• ISSN 2305-7068
  • ESCI CABI CAS Scopus GeoRef AJ CNKI 维普收录
高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Evaluation of water quality and water resources carrying capacity using a varying fuzzy pattern recognition model: A case study of small watersheds in Hilly Region

Su-duan Hu Wen-da Liu Jun-jian Liu Jiang-Yulong Wang Jun-jie Yang Zhao-yi Li Zhi-yang Tang Guo-qiang Wang Tian-cun Yu

Hu SD, Liu WD, Liu JJ, et al. 2025. Evaluation of water quality and water resources carrying capacity using a varying fuzzy pattern recognition model: A case study of small watersheds in Hilly Region. Journal of Groundwater Science and Engineering, 13(4): 386-405 doi:  10.26599/JGSE.2025.9280061
Citation: Hu SD, Liu WD, Liu JJ, et al. 2025. Evaluation of water quality and water resources carrying capacity using a varying fuzzy pattern recognition model: A case study of small watersheds in Hilly Region. Journal of Groundwater Science and Engineering, 13(4): 386-405 doi:  10.26599/JGSE.2025.9280061

doi: 10.26599/JGSE.2025.9280061

Evaluation of water quality and water resources carrying capacity using a varying fuzzy pattern recognition model: A case study of small watersheds in Hilly Region

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Location of Pingquan City and the surface water and groundwater sampling sites (Ⅰ: Puhe River Basin; Ⅱ: Laoniuhe River Basin; Ⅲ: Qinglonghe River Basin; Ⅳ: Laohahe River Basin; Ⅴ: Dalinghe River Basin)

    Figure  2.  Land use patterns of Pingquan City (Ⅰ: Puhe River Basin; Ⅱ: Laoniuhe River Basin; Ⅲ: Qinglonghe River Basin; Ⅳ: Laohahe River Basin; Ⅴ: Dalinghe River Basin)

    Figure  3.  Evaluation results of surface water quality in Pingquan (Ⅰ: Puhe River Basin; Ⅱ: Laoniuhe River Basin; Ⅲ: Qinglonghe River Basin; Ⅳ: Laohahe River Basin; Ⅴ: Dalinghe River Basin)

    Figure  4.  Statistical map of nitrate content in surface water samples

    Figure  5.  Evaluation results of groundwater quality in Pingquan (Ⅰ: Puhe River Basin; Ⅱ: Laoniuhe River Basin; Ⅲ: Qinglonghe River Basin; Ⅳ: Laohahe River Basin; Ⅴ: Dalinghe River Basin)

    Figure  6.  Statistical map of nitrate content in groundwater samples

    Figure  7.  Evaluation results of WRCC in Pingquan City

    Figure  8.  Spatial and temporal variation statistics of WRCC in Pingquan City

    Figure  9.  Uncertainty analysis of VFPR model (colored bars are original average values of VFPR, solid black dots indicate Monte Carlo simulation means, error bars are 95% confidence intervals)

    Figure  10.  Comparison of WRCC evaluation results between Pingquan City and Chengde City

    Figure  11.  Predictions of the future WRCC in Pingquan City

    Table  1.   Statistical summary of major rivers in Pingquan City

    River River class Watershed area /km2 Proportion /% Source location Receiving body
    Laohahe River Primary tributary of Liao River 909.9 27.6 Dawopu Village, Liuxi Manchu Township Liao River
    Dalinghe River Primary tributary of Liao River 427.1 13.0 Laowopu Village, Taitoushan Township Bohai Sea
    Qinglonghe River Primary tributary of Luan River 339.6 10.3 Fengjiadian Village, Songshutai Township Luan River
    Laoniuhe River Primary tributary of Luan River 279.9 8.5 Fenghuangling Village, Qigou Township Luan River
    Puhe River Primary tributary of Luan River 1,337.5 40.6 Anzhangzi Village, Wolong Township Luan River
    Total 3,294 100
    下载: 导出CSV

    Table  2.   Analytical methods and detection limits for water quality indicators

    Indicator Analytical methods Detection limit/mg/L
    Chloride Silver Nitrate Titration Method DZ/T0064.50-2021 \
    Nitrate Ultraviolet Spectrophotometry DZ/T0064.59-2021 0.08
    pH Electrode Method HJ1147-2020 \
    COD Acidic Potassium Permanganate Titration Method DZ/T0064.68-2021 \
    Ammonia Nitrogen Nessler Reagent Photometric Method DZ/T0064.57-2021 \
    Fluoride Ion Chromatography DZ/T 0064.54-2021 0.1
    Iron Flame Atomic Absorption Spectrophotometry DZ/T 0064.25-2021 0.016
    Total Phosphorus Ammonium Molybdate Spectrophotometric Method GB/T 11893-1989 0.01
    Zinc Flame Atomic Absorption Spectrophotometry DZ/T 0064.83-2021 0.05
    TDS Gravimetric Method DZ/T0064.9-2021 0.1
    Nitrite Spectrophotometry DZ/T 0064.60-2021 0.0002
    下载: 导出CSV

    Table  3.   Index system and water quality standard for surface water /mg/L

    Class
    Indicator Chloride 250 250 250 300 500
    Nitrate 10 10 10 15 20
    pH (Dimensionless) 6–9 <6 or >9
    COD 15 15 20 30 40
    Ammonia Nitrogen 0.15 0.5 1 1.5 2
    Fluoride 1 1 1 1.5 1.5
    Iron ≤0.3
    Total Phosphorus 0.02 0.1 0.2 0.3 0.4
    Zinc 0.05 1 1 2 2
    下载: 导出CSV

    Table  4.   Index system and water quality standard for groundwater /mg/L

    Class
    Indicator TDS 300 500 1,000 2,000 2,000
    Chloride 50 150 250 350 350
    Iron ≤0.3
    Zinc 0.05 0.5 1 5 5
    COD 1 2 3 10 10
    Ammonia Nitrogen 0.02 0.1 0.5 1.5 1.5
    Nitrite 0.01 0.1 1 4.8 4.8
    Nitrate 2 5 20 30 30
    Fluoride 1 1 1 2 2
    下载: 导出CSV

    Table  5.   WRCC index system and grading criteria

    Indicator system Grade
    Subsystems Indicators Unit 1 2 3 4 5
    Pressure (WRPCC) Water consumption per capita m3/person 200 300 400 600 900
    Per capita ecosystem water use m3/person 50 20 10 5 3
    Water consumption intensity per GDP unit m3/104 Yuan 80 110 250 600 700
    Wastewater discharge per GDP unit m3/104 Yuan 7 10 15 20 30
    Population density person/km2 10 100 300 600 1,000
    Per capita GDP Yuan/person 50,000 35,000 21,000 7,000 4,000
    Share of tertiary industry in GDP % 55 50 45 40 35
    State (WRSCC) Modulus of water production 104 m3/km2 120 90 50 10 5
    Water resources per capita m3/person 3,000 2,200 1,700 1,000 500
    Annual precipitation mm 1,600 800 600 400 200
    Exploitation rate of water resources % 10 20 40 60 100
    Share of groundwater on total water supply % 5 20 30 40 50
    Share of alternative water resources % 5 2.5 1 0.5 0.1
    Urbanization rate % 30 40 60 80 90
    Response (WRRCC) Agricultural water use intensity m3/104 Yuan 600 800 1,200 1,500 2,000
    Industrial water use intensity m3/104 Yuan 25 45 70 110 150
    Ecological water use proportion % 5 3 2 1 0.5
    下载: 导出CSV

    Table  6.   Evaluation grades of Water Resources Carrying Capacity (WRCC)

    Grade State Characterization of the grade
    I Extra High Human activities have minimal impact on water resources and the water environment. Water resources are abundant with high development potential and a good water ecosystem that can support rapid economic and social development.
    II High Human activities have relatively limited impact on water resources and the environment. Water supply and demand are basically balanced, but it is necessary to optimize the structure of water use and vigilance against localized pressure.
    III Moderate Human activities exert a moderate impact on water resources and the environment. The use is generally reasonable, but supply-demand tension is emerging. It is necessary to strengthen water conservation management and controlled development scale. The water ecosystem shows some degradation, though basic functionality maintains.
    IV Slight Low Human activities significantly affect water resources and the environment. Water shortage is evident, with reliance on external water transfers. The water ecosystem is severely damaged, system functionality is greatly affected, and ecological degradation risks are high.
    V Low Human activities severely threaten water resources and the environment. Water resources are seriously scarce, ecological crises are prominent, requiring strict water use restrictions and implementation of inter-basin water transfers.
    下载: 导出CSV
  • Ben AM, Bougarne L, Mehdaoui I, et al. 2024. Assessment of water quality in wells and springs across various districts of Taza City, Morocco. Water Science and Technology, 90(4): 1225−1238. DOI:  10.2166/wst.2024.270.
    Eid MH, Mikita V, Eissa M, et al. 2024. An advanced approach for drinking water quality indexing and health risk assessment supported by machine learning modelling in Siwa Oasis, Egypt. Journal of Hydrology-Regional Studies, 56: 101967. DOI:  10.1016/j.ejrh.2024.101967.
    Feng XR, Zhang T, Feng P, et al. 2022. Evaluation and tradeoff-synergy analysis of ecosystem services in Luanhe River Basin. Ecohydrology, 15(8): e2473. DOI:  10.1002/eco.2473.
    Fouad MS, Mustafa EF, Hellal MS, et al. 2024. A comprehensive assessment of water quality in Fayoum depression, Egypt: Identifying contaminants, antibiotic pollution, and adsorption treatability study for remediation. Scientific Reports, 14(1):18849. DOI:  10.1038/s41598-024-68990-8.
    Gao HS, Li QS, Xiong GC, et al. 2023. Quantitative assessment of hydrological response to vegetation change in the upper reaches of Luanhe River with the modified Budyko framework. Frontiers in Ecology and Evolution, 11: 1178231. DOI:  10.3389/fevo.2023.1178231.
    Gao YQ, Gao L, Liu YP, et al. 2024. Assessment of water resources carrying capacity using chaotic particle swarm genetic algorithm. Journal of the American Water Resources Association, 60(2): 667−686. DOI:  10.1111/1752-1688.13182.
    Geng XJ, Zhou XC, Yin GD, et al. 2020. Extended growing season reduced river runoff in Luanhe River basin. Journal of Hydrology, 582: 124538. DOI:  10.1016/j.jhydrol.2019.124538.
    Herrera-Muñoz J, Ibáñez M, Calzadilla W, et al. 2024. Assessment of contaminants of emerging concern and antibiotic resistance genes in the Mapocho River (Chile): A comprehensive study on water quality and municipal wastewater impact. Science of the Total Environment, 954: 176198. DOI:  10.1016/j.scitotenv.2024.176198.
    Huynh AT, Dao TM, Nguyen TAH. 2024. Water quality assessment using national Water Quality Index (WQI): A case study of the Song Be River, Bing Duong Province, Vietnam. Environmental Research Communications, 6(10): 101005. DOI:  10.1088/2515-7620/ad810a.
    Li M, Zhang MF, Cao RX, et al. 2023. Hydrological drought forecasting under a changing environment in the Luanhe River basin. Natural Hazards and Earth System Sciences, 23(4): 1453−1464. DOI:  10.5194/nhess-23-1453-2023.
    Liu S, Gao MS, Hou GH, et al. 2021. Groundwater characteristics and mixing processes during the development of a modern estuarine delta (Luanhe River Delta, China). Journal of Coastal Research, 37(2): 349−363. DOI:  10.2112/jcoastres-d-20-00022.
    Liu YL, Du JQ, Ding BY, et al. 2022. Water resource conservation promotes synergy between economy and environment in China's northern drylands. Frontiers of Environmental Science & Engineering, 16(3): 28. DOI:  10.1007/s11783-021-1462-y.
    Mo YM, Xu J, Liu CJ, et al. 2024. Assessment and prediction of Water Quality Index (WQI) by seasonal key water parameters in a coastal city: Application of machine learning models. Environmental Monitoring and Assessment, 196(11): 1008. DOI:  10.1007/s10661-024-13209-6.
    Mohammadi M, Assaf G, Assaad RH, et al. 2024. An intelligent cloud-based IoT-enabled multimodal edge sensing device for automated, real-time, comprehensive, and standardized water quality monitoring and assessment process using multisensor data fusion technologies. Journal of Computing in Civil Engineering, 38(6): 04024029. DOI:  10.1061/jccee5.Cpeng-5989.
    Nguyen BT, Nguyen VN, Nguyen TX, et al. 2024. Pollution-source fractionation and quantification-based assessment of surface water quality in Saigon River, Vietnam: Implications for sustainable management strategies. Hydrological Sciences Journal, 69(14): 1961-1972. DOI:  10.1080/02626667.2024.2393794.
    Peng Y, Zhu ZL, Tan XY, et al. 2024. Evaluation and forewarning of the resource and environmental carrying capacity from the perspective of pressure-support-adjustment: A case study of Yichang city, China. Frontiers in Environmental Science, 12: 1378103. DOI:  10.3389/fenvs.2024.1378103.
    Qin GS, Liu JW, Xu SG, et al. 2020. Water quality assessment and pollution source apportionment in a highly regulated river of Northeast China. Environmental Monitoring and Assessment, 192(7): 446. DOI:  10.1007/s10661-020-08404-0.
    Qiu QT, Liu J, Li CZ, et al. 2021. Evaluation of water resource carrying capacity of two typical cities in northern China. Journal of Water and Climate Change, 12(7): 2894−2907. DOI:  10.2166/wcc.2021.203.
    Raheli B, Talabbeydokhti N, Nourani V. 2024. Uncertainty assessment of optically active and inactive water quality parameters predictions using satellite data, deep and ensemble learnings. Journal of Hydrology, 644: 132091. DOI:  10.1016/j.jhydrol.2024.132091.
    Rozental OM, Polyanin VO, Sintsova TN. 2024. A model for water quality assessment, monitoring, and management in transboundary water objects. Water Resources, 51(5): 717−726. DOI:  10.1134/s0097807824701069.
    Shan CJ, Guo HF, Dong ZC, et al. 2022. Study on the river habitat quality in Luanhe based on the eco-hydrodynamic model. Ecological Indicators, 142: 109262. DOI:  10.1016/j.ecolind.2022.109262.
    Shan CJ, Zhao FW, Wang YJ, et al. 2024. Study on the evolvement trend process of hydrological elements in Luanhe River Basin, China. Water, 16(8): 1169. DOI:  10.3390/w16081169.
    Song QR, Wang ZC, Wu TH. 2024. Risk analysis and assessment of water resource carrying capacity based on weighted gray model with improved entropy weighting method in the central plains region of China. Ecological Indicators, 160: 111907. DOI:  10.1016/j.ecolind.2024.111907.
    Sun XG, Peng AB, Hu SD, et al. 2024. Dynamic successive assessment of water resource carrying capacity based on system dynamics model and variable fuzzy pattern recognition method. Water, 16(2): 304. DOI:  10.3390/w16020304.
    Sun YS, Wang YL, Zhang W, et al. 2024. Regional water resources carrying capacity in China based on analytic hierarchy process and system dynamics model: A case study of Golmud City. Frontiers in Environmental Science, 12: 1450747. DOI:  10.3389/fenvs.2024.1450747.
    Wan F, Xiao LF, Chai QH, et al. 2022. Study on the streamflow compensation characteristics of reservoirs in Luanhe River Basin based on Copula function. Water Supply, 22(2): 2311−2321. DOI:  10.2166/ws.2021.380.
    Wang JC, Wang ZX, Fu ZD, et al. 2024. Spatial-temporal evaluation and prediction of water resources carrying capacity in the Xiangjiang River Basin using county units and entropy weight TOPSIS-BP neural network. Sustainability, 16(18): 8184. DOI:  10.3390/su16188184.
    Wang XY, Zhang SL, Gao C, et al. 2024. Coupling coordination and driving mechanisms of water resources carrying capacity under the dynamic interaction of the water-social-economic-ecological environment system. Science of the Total Environment, 920: 171011. DOI:  10.1016/j.scitotenv.2024.171011.
    Wang YX, Yu XH, Zhao BJ, et al. 2022. Evaluation of ecological carrying capacity in Yangtze River Economic Belt and analysis of its spatial pattern evolution. Ecological Indicators, 144: 109535. DOI:  10.1016/j.ecolind.2022.109535.
    Xu WT, Jin JL, Zhang JY, et al. 2024. Prediction of regional water resources carrying capacity based on stochastic simulation: A case study of Beijing-Tianjin-Hebei Urban Agglomeration. Journal of Hydrology-Regional Studies, 56: 101976. DOI:  10.1016/j.ejrh.2024.101976.
    Yang L, Pan ZW, Li H, et al. 2024. Study on the spatiotemporal evolution and driving factors of water resource carrying capacity in typical arid regions. Water, 16(15): 2142. DOI:  10.3390/w16152142.
    Yang X, Chen ZH, Li Z. 2024. Regional water environmental carrying capacity: Changing trends and direction, obstacle factors, and implications. Water Resources Management, 38(9): 3215−3234. DOI:  10.1007/s11269-024-03810-2.
    Zhang H, Li HM, Xu XQ, et al. 2024. Comprehensive assessment of the water environment carrying capacity based on machine learning. Journal of Cleaner Production, 472: 143465. DOI:  10.1016/j.jclepro.2024.143465.
    Zhang J, Guan WC, Wu GP, et al. 2024. Study on water resources carrying capacity based on Pressure-State-Response modeling: An empirical study of the urban agglomeration in Central Yunnan, China. Plos One, 19(9): e0308503. DOI:  10.1371/journal.pone.0308503.
    Zhang XW, Duan XC. 2024. Evaluating water resource carrying capacity in Pearl River-West River economic Belt based on portfolio weights and GRA-TOPSIS-CCDM. Ecological Indicators, 161: 111942. DOI:  10.1016/j.ecolind.2024.111942.
    Zhai TL, Zhang QQ, Wang L, et al. 2024. Temporal and spatial variations hydrochemical components and driving factors in Baiyangdian Lake in the Northern Plain of China. Journal of Groundwater Science and Engineering, 12(3): 293−308. DOI:  10.26599/JGSE.2024.9280022.
  • [1] Man Li, Wei Zhang, Yu-zhong Liao, Feng Liu, Long Li2025:  Evaluation of the scaling and corrosion in Tai'an geothermal water, China, Journal of Groundwater Science and Engineering, 13, 133-146. doi: 10.26599/JGSE.2025.9280044
    [2] Jing-tao Shi, Ge Gao, Jun-jian Liu, Yu-ge Jiang, Bo Li, Xiao-yan Hao, Jun-chao Zhang, Zhao-yi Li, Huan Sun2025:  Ecological vulnerability assessment and driving force analysis of small watersheds in Hilly Regions using sensitivity-resilience-pressure modeling, Journal of Groundwater Science and Engineering, 13, 209-224. doi: 10.26599/JGSE.2025.9280050
    [3] Yu-hong Fei, Su-hua Meng, Ya-song Li, Peng-wei Zhang, Xi-lin Bao2024:  Critical issues in the characteristics and assessment of China's water resources, Journal of Groundwater Science and Engineering, 12, 463-474. doi: 10.26599/JGSE.2024.9280033
    [4] Aida H Baghanam, Vahid Nourani, Zohre Khodaverdi, Amirreza T Vakili2024:  Assessment of water quality suitability for agriculture in a potentially leachate-contaminated region, Journal of Groundwater Science and Engineering, 12, 281-292. doi: 10.26599/JGSE.2024.9280021
    [5] Hanane Mebarki, Noureddine Maref, Mohammed El-Amine Dris2024:  Modelling the monthly hydrological balance using Soil and Water Assessment Tool (SWAT) model: A case study of the Wadi Mina upstream watershed, Journal of Groundwater Science and Engineering, 12, 161-177. doi: 10.26599/JGSE.2024.9280013
    [6] Tanzeel Khan, Muhammad Akhtar Malik, Gohram Malghani, Rabia Akhtar2022:  Comparative analysis of bacterial contamination in tap and groundwater: A case study on water quality of Quetta City, an arid zone in Pakistan, Journal of Groundwater Science and Engineering, 10, 153-165. doi: 10.19637/j.cnki.2305-7068.2022.02.005
    [7] Abebe Wondmagegn Taye2022:  Evaluation of groundwater resource potential by using water balance model: A case of Upper Gilgel Gibe Watershed, Ethiopia, Journal of Groundwater Science and Engineering, 10, 209-222. doi: 10.19637/j.cnki.2305-7068.2022.03.001
    [8] Liu Min, Nie Zhen-long, Cao Le, Wang Li-fang, Lu Hui-xiong, Wang Zhe, Zhu Pu-cheng2021:  Comprehensive evaluation on the ecological function of groundwater in the Shiyang River watershed, Journal of Groundwater Science and Engineering, 9, 326-340. doi: 10.19637/j.cnki.2305-7068.2021.04.006
    [9] Gao Fei, Liu Feng, Wang Hua-jun2021:  Numerical modelling of the dynamic process of oil displacement by water in sandstone reservoirs with random pore structures, Journal of Groundwater Science and Engineering, 9, 233-244. doi: 10.19637/j.cnki.2305-7068.2021.03.006
    [10] Liu Chun-lei, Zheng Jian-hua, Li Zheng-hong, Li Ya-song, Hao Qi-chen, Li Jian-feng2021:  Analysis on the situation and countermeasures of water resources supply and demand in the cities of small and medium-sized river basins along southeast coast of China — taking Xiamen City as an example, Journal of Groundwater Science and Engineering, 9, 350-358. doi: 10.19637/j.cnki.2305-7068.2021.04.008
    [11] Ahmed Mohammad Tofayal, Monir Minhaj Uddin, Hasan Md Yeasir, Rahman Md Mominur, Rifat Md Shamiul Islam, Islam Md Naim, Khan Abu Shamim, Rahman Md Mizanur, Islam Md Shajidul2020:  Hydro-geochemical evaluation of groundwater with studies on water quality index and suitability for drinking in Sagardari, Jashore, Journal of Groundwater Science and Engineering, 8, 259-273. doi: 10.19637/j.cnki.2305-7068.2020.03.006
    [12] HU Zun-fang, KANG Feng-xin, ZOU An-de, YU Lin-song, LI Yang, TIAN Tong-liang, KANG Gui-ling2019:  Evolution trend of the water quality in Dongping Lake after South-North Water Transfer Project in China, Journal of Groundwater Science and Engineering, 7, 333-339. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.004
    [13] T K G P Ranasinghe, R U K Piyadasa2019:  Visualizing the spatial water quality of Bentota, Sri Lanka in the presence of seawater intrusion, Journal of Groundwater Science and Engineering, 7, 340-353. doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.005
    [14] LIU Shu-yuan, WANG Hong-qi2016:  Dynamic assessment of pollution risk of groundwater source area in Northern China, Journal of Groundwater Science and Engineering, 4, 333-343.
    [15] ZHANG Wei, SHI Jian-sheng, XU Jian-ming, LIU Ji-chao, DONG Qiu-yao, FAN Shu-xian2016:  Dynamic influence of Holocene characteristics on vadose water in typical region of central North China Plain, Journal of Groundwater Science and Engineering, 4, 247-258.
    [16] LIU Min, NIE Zhen-long, WANG Jin-zhe, WANG Li-fang, TIAN Yan-liang2016:  An assessment of the carrying capacity of groundwater resources in North China Plain region–Analysis of potential for development, Journal of Groundwater Science and Engineering, 4, 174-187.
    [17] WANG Kui-feng2016:  Evaluation of the water resources carrying capacity of Shandong peninsula, China, Journal of Groundwater Science and Engineering, 4, 120-130.
    [18] MENG Rui-fang, YANG Hui-feng, LIU Chun-lei2016:  Evaluation of water resources carrying capacity of Gonghe basin based on fuzzy comprehensive evaluation method, Journal of Groundwater Science and Engineering, 4, 213-219.
    [19] YUE Chen, CUI Ya-li, RAO Rong, DONG Xiang2015:  Evaluation on water resources carrying capacity of Changchun-Jilin Region, Journal of Groundwater Science and Engineering, 3, 164-169.
    [20] CUI Qiu-ping, LIU Zhi-gang, LIU Li-jun, ZHANG Shao-cai, CHEN Yun-qian2014:  Emergency water supply capacity analysis of major cities in Hebei, Journal of Groundwater Science and Engineering, 2, 76-86.
  • 加载中
图(11) / 表ll (6)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  23
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-23
  • 录用日期:  2025-08-21
  • 网络出版日期:  2025-10-10
  • 刊出日期:  2025-12-01

目录

    /

    返回文章
    返回