• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Groundwater recharge modeling with integration of land use/land cover and climate change projections in Surakarta City, Indonesia

Sulistiani Rachmat Fajar Lubis I Putu Santikayasa Muh. Taufik Gumilar Utamas Nugraha

Sulistiani, Lubis RF, Santikayasa IP, et al. 2025. Groundwater recharge modeling with integration of land use/land cover and climate change projections in Surakarta City, Indonesia. Journal of Groundwater Science and Engineering, 13(4): 352-370 doi:  10.26599/JGSE.2025.9280059
Citation: Sulistiani, Lubis RF, Santikayasa IP, et al. 2025. Groundwater recharge modeling with integration of land use/land cover and climate change projections in Surakarta City, Indonesia. Journal of Groundwater Science and Engineering, 13(4): 352-370 doi:  10.26599/JGSE.2025.9280059

doi: 10.26599/JGSE.2025.9280059

Groundwater recharge modeling with integration of land use/land cover and climate change projections in Surakarta City, Indonesia

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Study area; (a) Hydrogeology; (b) Elevation; (c) SWAT-based delineation of Surakarta City within the Bengawan Solo Basin (modified from Putranto et al. 2016, 2017)

    Figure  2.  Hydrogeological profiles of two typical cross-sections (modified from Putranto et al. 2016)

    Figure  3.  Overall methodological framework for assessing the impact of climate and land use change on the spatiotemporal variations in groundwater recharge

    Figure  4.  Schematic diagram illustrating the bias correction of global climate model rainfall outputs, adjusted against observed rainfall data at each monitoring station

    Figure  5.  LULC changes in Surakarta City for the years: a) 2000; b) 2010; and c) 2020

    Figure  6.  LULC projection: (a) 2030 and (b) 2040

    Figure  7.  Land area change from 2000 to the 2040 prediction

    Figure  8.  Comparison of observed and scenario rainfall data: a) before bias correction; b) after bias correction

    Figure  9.  Delineation results of the Bengawan Solo watershed in Surakarta City using the SWAT model

    Figure  10.  Comparison of observed and simulated discharge for 2011–2020, before calibration (left) and after calibration (right)

    Figure  11.  Observed versus calibrated discharge results for 2011–2020

    Figure  12.  Boxplot of groundwater recharge results in Surakarta City

    Figure  13.  Average baseline and projected climate and groundwater recharge in Surakarta City

    Figure  14.  Spatiotemporal patterns of groundwater recharge: a) 2000; b) 2010; c) 2020

    Figure  15.  Spatiotemporal pattern of groundwater recharge: a) 2030 SSP2-45; b) 2030 SSP5-85; c) 2040 SSP2-45; d) 2040 SSP5-85

    Table  1.   Datasets used in this study

    Data Spatial Resolution Temporal Resolution Period Source
    Digital Elevation Model (DEM) 8 m - - DEMNAS
    LULC maps (Landsat 7-ETM and Landsat 8-OLI) 30 m - 3 maps (2000, 2010, 2020) USGS
    Soil type maps 1:50000 - - BBSDLP
    Rainfall 0.05° × 0.05° Daily 1991–2020 CHIRPS
    Temperature, solar radiation, wind speed, and relative humidity 0.25° × 0.25° Daily 1991–2020 ERA5
    Observed streamflow (m3/s) - Daily 2010–2021 BBWS Bengawan Solo Pos Jurug
    Population density - - 2000–2021 BPS Kota Surakarta
    ACCESS-ESM1-5 1.9° × 1.2° Daily 1991–2040 In association with Australia Weather and Climate Research, Australia Government
    BCC-CSM2-MR 1.9° × 1.9° Daily 1991–2040 Beijing Climate Center (BCC), China
    FGOALS-f3-L 1.3° × 1° Daily 1991–2040 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), China
    MIROC6 1.4° × 1.4° Daily 1991–2040 Model for Interdisciplinary Research on Climate (MIROC), Japan
    MRI-ESM2-0 1.1° × 1.1° Daily 1991–2040 Meteorological Research Institute (MRI), Japan
    下载: 导出CSV

    Table  2.   LULC classification scheme

    LULC type Description
    Build-up area Urban, residential, industrial, and other construction land
    Vegetation Green space (RTH), rice, and shrubs
    Roads Motorways and roads in residential areas
    Waterbody River, lake
    下载: 导出CSV

    Table  3.   Land use and land cover area in Surakarta City (2000–2020)

    LULC Type 2000 2010 2020
    Km2 % Km2 % Km2 %
    Built-up area 31.27 66.93 31.66 67.77 32.54 69.65
    Vegetation 9.55 20.44 8.37 17.92 7.28 15.58
    Roads 5.2 11.13 5.84 12.50 6.05 12.95
    Waterbody 0.7 1.50 0.85 1.82 0.85 1.82
    下载: 导出CSV

    Table  4.   Comparison of LULC in 2020: Existing vs. projected conditions

    LULC Type Observation Model Kappa value (Overall)
    Km2 % Km2 %
    Built-up area 32.54 69.65 33.13 70.91 0.82
    Vegetation 7.28 15.58 6.93 14.83
    Roads 6.05 12.95 5.77 12.35
    Waterbody 0.85 1.82 0.89 1.90
    下载: 导出CSV

    Table  5.   Accuracy of LULC predictions

    LULC Type 2030 2040 RTRW
    Km2 % Km2 % Km2 %
    Build-up area 33.21 71.08 33.56 71.83 40.78 87.29
    Vegetation 6.13 13.12 5.54 11.86 3.71 7.94
    Roads 6.53 13.98 6.77 14.49 0.52 1.11
    Waterbody 0.85 1.82 0.85 1.82 1.71 3.66
    下载: 导出CSV

    Table  6.   Extent of conformity between LULC prediction results and the Surakarta City RTRW

    Suitability 2030/km2 % 2040/km2 %
    Suitable 35.71 76.43 36.16 77.39
    Not suitable 11.01 23.57 10.56 22.61
    下载: 导出CSV

    Table  7.   Evaluation of monthly rainfall model performance during the historical periods (1991–2020)

    No Model R MAE R* MAE*
    1 ACCESS-ESM1-5 0.28 138.55 0.62 65.06
    2 BCC-CSM2-MR 0.18 158.61 0.45 83.15
    3 FGOALS-f3-L 0.05 134.02 0.67 59.02
    4 MIROC6 0.12 120.32 0.55 75.96
    5 MRI-ESM2-0 0.24 145.83 0.60 62.83
    6 MMA 0.42 92.35 0.73 52.02
    *corrected
    下载: 导出CSV

    Table  8.   Parameters used in the SWAT model calibration process

    Parameters Value range Value of terp
    Min Max
    1 R__CN2.mgt −0.25 0.3 −0.27
    2 V__GW_DELAY.gw 200 250 245
    3 V__ALPHA_BNK.rte 0.4 0.5 0.45
    4 V__CH_K2.rte 0 0.125 0.03125
    5 R__SOL_AWC(..).sol 0.3 0.35 0.32
    6 R__SOL_K(..).sol 0 300 75
    7 R__SOL_BD(..).sol 1.8 1.9 1.7
    8 V__CH_K1.sub 0 250 187.5
    9 V__CH_N1.sub 0.014 0.025 0.02225
    下载: 导出CSV

    Table  9.   Comparison results between observed and simulated data

    Default value Parameterization
    R2 0.18 0.85
    NSE 0.40 0.62
    PBIAS 33.5 7.91
    KGE 0.37 0.75
    下载: 导出CSV

    Table  10.   Annual groundwater recharge (GWR) for the historical period 1991–2020 (mm/year)

    YearGWRYearGWRYearGWR
    199157,468.8200143,542.4201137,893.8
    199257,451.4200236,991.6201234,216.2
    199357,406.1200338,434.1201330,139.3
    199442,266.7200443,201.7201430,911.3
    199552,614.7200542,889.6201532,318.4
    199655,375.4200647,907.3201636,665.6
    199763,570.0200745,755.6201731,588.7
    199856,615.6200849,361.1201836,357.9
    199944,909.0200944,891.4201931,395.0
    200057,747.3201072,755.2202031,907.8
    Mean54,542.5Mean46,573.0Mean33,339.4
    下载: 导出CSV

    Table  11.   Annual Groundwater Recharge (GWR) quantity for the projection period 2021–2040 under climate scenarios SSP2-45 and SSP5-85 (mm/year)

    SSP2-45 SSP5-85 SSP2-45 SSP5-85
    Year GWR Year GWR Year GWR Year GWR
    2021 26,182.6 2021 26,795.4 2031 20,954.8 2031 17,832.3
    2022 27,095.4 2022 21,941.6 2032 24,800.7 2032 29,151.7
    2023 35,455.7 2023 22,788.8 2033 30,742.1 2033 26,593.7
    2024 26,716.6 2024 25,394.4 2034 27,387.9 2034 22,420.5
    2025 25,510.5 2025 25,658.8 2035 20,172.7 2035 29,144.8
    2026 41,246.3 2026 28,468.7 2036 34,223.9 2036 24,122.8
    2027 32,872.4 2027 26,923.8 2037 27,736.7 2037 16,103.5
    2028 25,403.0 2028 28,906.8 2038 22,509.7 2038 29,340.3
    2029 26,075.2 2029 26,219.6 2039 20,289.0 2039 23,973.1
    2030 32,116.3 2030 44,648.1 2040 32,286.6 2040 22,115.4
    Mean 29,867.4 Mean 27,774.6 Mean 26,110.4 Mean 24,079.8
    下载: 导出CSV
  • Abbas Z, Yang G, Zhong Y, et al. 2021. Spatiotemporal change analysis and future scenario of lulc using the CA-ANN approach: A case study of the greater bay area, China. Land, 10(6): 584. DOI:  10.3390/land10060584
    Adhikari RK, Mohanasundaram S, Shrestha, S. 2020. Impacts of land-use changes on the groundwater recharge in the Ho Chi Minh city, Vietnam. Environmental Research, 185: 109440. DOI:  10.1016/j.envres.2020.109440
    Alfandhani RS, Hizbaron DR, Widyastuti M. 2021. Kajian Pengaruh Kondisi Resapan Air pada Pola Pemanfaatan Ruang di Sub DAS Jlantah-Walikun pada Wilayah DAS Bengawan Solo Hulu. Jurnal Pendidikan Tambusai, 5(3): 11236–11244. (in Indonesian
    Arnold JG, Kiniry R, Srinivasan R, et al. 2012. Input/output documentation soil & water assessment tool.Texas Water Resources Institute: Thrall, TX, USA, 1-650.
    As-syakur AR, Suarna IW, Adnyana IWS, et al. 2008. Studi Perubahan Penggunaan Lahan di DAS Badung. Bumi Lestari, 10(2): 200–207. (in Indonesian
    Boretti A, Rosa L. 2019. Reassessing the projections of the world water development report. NPJ Clean Water, 2(1): 15. DOI:  10.1038/s41545-019-0039-9.
    Bucton BGB, Shrestha S, Mohanasundaram S, et al. 2022. Impacts of climate and land use change on groundwater recharge under shared socioeconomic pathways: A case of Siem Reap, Cambodia. Environmental Research, 211: 113070. DOI:  10.1016/j.envres.2022.113070.
    Desky AF. 2022. Sosiologi pedesaan dan perkotaan. (In Indonesian
    DLH Kota Surakarta. 2021. Indeks Kualitas Lingkungan Hidup Kota Surakarta Tahun 2021. (In Indonesian
    DLH Kota Surakarta. 2022. Indeks Kualitas Lingkungan Hidup Kota Surakarta Tahun 2022. (In Indonesian
    Ferreira RS, Uagoda RE. 2017. Revista Brasileira de Geografia Física Análise da predição do balanço hídrico da bacia do ribeirão do Gama-DF através do modelo SWAT. In Revista Brasileira de Geografia Física, 10(03): 880-893. (in Portuguese
    Fitriana AL, Subiyanto S, Firdaus HS. 2017. Model Cellular Automata Markov untuk Prediksi Perkembangan Fisik Wilayah Permukiman Kota Surakarta menggunakan Sistem Informasi Geografis. Jurnal Geodesi Undip Oktober, 6(4): 246-253. (In Indonesian
    Guo H, Hu Q, Jiang T. 2008. Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin, China. Journal of Hydrology, 355(1-4): 106−122. DOI:  10.1016/j.jhydrol.2008.03.020.
    Guo XD, Liu Q, Li WP, et al. 2024. Groundwater imbalance and its mutual feedback relationship with land use in West Liaohe Plain. Hydrogeology & Engineering Geology, 51(4): 77−87. DOI:  10.16030/j.cnki.issn.1000-3665.202310001.
    Halefom A, Sisay E, Khare D, et al. 2017. Hydrological modeling of urban catchment using semi-distributed model. Modeling Earth Systems and Environment, 3(2): 683−692. DOI:  10.1007/s40808-017-0327-7.
    Indhanu N, Chalermyanont T, Chub-Uppakarn T. 2025. Spatial assessment of land use and land cover change impacts on groundwater recharge and groundwater level: A case study of the Hat Yai basin. Journal of Hydrology: Regional Studies, 57: 102097. DOI:  10.1016/j.ejrh.2024.102097.
    Landis JR, Koch GG. 1977. The measurement of observer agreement for categorical data. Biometrics, 159-174.
    Lei Z, Yang J, Yang Y, et al. 2019. Impact of urban sprawl on dry island effects and its countermeasures. Sustainable Cities and Society, 51.
    Luetkemeier R, Söller L, Frick-Trzebitzky F. 2022. Anthropogenic pressures on groundwater. In Encyclopedia of Inland Waters, Second Edition (3): 548-559. DOI:  10.1016/B978-0-12-819166-8.00183-3
    Meaurio M, Zabaleta A, Uriarte JA, et al. 2015. Evaluation of SWAT models performance to simulate streamflow spatial origin: The case of a small forested watershed. Journal of Hydrology, 525: 326−334. DOI:  10.1016/j.jhydrol.2015.03.050.
    Mengistu TD, Chung IM, Kim MG, et al. 2022. Impacts and implications of land use land cover dynamics on groundwater recharge and surface runoff in east african watershed. Water (Switzerland), 14(13): 2068. DOI:  10.3390/w14132068.
    Moriasi DN, Arnold JG, Van Liew MW, et al. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3): 885−900. DOI:  10.13031/2013.23153.
    Muhammad R, Zhang W, Abbas Z, et al. 2022. Spatiotemporal change analysis and prediction of future land use and land cover changes using QGIS MOLUSCE Plugin and remote sensing big data: A case study of Linyi, China. Land, 11(3): 419. DOI:  10.3390/land11030419.
    Mustafa A, Van Rompaey A, Cools M, et al. 2018. Addressing the determinants of built-up expansion and densification processes at the regional scale. Urban Studies, 55(15): 3279−3298. DOI:  10.1177/0042098017749176.
    Nabila DA. 2023. Pemodelan prediksi dan kesesuaian perubahan penggunaan lahan menggunakan Cellular Automata-Artificial Neural Network (CA-ANN). Tunas Agraria, 6(1): 41−55. DOI: 10.31292/jta.v6i1.203 (In Indonesian
    Neitsch SL, Arnold JG, Kiniry JR, et al. 2011. Soil and water assessment tool theoretical documentation version 2009.
    Pandiangan NL, Diara IW, Kusmiyarti TB. 2021. Analisis Kondisi Daerah Resapan Air Kecamatan Sukasada Kabupaten Buleleng menggunakan Sistem Informasi Geografis. Jurnal Agroekoteknologi Tropika, 10(3): 324–336. (In Indonesian
    Pechlivanidis LG, Arheimer B. 2015. Large scale hudrological modelling by using modified PUB recommendations: The India-HYPE case. Hydrology and Earth System Sciences, 19: 4559−4579. DOI:  10.5194/hess-19-4559-2015.
    Piani C, Haerter JO, Coppola E. 2010. Statistical bias correction for daily precipitation in regional climate models over Europe. Theoretical and Applied Climatology, 99(1-2): 187−192. DOI:  10.1007/s00704-009-0134-9.
    Piyumi MMM, Abenayake C, Jayasinghe A, et al. 2021. Urban flood modeling application: Assess the effectiveness of building regulation in coping with urban flooding under precipitation uncertainty. Sustainable Cities and Society, 75: 103294. DOI:  10.1016/j.scs.2021.103294.
    Putranto TT, Krisna W, Revina R, et al. 2016. Groundwater vulnerability to contamination assessment using GOD method in Surakarta city, central Java. Proceeding PIT-PAAI.
    Putranto TT, Kusuma KI. 2009. Permasalahan airtanah pada daerah urban. Teknik, 30(1): 48−56.
    Putranto TT, Widiarso DA, Udin MI. 2017. Zonasi Potensi Air Tanah Kota Surakarta, JawaTengah. Proceeding, Seminar Nasional Kebumian. (In Indonesian
    Ridho FT, Nurhidayati E, Damayanti HN, et al. 2020. Komparasi Model Cellular Automata dalam Memprediksi Perubahan Lahan Sawah di Kabupaten Purworejo. Jukung Jurnal Teknik Lingkungan, 6(2): 157−167. DOI: 10.20527/jukung.v6i2.9259 (In Indonesian
    Sajjad MM, Wang J, Abbas H, et al. 2022. Impact of climate and land-use change on groundwater resources, study of Faisalabad District, Pakistan. Atmosphere, 13(7): 1097. DOI:  10.3390/atmos13071097.
    Santhi C, Allen PM, Muttiah RS, et al. 2008. Regional estimation of base flow for the conterminous United States by hydrologic landscape regions. Journal of Hydrology, 351(1-2): 139−153. DOI:  10.1016/j.jhydrol.2007.12.018.
    Santhi C, Arnold JG, Williams JR, et al. 2001. Validation of the SWAT Model on a Large Rwer Basin with Poin and Nonpoint Sources. Journal of the American Water Resources Association, 37: 1169−1188. DOI:  10.1111/j.1752-1688.2001.tb03630.x.
    Saputra DR, Yudono ARA, Partoyo. 2020. Assessment of the groundwater recharge potential areas using GIS in Kajor Kulon Hamlet, Selopamioro, Imogiri, Bantul, Yogyakarta. Jurnal Geografi Lingkungan Tropik, 4(2): 4. DOI:  10.7454/jglitrop.v4i2.89
    Scanlon BR, Reedy RC, Stonestrom DA, et al. 2005. Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology, 11(10): 1577−1593. DOI:  10.1111/j.1365-2486.2005.01026.x.
    Sejati AE. 2020. Analisis Perubahan Tutupan Lahan dan Pengaruhnya terhadap Kemampuan Resapan Air di Daerah Aliran Sungai. Jurnal Planologi, 17(1): 1−12. DOI: 10.30659/jpsa.v17i1.7555. (In Indonesian
    Siddik MS, Tulip SS, Rahman A, et al. 2022. The impact of land use and land cover change on groundwater recharge in northwestern Bangladesh. Journal of Environmental Management, 315: 115130. DOI:  10.1016/j.jenvman.2022.115130.
    Sisay E, Halefom A, Khare D, et al. 2017. Hydrological modelling of ungauged urban watershed using SWAT model. Modeling Earth Systems and Environment, 3(2): 693−702. DOI:  10.1007/s40808-017-0328-6.
    Stull R. 2017. Practical meteorology an algebra-based survey of atmospheric science. Available on http://www.eos.ubc.ca/~geol/softeng/practical.html
    Suharyanto. 2018. Analisis Dampak Perubahan Tata Guna Lahan terhadap Daerah Resapan Air di Wilayah Perkotaan. Jurnal Teknologi Lingkungan, 19(2): 149−158. (In Indonesian
    Tamm O, Kokkonen T, Warsta L, et al. 2023. Modelling urban stormwater management changes using SWMM and convection-permitting climate simulations in cold areas. Journal of Hydrology, 622: 129656. DOI:  10.1016/j.jhydrol.2023.129656.
    Tegegne G, Melesse AM, Worqlul AW. 2020. Development of multi-model ensemble approach for enhanced assessment of impacts of climate change on climate extremes. Science of the Total Environment, 704: 135357. DOI:  10.1016/j.scitotenv.2019.135357.
    Wibisono P, Miladan N, Pamardhi-Utomo R. 2023. Hubungan Perubahan Kerapatan Vegetasi dan Bangunan terhadap Suhu Permukaan Lahan: Studi Kasus di Aglomerasi Perkotaan Surakarta, 5: 148–162.
    Widyastuti MT, Taufik M, Santikayasa IP. 2018. Prediksi Debit Jangka Panjang untuk Sungai Bengawan Solo. Jurnal Geografi, 15(2): 71−82. DOI:10.15294/jg.v15i2.15387 (In Indonesian
    Willmot CJ, Matsuura K. 2005. Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in assessing average model performance. Climate Research, 30(1): 79−82. DOI:  10.3354/cr030079.
    Xu T, Gao J, Coco G. 2019. Simulation of urban expansion via integrating artificial neural network with Markov chain–cellular automata. International Journal of Geographical Information Science, 33(10): 1960−1983. DOI:  10.1080/13658816.2019.1600701.
    Yunus HS. 2005. Manajemen kota: Perspektif spasial. Yogyakarta: Pustaka pelajar, 2005. (In Indonesian
    Zhang JK, Wang JP, Shi JS. 2024. Attribution analysis of water-sediment variation under the influence of climate change and human activities in the Kuye River Basin. Hydrogeology & Engineering Geology, 51(6): 47−59. DOI:  10.16030/j.cnki.issn.1000-3665.202312053.
    Zhang Q, Liu J, Singh VP, et al. 2016. Evaluation of impacts of climate change and human activities on streamflow in the Poyang Lake basin, China. Hydrological Processes, 30(14): 2562−2576. DOI:  10.1002/hyp.10814.
  • [1] Md. Hossain Ali2025:  Development of a model to estimate groundwater recharge, Journal of Groundwater Science and Engineering, 13, 406-422. doi: 10.26599/JGSE.2025.9280062
    [2] Shamla Rasheed, Marykutty Abraham2024:  Conventional and futuristic approaches for the computation of groundwater recharge: A comprehensive review, Journal of Groundwater Science and Engineering, 12, 428-452. doi: 10.26599/JGSE.2024.9280027
    [3] Zhe Wang, Li-juan Wang, Jian-mei Shen, Zhen-long Nie, Le Cao, Ling-qun Meng2024:  Groundwater recharge via precipitation in the Badain Jaran Desert, China, Journal of Groundwater Science and Engineering, 12, 109-118. doi: 10.26599/JGSE.2024.9280009
    [4] Stephen Pitchaimani V, Narayanan MSS, Abishek RS, Aswin SK, Jerin Joe RJ2024:  Delineation of groundwater potential zones using remote sensing and Geographic Information Systems (GIS) in Kadaladi region, Southern India, Journal of Groundwater Science and Engineering, 12, 147-160. doi: 10.26599/JGSE.2024.9280012
    [5] Rui-fang Meng, Hui-feng Yang, Xi-lin Bao, Bu-yun Xu, Hua Bai, Jin-cheng Li, Ze-xin Liang2023:  Optimizing groundwater recharge plan in North China Plain to repair shallow groundwater depression zone, China, Journal of Groundwater Science and Engineering, 11, 133-145. doi: 10.26599/JGSE.2023.9280012
    [6] Temesgen Mekuriaw Manderso, Yitbarek Andualem Mekonnen, Tadege Aragaw Worku2023:  Application of GIS based analytical hierarchy process and multicriteria decision analysis methods to identify groundwater potential zones in Jedeb Watershed, Ethiopia, Journal of Groundwater Science and Engineering, 11, 221-236. doi: 10.26599/JGSE.2023.9280019
    [7] Liang Zhu, Ming-nan Yang, Jing-tao Liu, Yu-xi Zhang, Xi Chen, Bing Zhou2022:  Evolution of the freeze-thaw cycles in the source region of the Yellow River under the influence of climate change and its hydrological effects, Journal of Groundwater Science and Engineering, 10, 322-334. doi: 10.19637/j.cnki.2305-7068.2022.04.002
    [8] Cherif Kessar, Yamina Benkesmia, Bilal Blissag, Lahsen Wahib Kébir2021:  Delineation of groundwater potential zones in Wadi Saida Watershed of NW-Algeria using remote sensing, geographic information system-based AHP techniques and geostatistical analysis, Journal of Groundwater Science and Engineering, 9, 45-64. doi: 10.19637/j.cnki.2305-7068.2021.01.005
    [9] Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip2020:  Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand, Journal of Groundwater Science and Engineering, 8, 10-19. doi: 10.19637/j.cnki.2305-7068.2020.01.002
    [10] SADIKI Moulay Lhassan, EL MANSOURI Bouabid, BENSEDDIK Badr, CHAO Jamal, KILI Malika, EL MEZOUARY Lhoussaine2019:  Improvement of groundwater resources potential by artificial recharge technique: A case study of Charf El Akab aquifer in the Tangier region, Morocco, Journal of Groundwater Science and Engineering, 7, 224-236. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.003
    [11] Nouayti Abderrahime, Khattach Driss, Hilali Mohamed, Nouayti Nordine2019:  Mapping potential areas for groundwater storage in the High Guir Basin (Morocco):Contribution of remote sensing and geographic information system, Journal of Groundwater Science and Engineering, 7, 309-322. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.002
    [12] SHANG Man-ting, LIU Pei-gui, LEI Chao, LIU Ming-chao, WU Liang2017:  Effect of climate change on the trends of evaporation of phreatic water from bare soil in Huaibei Plain, China, Journal of Groundwater Science and Engineering, 5, 213-221.
    [13] Ramasamy Jayakumar, Eunhee Lee2017:  Climate change and groundwater conditions in the Mekong Region–A review, Journal of Groundwater Science and Engineering, 5, 14-30.
    [14] Khongsab Somphone, OunakoneKone Xayviliya2017:  Climate change and groundwater resources in Lao PDR, Journal of Groundwater Science and Engineering, 5, 53-58.
    [15] Duong D Bui, Nghia C Nguyen, Nuong T Bui, Anh T T Le, Dao T Le2017:  Climate change and groundwater resources in Mekong Delta, Vietnam, Journal of Groundwater Science and Engineering, 5, 76-90.
    [16] SRISUK Kriengsak, NETTASANA Tussanee2017:  Climate change and groundwater resources in Thailand, Journal of Groundwater Science and Engineering, 5, 67-75.
    [17] Than Zaw, Maung Maung Than2017:  Climate change and groundwater resources in Myanmar, Journal of Groundwater Science and Engineering, 5, 59-66.
    [18] BAI Bing, CHENG Yan-pei, JIANG Zhong-cheng, ZHANG Cheng2017:  Climate change and groundwater resources in China, Journal of Groundwater Science and Engineering, 5, 44-52.
    [19] Chamroeun SOK, Sokuntheara CHOUP2017:  Climate change and groundwater resources in Cambodia, Journal of Groundwater Science and Engineering, 5, 31-43.
    [20] BI Xue-li, XU Qi, ZHANG Fa-wang2015:  Application of remote sensing technique to mapping of the map series of karst geology in China and Southeast Asia, Journal of Groundwater Science and Engineering, 3, 186-191.
  • 加载中
图(15) / 表ll (11)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  7
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-26
  • 录用日期:  2025-07-21
  • 网络出版日期:  2025-10-10
  • 刊出日期:  2025-12-01

目录

    /

    返回文章
    返回