• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimal fault detection from seismic data using intelligent techniques: A comprehensive review of methods

Bhaktishree Nayak Pallavi Nayak

Nayak B, Nayak P. 2025. Optimal fault detection from seismic data using intelligent techniques: A comprehensive review of methods. Journal of Groundwater Science and Engineering, 13(2): 193-208 doi:  10.26599/JGSE.2025.9280049
Citation: Nayak B, Nayak P. 2025. Optimal fault detection from seismic data using intelligent techniques: A comprehensive review of methods. Journal of Groundwater Science and Engineering, 13(2): 193-208 doi:  10.26599/JGSE.2025.9280049

doi: 10.26599/JGSE.2025.9280049

Optimal fault detection from seismic data using intelligent techniques: A comprehensive review of methods

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Flow diagram of the review process for fault detection from seismic data

    Figure  2.  Comparative analysis of the accuracy of existing fault detection techniques

    Figure  3.  Comparative analysis of loss of existing fault detection techniques

    Figure  4.  Comparative analysis of precision of existing fault detection techniques

    Figure  5.  Comparative analysis of F-measure of existing fault detection techniques

    Figure  6.  Comparative analysis of Recall of existing fault detection techniques

    Figure  7.  Comparative analysis of sensitivity of existing fault detection techniques

    Figure  8.  Comparative analysis of specificity of existing fault detection techniques

    Figure  9.  Comparative analysis of AUROC of existing fault detection techniques

    Table  1.   Comparison of fault segmentation techniques from seismic data

    Reference Techniques used Significance Limitations
    Wu et al. (2019) Fully Convolutional Neural Network Efficient fault segmentation, Automatic feature extraction Requires expert knowledge for accurate labelling, Time-consuming label creation
    Hu et al. (2020) CNN Limited training set usage, Reduced training duration, Improved segmentation Balancing model complexity with resources is challenging
    Dou et al. (2021) 3D-CNN Effective training with limited data, Attention mechanism for noise reduction Hyperparameter tuning is required, Limited data for attention module
    Lefevre et al. (2020) Analog models Understanding fault geometry determinants Difficulty in achieving true scale similarity
    Dou et al. (2022) Fault-Net architecture Reduction of false negatives, Preserving edge information Incomplete labelling may lead to inaccurate training
    Visini et al. (2020) FRESH and SUNFISH Improving PSHA methodologies Lack of user-friendly interface, Uncertainty handling needs improvement
    Li et al. (2023) Fault-Seg-Net High precision fault localization, Compound loss for uneven segmentation Increased computational overhead, Training time prolongation
    Lima et al. (2024) DNFS Enhanced accurate predictions Sensitivity to geological transitions
    Liu et al. (2020) CNN Improved interpretability, Better prediction accuracy Need for deeper interpretability exploration, Additional domain knowledge integration
    Li et al. (2024) Fault-Seg-LNet Achieve the tradeoff between model precision and efficiency Continuous fine-tuning required, Adaptation to changing geological conditions
    Khayer et al. (2023) HOG Enhances the accuracy of geological object delineation in seismic images The quality of seismic data and the optimization of HOG parameters affects the system performance
    Dou et al. (2024) FaultSSL Enhances fault detection by effectively integrating limited labelled data Constrained by the reliance on sparse and potentially inaccurate 2D slice annotations
    下载: 导出CSV

    Table  2.   Review of fault detection from seismic data using ML algorithms

    Reference Techniques used Significance Limitations
    Zeng et al. (2021) SVM, VMD Intelligent fault diagnosis, noise attenuation, strong relationship between seismic features and faults Ineffective for non-stationary or complex noise patterns
    Martín et al. (2023) KNN Interactive 3D fault identification, lithological classification Struggles with complex fault geometries and heterogeneities
    Ashraf et al. (2020) NN, ACO Advanced fracture network recognition, fault identification using seismic data Requires careful parameter tuning for optimization, may not effectively handle all types of faults
    Noori et al. (2019) Gaussian process regression Fault detection via abnormality identification, fault edge determination Propagation of uncertainties from GPR into fault detection may lead to false positives or missed detections
    Ren et al. (2023) SVM, PSO Provided insights into fault exposure conditions for roads and wells in the target coal seam Lack of true fault existence probability assessment.
    Wu et al. (2021) FCN Fault segmentation based on FCN, balanced loss function for model optimization Incorporating physical and geological constraints in model architecture is challenging
    Wu et al. (2019) MTL-CNN Fault detection, structure-oriented smoothing, seismic normal vector estimation Designing CNN architectures for improved structural interpretation is challenging
    Jang et al. (2023) PCA, RF Relationship between fault distribution and controlling factors, efficient RF classification Challenge in interpreting feature importance due to RF's bias toward correlated features
    Gong et al. (2024) SOM-GWO-SVM Intelligent data preprocessing, fault identification accuracy improvement Struggles to capture temporal dynamics of fault patterns and seismic activity evolution
    Wang et al. (2020) CNN Enhanced fault detection through knowledge amalgamation, student CNN trained on synthetic and field data Investigation of appropriate training data sets and labels needed for effective fault interpretation
    Feng et al. (2022) LOC-FLOW Enhances earthquake catalog accuracy and provides high-resolution velocity structures Effectiveness is constrained by the availability and quality of seismic data from dense station networks
    Waheed et al. (2021) PINNTOMO Enhances seismic tomography by leveraging physics-informed neural networks Has extremely complex geological settings
    下载: 导出CSV

    Table  3.   Review of fault detection from seismic data using DL algorithms

    Reference Techniques used Significance Limitations
    An et al.(2021) DCNN Efficient fault recognition methodology outperforms state-of-the-art methods, anticipates small errors Mitigating label discrepancies, reliable model training
    Palo et al.(2023) Graph Convolutional Network (GCN) Interpreting faults in seismic data, good accuracy Lacks feature engineering strategies
    Alfarhan et al. (2020) Encoder-decoder deep neural network Good detection accuracy, robustness to labelled data scarcity Lack of uncertainty estimation methods
    Bi et al.(2021) Volume-to-volume neural network High prediction accuracy, low computing costs Ineffective for low dip-angle thrust faults
    Li et al.(2019) U-Net Efficient fault detection with small training sets, increased interpretation efficiency Class imbalance leads to less accurate fault detection
    Xu et al. (2021) 3D convolutional autoencoder Handling seismic data directly, with good accuracy Needs optimization of architecture and hyperparameters
    Li et al. (2021) Deep CNN Enhanced perceived quality, better fault detection Artifacts, slight overfitting
    Wu et al. (2022) Modified U-Net with dilated convolutions Improved capacity for multi-scale information, better fault identification Requires further computational optimization
    Lin et al. (2022) 2.5D CAU-net with channel attention mechanism Efficient utilization of correlation between seismic slices, enhanced fault detection Model overfitting with a larger cropping approach
    Ma et al. (2023) U-Net and CNN Accurate multiparameter elastic wave inversion, strong generalizability Physical limitations, noisy data sensitivity
    Vu and Jardani (2022a) SegNet Accurately map fracture networks in heterogeneous aquifers using hydraulic tomography data Not fully capture the complexities of real-world fracture geometries and hydrological conditions
    Vu and Jardani(2022b) HT-XNET Simultaneously reconstruct transmissivity and storability with improved accuracy Need in-depth considering limits under variance of the method on aquifer conditions and data
    下载: 导出CSV

    Table  4.   Review of fault detection from seismic data using adaptive learning algorithms

    Reference Techniques
    used
    Significance Limitations
    Zini et al. (2019) SeisNet Achieved high F1 score on bright spot recognition, quantifying bright spots, and predicting volume Further research is needed for processing seismic data, waveform prediction, and performance on larger datasets
    Zhou et al. (2021) Transfer learning with convolutional neural networks Quick training, produced satisfactory results despite the class imbalance Inaccuracy in detecting fault discontinuities in 3D space
    Cunha et al. (2020) U-net based on DANN (Domain Adversarial Neural Network) Improved fault detection accuracy, addressed challenges of real geological situations, noise disturbance, and seismic signal frequency challenge in finishing fault detection on seismic data with various frequencies
    Ao et al. (2021) Transfer learning Improved seismic dip estimation accuracy, applicability in real-world scenarios Difficulty in assessing the reliability of network predictions
    Dou et al. (2024) Tiny Self-Attention and HRNet, contrastive learning Enhanced representation learning, improved fault detection tasks, addressed memory overflow issues Challenges in sparse distance matching in 3D high-resolution data
    Zhou et al. (2021) Progressive transfer learning Enhanced fault detection using real seismic data, improved fault continuity Difficulty in updating training dataset without introducing biases
    Wei et al. (2022) CNN and transfer learning Robust fault feature representation learning, effective fault detection Challenges in tuning focal loss parameters and ensuring effectiveness across different datasets
    Li et al. (2024) Fault-Attri-Attention Improved fault detection with enhanced accuracy Reduced efficiency and increased computational overhead due to managing multiple attributes
    Mustafa et al. (2024) 3D CNN and Attention-guided training Framework Enhanced fault prediction with better performance Lack of deep understanding in modelling and incorporating human visual attention
    Zeng et al. (2024) 3D-UNet Enhanced feature extraction and fault detection, improved accuracy and continuity Struggles in characterizing low-order faults and fault continuity
    Zhang et al. (2022) Deep Transfer Learning Significantly accelerates hydraulic fracture imaging through deep transfer learning Reliance on simplified models that introduce approximation errors
    Titos et al. (2023) Transfer Learning Enhances real-time volcano tectonic earthquake monitoring through transfer learning The quality and completeness of the master dataset introduce biases
    下载: 导出CSV

    Table  5.   Review of enhanced fault detection models from seismic data

    Reference Techniques
    used
    Significance Limitations
    Yan et al. (2019) Forward and backward diffusion Enhancing fault features while suppressing noise, improving fault-tracking accuracy Struggles in differentiating actual faults and stratigraphic features in complex geological structures
    Mousavi et al. (2022) Erosion algorithm, Sobel and Laplacian of Gaussian Potential alternative to conventional fault enhancement methods Artificial enhancements or suppressions near boundaries affect overall image quality
    Lyu et al. (2019) Structure-oriented filtering Improved fault identification through coherence enhancement Introduction of spurious features or oversimplification of complex fault networks
    Yan et al. (2021) Transfer learning Enhanced fault detection accuracy, particularly for complex fault types Difficulty in accurately identifying complex fault types such as thrust and listric faults
    Laudon et al. (2021) CNN-SOM Better outcomes compared to using single ML techniques Lack of feature design invariant to variations such as noise, resolution, or acquisition parameters
    Yuan et al. (2019) Adaptive spectrum decomposition and super-resolution DL with CNN Improved fault-detection system with adjustable scale highlighting and high-resolution Bridging the gap between domains and fostering collaboration
    Otchere et al. (2022) Deep Residual U-net Respectable fault prediction result, enhanced seismic imaging Struggles to understand uncertainty inherent in predictions
    Zhang et al. (2024) FaultSeg Swin-UNet Transformer Improved feature representations, increased recognition accuracy Adaptability challenges with narrow, elongated, and unevenly distributed fault annotations
    Mahadik et al. (2021) Gradient structure tensor-based coherence Clearer fault lines with less noise, future goal of creating automated defect detection system Future integration of DL and ML is needed for complete automation
    Isaac et al. (2023) Dip-steered diffusion filter, DSMF and FEF Revealing small-scale faults and stratigraphic heterogeneity Need for improvement in noise suppression while preserving useful signal information
    Sheng et al. (2022) REST and hypoDD Mechanisms of induced seismicity through fluid diffusion and fault reactivation Limited by the lack of long-term observational data and potential variability
    Feng et al. (2022) Enhanced Geothermal System (EGS) Offers a quantitative framework for assessing fault slip potential during geothermal operations Limited by uncertainties in stress field parameters
    下载: 导出CSV
  • Alfarhan M, Deriche M, Maalej A, et al. 2020. Multiple events detection in seismic structures using a novel U-Net variant. In 2020 IEEE International Conference on Image Processing (ICIP), 2900-2904, IEEE. DOI: 10.1109/ICIP40778.2020.9190682.
    Alfarhan M, Maalej A, Deriche M. 2020. Concurrent detection of salt domes and faults using resnet with u-net. In 2020 6th Conference on Data Science and Machine Learning Applications (CDMA), 118−122, IEEE. DOI: 10.1109/CDMA47397.2020.00026.
    Alfarhan M, Deriche M, Maalej A. 2020. Robust concurrent detection of salt domes and faults in seismic surveys using an improved UNet architecture. IEEE access, 10: 39424−39435. DOI: 10.1109/ACCESS.2020.3043973.
    Aloisio A, Battista LD, Alaggio R, et al. 2021. Assessment of structural interventions using Bayesian updating and subspace-based fault detection methods: The case study of S. Maria di Collemaggio basilica, L'Aquila, Italy. Structure and Infrastructure Engineering, 17(2): 141−155. DOI: 10.1080/15732479.2020.1731559.
    An Y, Guo J, Ye Q, et al. 2021. Deep convolutional neural network for automatic fault recognition from 3D seismic datasets. Computers & Geosciences, 153: 104776. DOI: 10.1016/j.cageo.2021.104776.
    Ao Y, Lu W, Xu P, et al. 2021. Seismic dip estimation with a domain knowledge constrainedtransfer learning approach. IEEE Transactions on Geoscience and Remote Sensing, 60: 1−16. DOI: 10.1109/TGRS.2021.3061438.
    Ashraf U, Zhang H, Anees A, et al. 2020. Application of unconventional seismic attributes and unsupervised machine learning for the identification of fault and fracture network. Applied Sciences, 10(11): 3864. DOI: 10.3390/app10113864.
    Bi Z, Wu X, Geng Z, et al. 2021. Deep relative geologic time: A deep learning method for simultaneously interpreting 3‐D seismic horizons and faults. Journal of Geophysical Research: Solid Earth, 126(9): e2021JB021882. DOI: 10.1029/2021JB021882.
    Cunha A, Pochet A, Lopes H, et al. 2020. Seismic fault detection in real data using transfer learning from a convolutional neural network pre-trained with synthetic seismic data. Computers & Geosciences, 135: 104344. DOI: 10.1016/j.cageo.2019.104344.
    Di H, Li C, Smith S, et al. 2021. Imposing interpretational constraints on a seismic interpretation convolutional neural network. Geophysics, 86(3): IM63−IM71. DOI: 10.1190/geo2020-0449.1.
    Dou Y, Li K, Zhu J, et al. 2021. Attention-based 3-D seismic fault segmentation training by afew 2-D slice labels. IEEE Transactions on Geoscience and Remote Sensing, 60: 1−15. DOI: 10.1109/TGRS.2021.3113676.
    Dou Y, Li K, Zhu J, et al. 2022. MD loss: Efficient training of 3-D seismic fault segmentation network under sparse labels by weakening anomaly annotation. IEEE Transactions on Geoscience and Remote Sensing, 1−13.
    Dou YM, Li KW, Dong MH, et al. 2024. FaultSSL: Seismic fault detection via semisupervised learning. Geophysics, 89(3): M79−M91. DOI: 10.1190/geo2023-0550.1.
    Dou YM, Li KW. 2024. 3D seismic fault detection via contrastive-reconstruction representation learning. Expert Systems with Applications, 123617. DOI: 10.1016/j.eswa.2024.123617.
    Feng C, Gao G, Zhang S, et al. 2022. Fault slip potential induced by fluid injection in the Matouying enhanced geothermal system (EGS) field, Tangshan seismic region, North China. Natural Hazards and Earth System Sciences, 22(7): 2257−2287. DOI: 10.5194/nhess-22-2257-2022.
    Feng T, Zhang M, Xu L, et al. 2022. Machine learning‐based earthquake catalog and tomography characterize the middle‐northern section of the Xiaojiang fault zone. Seismological Society of America, 93(5): 2484−2497. DOI: 10.1785/0220220116.
    Gong Y, Zhu C, Zhu G, et al. 2024. Seismic fault identification in coal mines based on the self-organizing map-gray wolf optimizer-support vector machine algorithm. Interpretation, 12(1): B1−B15. DOI: 10.1190/INT-2023-0025.1.
    He T, Wu B, Zhu X. 2021. Seismic data consecutively missing trace interpolation based on multistage neural network training process. IEEE Geoscience and Remote Sensing Letters, 19: 1−5. DOI: 10.1109/LGRS.2021.3089585.
    Hosseini-Fard E, Roshandel-Kahoo A, Soleimani-Monfared M, et al. 2022. Automatic seismic image segmentation by introducing a novel strategy in histogram of oriented gradients. Journal of Petroleum Science and Engineering, 209: 109971. DOI: 10.1016/j.petrol.2021.109971.
    Hu G, Hu Z, Liu J, et al. 2020. Seismic fault interpretation using deep learning-based semantic segmentation method. IEEE Geoscience and Remote Sensing Letters, 19: 1−5. DOI: 10.1109/LGRS.2020.3041301.
    Isaac DB, Abu El Ata AS. 2023. Improvement of seismic data quality and recognition of fault discontinuities through seismic data conditioning applications: A case study of Issaran oil field, Gulf of Suez, Egypt. Journal of Petroleum Exploration and Production Technology, 13(2): 591−607. DOI: 10.1007/s13202-022-01574-2.
    Jang J, So BD, Yuen DA. 2023. A machine learning algorithm with random forest for recognizing hidden control factors from seismic fault distribution. Geosciences Journal, 27(1): 113−126. DOI: 10.1007/s12303-022-0029-7.
    Khayer K, Hosseini Fard E, Roshandel Kahoo A, et al. 2023. Integration of feature extraction, attribute combination and image segmentation for object delineation on seismic images. Acta Geophysica, 71(1): 275−292. DOI: 10.1007/s11600-022-00921-5.
    Laudon C, Qi J, Rondon A, et al. 2021. An enhanced fault detection workflow combining machine learning and seismic attributes yields an improved fault model for Caspian Sea asset. First break, 39(10): 53−60. DOI: 10.3997/1365-2397.fb2021075.
    Lefevre M, Souloumiac P, Cubas N, et al. 2020. Experimental evidence for crustal control over seismic fault segmentation. Geology, 48(8): 844−848. DOI: 10.1130/G47115.1.
    Li JT, Wu XM, Hu ZX. 2021. Deep learning for simultaneous seismic image super-resolution and denoising. IEEE Transactions on Geoscience and Remote Sensing, 60: 1−11. DOI: 10.1109/TGRS.2021.3057857.
    Li S, Yang C, Sun H, et al. 2019. Seismic fault detection using an encoder–decoder convolutional neural network with a small training set. Journal of Geophysics and Engineering, 16(1): 175−189. DOI: 10.1093/jge/gxy015.
    Li W, Wang J. 2021. Residual learning of cycle-GAN for seismic data denoising. IEEE access, 9: 11585−11597. DOI: 10.1109/ACCESS.2021.3049479.
    Li X, Li K, Xu Z, et al. 2023. Fault-Seg-Net: A method for seismic fault segmentation based on multi-scale feature fusion with imbalanced classification. Computers and Geotechnics, 158: 105412. DOI: 10.1016/j.compgeo.2023.105412.
    Li X, Li K, Xu Z, et al. 2024. Fault-Seg-LNet: A method for seismic fault identification based on lightweight and dynamic scalable network. Engineering Applications of Artificial Intelligence, 127: 107316. DOI: 10.1016/j.engappai.2023.107316.
    Li X, Li, K. 2024. Fault-attri-attention: A method for fault identification based on seismic attributes attention. Neural Computing and Applications, 36(7): 3645−3661. DOI: 10.1007/s00521-023-09265-7.
    Lima G, Zeiser FA, Da Silveira A, et al. 2024. An encoder–decoder deep neural network for binary segmentation of seismic facies. Computers & Geosciences, 183: 105507. DOI: 10.1016/j.cageo.2023.105507.
    Lin L, Zhong Z, Cai Z, et al. 2022. Automatic geologic fault identification from seismic data using 2. 5 D channel attention U-net. Geophysics, 87(4): IM111−IM124. DOI: 10.1190/geo2021-0805.1.
    Liu ZN, Zhou C, Hu GM, et al. 2020, May. Interpretability-guided convolutional neural networks for seismic fault segmentation. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4312−4316). IEEE. DOI: 10.1109/ICASSP40776.2020.9053472.
    Lyu B, Qi J, Machado G, et al. 2019. Seismic fault enhancement using spectral decomposition assisted attributes. In SEG Technical Program Expanded Abstracts. Society of Exploration Geophysicists: 1938−1942. DOI: 10.1190/segam2019-3215703.1.
    Ma X, Yao G, Zhang F, et al. 2023. 3D Seismic Fault Detection Using Recurrent Convolutional Neural Networks with Compound Loss. IEEE Transactions on Geoscience and Remote Sensing, 61: 1−15. DOI: 10.1109/TGRS.2023.3275951.
    Mahadik R, Singh G, Routray A. 2021. Multispectral coherence analysis for better fault visualization in seismic data. IEEE Geoscience and Remote Sensing Letters, 19: 1−5. DOI: 10.1109/LGRS.2021.3076213.
    Michie EA, Mulrooney MJ, Braathen A. 2021. Fault interpretation uncertainties using seismic data, and the effects on fault seal analysis: A case study from the Horda Platform, with implications for CO2 storage. Solid Earth Discussions, 12(6): 1259–1286. DOI: 10.5194/se-12-1259-2021.
    Mizutani A, Yomogida K, Tanioka Y. 2020. Early tsunami detection with near-fault ocean-bottom pressure gauge records based on the comparison with seismic data. Journal of Geophysical Research: Oceans, 125(9): e2020JC016275. DOI: 10.1029/2020JC016275.
    Martín-Martín M, Bullejos M, Cabezas D, et al. 2023. Using Python libraries and k-Nearest neighbors algorithms to delineate syn-sedimentary faults in sedimentary porous media. Marine and Petroleum Geology, 153: 106283. DOI: 10.1016/j.marpetgeo.2023.106283.
    Mousavi J, Radad M, Soleimani Monfared M, et al. 2022. Fault enhancement in seismic images by introducing a novel strategy integrating attributes and image analysis techniques. Pure and Applied Geophysics, 179(5): 1645−1660. DOI: 10.1007/s00024-022-03014-y.
    Mustafa A, Rastegar R, Brown T, et al. 2024. Visual attention guided learning with incomplete labels for Seismic Fault Interpretation. IEEE Transactions on Geoscience and Remote Sensing, 62: 1−12. DOI: 10.1109/TGRS.2024.3370037.
    Noori M, Hassani H, Javaherian A, et al. 2019. Automatic fault detection in seismic data using Gaussian process regression. Journal of Applied Geophysics, 163: 117−131. DOI: 10.1016/j.jappgeo.2019.02.018.
    Otchere DA, Tackie-Otoo BN, Mohammad MAA, et al. 2022. Improving seismic fault map through data conditioning using a pre-trained deep convolutional neural network: A case study on Groningen field. Journal of Petroleum Science and Engineering, 213: 110411. DOI: 10.1016/j.petrol.2022.110411.
    Palo P, Routray A, Mahadik R, et al. 2023. Fault detection in seismic data using graph convolutional network. The Journal of Supercomputing, 79(11): 12737−12765. DOI: 10.1007/s11227-023-05173-8.
    Ren K, Zou G, Zhang S, et al. 2023. Fault identification and reliability evaluation using an SVM model based on 3-D seismic data volume. Geophysical Journal International, 234(1): 755−768. DOI: 10.1093/gji/ggad095.
    Share PE, Allam AA, Ben-Zion Y, et al. 2019. Structural properties of the San Jacinto fault zone at Blackburn Saddle from seismic data of a dense linear array. Pure and Applied Geophysics, 176: 1169−1191. DOI: 10.1007/s00024-018-1988-5.
    Sheng M, Chu R, Peng Z, et al. 2022. Earthquakes triggered by fluid diffusion and boosted by fault reactivation in Weiyuan, China due to hydraulic fracturing. Journal of Geophysical Research: Solid Earth, 127(5): e2021JB022963. DOI: 10.1029/2021JB022963.
    Titos M, Gutiérrez L, Benítez C, et al. 2023. Multi-station volcano tectonic earthquake monitoring based on transfer learning. Frontiers in Earth Science, 11: 1204832. DOI: 10.3389/feart.2023.1204832.
    Ul Islam MS. 2020. Using deep learning-based methods to classify salt bodies in seismic images. Journal of Applied Geophysics, 178: 104054. DOI: 10.1016/j.jappgeo.2020.104054.
    Visini F, Valentini A, Chartier T, et al. 2020. Computational tools for relaxing the fault segmentation in probabilistic seismic hazard modelling in complex fault systems. Pure and Applied Geophysics, 177: 1855−1877. DOI: 10.1007/s00024-019-02114-6.
    Vu MT, Jardani A. 2022. Mapping discrete fracture networks using inversion of hydraulic tomography data with convolutional neural network: SegNet-Fracture. Journal of Hydrology, 609: 127752. DOI: 10.1016/j.jhydrol.2022.127752.
    Vu MT, Jardani, A. 2022. Multi-task neural network in hydrological tomography to map the transmissivity and storativity simultaneously: HT-XNET. Journal of Hydrology, 612: 128167. DOI: 10.1016/j.jhydrol.2022.128167.
    Waheed UB, Alkhalifah T, Haghighat E, et al. 2021. PINNtomo: Seismic tomography using physics-informed neural networks. arXiv preprint arXiv: 2104.01588. DOI: 10.48550/arXiv.2104.01588.
    Wang QZ, Zhu ZY, Ding JC, et al. 2023. Research and application of intelligent fault detection method based on multi-scale fusion and Enhancement. In International Field Exploration and Development Conference, Singapore: Springer Nature Singapore, 543-553. DOI: 10.1007/978-981-97-0483-5_53.
    Wang Z, Li B, Liu N, et al. 2020. Distilling knowledge from an ensemble of convolutional neural networks for seismic fault detection. IEEE Geoscience and Remote Sensing Letters, 19: 1−5. DOI: 10.1109/LGRS.2020.3034960.
    Wei XL, Zhang CX, Kim SW, et al. 2022. Seismic fault detection using convolutional neural networks with focal loss. Computers & Geosciences, 158: 104968. DOI: 10.1016/j.cageo.2021.104968.
    Wu J, Liu B, Zhang H, et al. 2021. Fault detection based on fully convolutional networks (FCN). Journal of Marine Science and Engineering, 9(3): 259. DOI: 10.3390/jmse9030259.
    Wu J, Shi Y, Wang W. 2022. Fault imaging of seismic data based on a modified u-net with dilated convolution. Applied Sciences, 12(5): 2451. DOI: 10.3390/app12052451.
    Wu X, Liang L, Shi Y, et al. 2019. Multitask learning for local seismic image processing: fault detection, structure-oriented smoothing with edge-preserving, and seismic normal estimation by using a single convolutional neural network. Geophysical Journal International, 219(3): 2097−2109. DOI: 10.1093/gji/ggz418.
    Wu X, Liang L, Shi Y, et al. 2019. FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation. Geophysics, 84(3): IM35−IM45. DOI: 10.1190/geo2018-0646.1.
    Xu F, Li Z, Wen B, et al. 2021. The use of 3D convolutional autoencoder in fault and fracture network characterization. Geofluids, 1-11. DOI: 10.1155/2021/6650823.
    Yan Z, Liu S, Gu H. 2019. Fault image enhancement using a forward and backward diffusion method. Computers & Geosciences, 131: 1−14. DOI: 10.1016/j.cageo.2019.06.004.
    Yan Z, Zhang Z, Liu S. 2021. Improving performance of seismic fault detection by fine-tuning the convolutional neural network pre-trained with synthetic samples. Energies, 14(12): 3650. DOI: 10.3390/en14123650.
    Yuan Z, Huang H, Jiang Y, et al. 2019. An enhanced fault-detection method based on adaptive spectral decomposition and super-resolution deep learning. Interpretation, 7(3): T713−T725. DOI: 10.1190/INT-2018-0180.1.
    Zeng A, Yan L, Huang Y, et al. 2021. Intelligent detection of small faults using a support vector machine. Energies, 14(19): 6242. DOI: 10.3390/en14196242.
    Zeng L, Niu Y, Ren W, et al. 2024. A method for intelligent identification of faults in seismic using an attention-based ES-UNet network with model re-training learning. Journal of Applied Geophysics, 105344. DOI: 10.1016/j.jappgeo.2024.105344.
    Zhang R, Sun Q, Mao Y, et al. 2022. Accelerating hydraulic fracture imaging by deep transfer learning. IEEE Transactions on Antennas and Propagation, 70(7): 6117−6121. DOI: 10.1109/TAP.2022.3161325.
    Zhang Z, Chen R, Ma J. 2024. Improving seismic fault recognition with Self-Supervised Pre-Training: A Study of 3D transformer-based with multi-scale decoding and fusion. Remote Sensing, 16(5): 922. DOI: 10.3390/rs16050922.
    Zhou R, Yao X, Hu, G, et al. 2021. Learning from unlabelled real seismic data: Fault detection based on transfer learning. Geophysical Prospecting, 69(6): 1218−1234. DOI: 10.1111/1365-2478.13097.
    Zhou R, Yao X, Wang Y, et al. 2021. Seismic fault detection with progressive transfer learning. Acta Geophysica, 69: 2187−2203. DOI: 10.1007/s11600-021-00668-5.
    Zini JE, Rizk Y, Awad M. 2019. A deep transfer learning framework for seismic data analysis: A case study on bright spot detection. IEEE Transactions on Geoscience and Remote Sensing, 58(5): 3202−3212. DOI: 10.1109/TGRS.2019.2950888.
  • [1] Tran Vu Long, Nguyen Bach Thao, Dao Duc Bang, Kieu Thi Van Anh, Vu Thu Hien, Duong Thi Thanh Thuy, Tran Quang Tuan, Nguyen Van Hoang, Doan Anh Tuan, Dang Tran Trung2025:  Application of the cumulative rainfall departure method in determination of deep groundwater recharge in Soc Trang Province, Vietnam, Journal of Groundwater Science and Engineering, 13, 180-192. doi: 10.26599/JGSE.2025.9280048
    [2] Ming-xiao Yu, Xi Zhu, Gui-ling Wang, Wei Zhang, Feng Ma2025:  Zoning of development and utilization and evaluation of deep geothermal resources in Xiong'an New Area, Journal of Groundwater Science and Engineering, 13, 47-61. doi: 10.26599/JGSE.2025.9280038
    [3] Mobin Eftekhari, Abbas Khashei-Siuki2025:  Evaluating machine learning methods for predicting groundwater fluctuations using GRACE satellite in arid and semi-arid regions, Journal of Groundwater Science and Engineering, 13, 5-21. doi: 10.26599/JGSE.2025.9280035
    [4] Jing Hu, Yan-guang Liu, Xin Wang, Ying-nan Zhang, Mei-hua Wei2024:  Progress and prospect of mid-deep geothermal reinjection technology, Journal of Groundwater Science and Engineering, 12, 321-338. doi: 10.26599/JGSE.2024.9280024
    [5] ILUNGA Nyembwe, AMADI Akobundu Nwanosike, Gilbert NDATIMANA, Nelson OKOT, Raphaël TSHIMANGA Muamba2024:  Evaluation of aquifer hydraulic properties from resistivity and pumping test data in parts of Gwagwalada, Northcentral Nigeria, Journal of Groundwater Science and Engineering, 12, 309-320. doi: 10.26599/JGSE.2024.9280023
    [6] Shamla Rasheed, Marykutty Abraham2024:  Conventional and futuristic approaches for the computation of groundwater recharge: A comprehensive review, Journal of Groundwater Science and Engineering, 12, 428-452. doi: 10.26599/JGSE.2024.9280027
    [7] Nguyen Van Hoang2021:  Determination of groundwater solute transport parameters in finite element modelling using tracer injection and withdrawal testing data, Journal of Groundwater Science and Engineering, 9, 292-303. doi: 10.19637/j.cnki.2305-7068.2021.04.003
    [8] Mehdi Afraz, Mobin Eftekhari, Mohammad Akbari, Elyasi Ali Haji, Zahra Noghani2021:  Application assessment of GRACE and CHIRPS data in the Google Earth Engine to investigate their relation with groundwater resource changes (Northwestern region of Iran), Journal of Groundwater Science and Engineering, 9, 102-113. doi: 10.19637/j.cnki.2305-7068.2021.02.002
    [9] KANG Wen-kai, LIU Feng, YANG Fei-fan, WANG Hua-jun2020:  Simulation of heat transfer performance using middle-deep coaxial borehole heat exchangers by FEFLOW, Journal of Groundwater Science and Engineering, 8, 315-327. doi: 10.19637/j.cnki.2305-7068.2020.04.002
    [10] ZHONG Hua-ping, WU Yong-xiang2020:  State of seawater intrusion and its adaptive management countermeasures in Longkou City of China, Journal of Groundwater Science and Engineering, 8, 30-42. doi: 10.19637/j.cnki.2305-7068.2020.01.004
    [11] LI Wen-yon, FU Li, ZHU Zheng-feng2019:  Numerical simulation and land subsidence control for deep foundation pit dewatering of Longyang Road Station on Shanghai Metro Line 18, Journal of Groundwater Science and Engineering, 7, 133-144. doi: 10.19637/j.cnki.2305-7068.2019.02.004
    [12] Muhammad Nauman Malik, Mehdi Murtuza, Iqbal Asif, Bakar Muhammad Saifullah Abu, Brahim Aissa, Dk Nur Afiqah Jalwati Puteri, Amer Farhan Rafique2019:  Adaptive state estimation of groundwater contaminant boundary input flux in a 2-dimensional aquifer, Journal of Groundwater Science and Engineering, 7, 373-382. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.008
    [13] WANG Hua, MAO Xu-mei, WANG Tao, FENG Liang, LIANG Li-li, ZHU Dong-bo, YANG Kai-ming2019:  Hydrogeochemical characteristics of hot springs exposed from fault zones in western Guangdong and their 14C age correction, Journal of Groundwater Science and Engineering, 7, 1-14. doi: 10.19637/j.cnki.2305-7068.2019.01.001
    [14] LIU Yan-guang, LIU Bing, LU Chuan, ZHU Xi, WANG Gui-ling2017:  Reconstruction of deep fluid chemical constituents for estimation of geothermal reservoir temperature using chemical geothermometers, Journal of Groundwater Science and Engineering, 5, 173-181.
    [15] GAN Hao-nan, LIN Wen-jing, YUE Gao-fan, WANG Xiao, MA Feng, WANG Gui-ling2017:  Research on the fault controlling mechanism of geothermal water in Zhangzhou Basin, Journal of Groundwater Science and Engineering, 5, 326-335.
    [16] ZHOU Zhi-chao, WANG Ju, SU Rui, GUO Yong-hai, LI Jie-biao, JI Rui-li, ZHANG Ming, DONG Jian-nan2016:  Study on the residence time of deep groundwater for high-level radioactive waste geological disposal, Journal of Groundwater Science and Engineering, 4, 52-59.
    [17] Dana Mawlood, Jwan Mustafa2016:  Comparison between Neuman (1975) and Jacob (1946) application for analysing pumping test data of unconfined aquifer, Journal of Groundwater Science and Engineering, 4, 165-173.
    [18] WANG Ye, ZHANG Qiu-lan, WANG Shi-chang, SHAO Jing-li2015:  Forecasting of water yield of deep-buried iron mine in Yanzhou, Shandong, Journal of Groundwater Science and Engineering, 3, 342-350.
    [19] Xiu-yan WANG, Yu-hong FEI2014:  Environmental Effect Caused by Over-exploitation of Deep Groundwater in North China, Journal of Groundwater Science and Engineering, 2, 12-20.
    [20] Wang Ping, Han Zhantao, Li Yasong, Chen Kang, Lv Xiaoli, Jian Ming2013:  The Role of Groundwater Leakage through Deep Wells for the Deformation of Groundwater Flow: a Case Study in Cangzhou Area, Journal of Groundwater Science and Engineering, 1, 80-87.
  • 加载中
图(9) / 表ll (5)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  31
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-19
  • 录用日期:  2025-03-21
  • 网络出版日期:  2025-05-10
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回