-348. doi: 10.19637/j.cnki.2305-7068.2020.04.004
    [9] Abdelhakim LAHJOUJ, Abdellah EL HMAIDI, Karima BOUHAFA2020:  Spatial and statistical assessment of nitrate contamination in groundwater: Case of Sais Basin, Morocco, Journal of Groundwater Science and Engineering, 8, 143-157. doi: 10.19637/j.cnki.2305-7068.2020.02.006
    [10] MAO Xiao-ping, LI Ke-wen, WANG Xin-wei2019:  Causes of geothermal fields and characteristics of ground temperature fields in China, Journal of Groundwater Science and Engineering, 7, 15-28. doi: 10.19637/j.cnki.2305-7068.2019.01.002
    [11] SHU Qin-feng, WEI Liang-shuai, LI Xiao2019:  Geological characteristics and analysis of hydrothermal genesis in the Suijiang-1 well in Yunnan Province, China, Journal of Groundwater Science and Engineering, 7, 53-60. doi: 10.19637/j.cnki.2305-7068.2019.01.005
    [12] MA Bai-heng, LIU Shuo, WANG Xin-zhou, ZHAI Xing, LI Hong-chao, LI Chen-xi2018:  A preliminary study on the spatial distribution characteristics and causes of strontium-rich mineral water in the Dushan complex, Journal of Groundwater Science and Engineering, 6, 115-125. doi: 10.19637/j.cnki.2305-7068.2018.02.005
    [13] LIN Dan, JIN Meng-gui, LI Xiu-juan2017:  Risk assessment of heavy metals in topsoil along the banks of theYangtze River in Huangshi, China, Journal of Groundwater Science and Engineering, 5, 162-172.
    [14] LIU Shu-yuan, WANG Hong-qi2016:  Dynamic assessment of pollution risk of groundwater source area in Northern China, Journal of Groundwater Science and Engineering, 4, 333-343.
    [15] ZHANG Chuan-mian, GUO Xiao-niu, Richard Henry, James Dendy2015:  Groundwater modelling to help diagnose contamination problems, Journal of Groundwater Science and Engineering, 3, 285-294.
    [16] YANG Li-zhi, LIU Chun-hua2015:  Study on the characteristics and causes of carbon tetrachloride pollution of karst water in eastern suburbs of Jinan, Journal of Groundwater Science and Engineering, 3, 331-341.
    [17] GUO Qing-hai, ZHANG Xiao-bo, LIU Ming-liang, LI Jie-xiang, ZHOU Chao, ZHANG Can-hai, ZHU Ming-cheng, ZHANG Xiao-bo, GUO Wei, WANG Yan-xin2015:  Geochemical genesis of geothermal waters from the Longling hydrothermal area, Yunnan, Southwestern China, Journal of Groundwater Science and Engineering, 3, 213-221.
    [18] SHI Jian-sheng, LIU Chang-li, DONG Hua, YAN Zhen-peng, WANG Yan-jun, LIU Xin-hao, GUO Xiu-yan, JIAO Hong-jun, YIN Mi-ying, HOU Huai-ren2014:  Stability assessment and risk analysis of aboveground river in lower Yellow River, Journal of Groundwater Science and Engineering, 2, 1-18.
    [19] GAO Zong-jun, ZHU Zhen-hui, LIU Xiao-di, XU Yan-lan2014:  The Formation and Model of High Fluoride Groundwater and In-situ Dispelling Fluoride Assumption in Gaomi City of Shandong Province, Journal of Groundwater Science and Engineering, 2, 34-39.
    [20] Zhao-xian Zheng, Xiao-si Su2013:  Risk Assessment on Organic Contamination of Shallow Groundwater of an Oilfield in Northeast China, Journal of Groundwater Science and Engineering, 1, 75-82.
  • 加载中
图(11) / 表ll (4)
计量
  • 文章访问数:  199
  • HTML全文浏览量:  95
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-28
  • 录用日期:  2025-03-21
  • 网络出版日期:  2025-05-10
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回