ANN-based prediction model for single-hole water inflow from piedmont to inland plain areas of Hebei Province, North China Plain
-
Abstract: This study, based on Artificial Neural Network (ANN) technology, develops a quantitative prediction model for the unit water flow rate of the Quaternary strata in the Shijiazhuang-Hebei Plain area. The study area extends from the piedmont region of Shijiazhuang, at the eastern foothills of the Taihang Mountains, to the hinterland area of Hengshui within the plain in Hebei Province section of the North China Plain. The hydrological and exploration boreholes selected for modeling are primarily located in the southeastern part of Shijiazhuang urban area — the southern region of Xinji County — north of Hengshui City near the Shenzhou County area. By employing the Induced Polarization method (IP) and Vertical Electrical Sounding (VES), apparent resistivity (ρS), apparent polarization rate (ηS), half-decay time (Th), and decay degree (D) were obtained as initial input parameters. These were combined with the measured water flow rates from borehole pumping tests to build the training sample set. To address the prevalent issue of high-salinity interference in the study area, multiple regression analysis revealed that when the inverted resistivity (ρ) is less than 5 Ω·m and the inverted polarization rate (η) is greater than 8%, the contribution of groundwater salinity to the resistivity parameter reaches 42%±6%. Based on this, a comprehensive parameter T"=ρ*H/ρ' was established, where ρ is the aquifer resistivity, ρ' is the aquitard resistivity, and H is the aquifer thickness. The resistivity ratio effectively eliminates the coupling effect between electrical parameters and salinity. The input neurons of the improved model were adjusted to a four-parameter system consisting of decay time (Th), decay degree (D), deviation degree (σ), and the comprehensive parameter (T"). Experiments showed that the prediction error of the model on the validation set was reduced from the original model's 5%-10% to 0.9%-5%. The introduction of the T" parameter reduced the prediction error in high salinity areas (Cl->500 mg/L) to within 7%. The study confirms that the composite parameter T" based on geophysical inversion parameters can effectively characterize the coupling features of aquifer thickness and water quality. Even with a small sample size, through algorithm optimization, data augmentation, and model structural improvements, it is entirely possible to effectively enhance prediction accuracy and generalization ability, providing a new parameterization method for the quantitative evaluation of Quaternary pore water in plain areas.
-
Key words:
- Artificial Neural Network /
- Single-Hole /
- Aquifer Thickness /
- Resistivity /
- Induced Polarization
-
Table 1. Normalized data of input neuron
Hole number ρ/Ω·m Th/s D/% η/% Q/m3/h K1 1.3 1.2 0.730 1.1 57 K2 0.879 0.689 0.760 0.635 67 K3 0.687 0.569 0.820 0.605 36 K4 0.333 0.433 0.670 0.675 38 K5 0.881 0.373 0.627 0.883 58 K6 0.665 0.661 0.650 0.582 45 K7 0.480 0.320 0.355 0.240 79 K8 0.468 0.450 0.589 0.579 60 K9 0.312 0.355 0.755 0.079 63 J1 0.303 0.23 0.534 0.020 34 J2 0.223 0.231 0.509 0.587 41 J3 0.456 0.352 0.405 0.668 53 J4 0.423 0.155 0.680 0.502 51 J5 0.934 0.786 0.620 0.872 83 J6 0.218 0.556 0.601 0.618 55 J7 0.33 0.283 0.630 0.212 42 Table 2. Comparison of training error (all input data has been normalized)
Hole number ρ/Ω·m Th/s D/% η/% Actual Q/m3/h Predicted Q/m3/h K1 1.3 1.2 0.730 1.1 57 60.8165 K2 0.879 0.689 0.760 0.635 67 62.5421 K3 0.687 0.569 0.820 0.605 36 39.3233 J5 0.934 0.786 0.620 0.872 83 78.3232 J6 0.218 0.556 0.601 0.618 55 51.6692 J7 0.33 0.283 0.630 0.212 42 44.2 Table 3. Correlation analysis of electrical parameters specific capacity
Analytic quantity Neurons σ $ \eta $ Correlation (r) 0.969 0.886 Coefficient of significance (p) 0.982 0.819 Table 4. Correlation and significance analysis
Analytic quantity Neurons $ \rho $ H $T''$ Correlation (r) 0.893 0.866 0.992 Coefficient of significance (p) 0.998 0.977 0.989 Table 5. Forecast results of new model.
Borehole
namesActual Q/
m3/hPredicted Q/
m3/hError/
%K1 57 55.232 3.1018 K2 67 66.363 0.9507 K3 36 34.582 3.9389 J5 83 84.367 1.647 J6 55 52.563 4.4309 J7 42 41.368 1.5048 Table 6. Comparison of the prediction performance between the original and the improved models
Hole number Prediction error of
original model /%Prediction error of
new model /%K1 6.70 3.10 K2 6.56 0.95 K3 9.23 3.94 J5 5.63 1.65 J6 6.06 4.43 J7 5.24 1.50 -
Almuhaylan MR, Ghumman AR, Al-Salamah IS, et al. 2020. Evaluating the impacts of pumping on aquifer depletion in arid regions using MODFLOW, ANFIS and ANN. Water, 12(8): 2297. DOI: 10.3390/w12082297 Batu V. 1998. Aquifer hydraulics: A comprehensive guide to hydrogeologic data analysis. John Wiley & Sons. Bear J. 2012. Hydraulics of groundwater. Courier Corporation. Behzad M, Asghari K, Coppola Jr EA. 2010. Comparative study of SVMs and ANNs in aquifer water level prediction. Journal of Computing in Civil Engineering, 24(5): 408-413. DOI: 10.1061/(ASCE)CP.1943-5487.0000043 Cheng W, Dong F, Tang R, et al. 2022. Improved combination weighted prediction model of aquifer water abundance based on a cloud model. ACS Omega, 7(40): 35840−35850. DOI: 10.1021/acsomega.2c04162. Davydycheva S, Rykhlinski N, Legeido P. 2006. Electrical-prospecting method for hydrocarbon search using the induced-polarization effect. Geophysics, 71(4): G179-G189. DOI: 10.1190/1.2217367 Devi TG, Rajkumar G, Srinivasan A, et al. 2022. Radial basis function neural network and salp swarm algorithm for paddy leaf diseases classification in Thanjavur, Tamilnadu geographical region. Acta Geophysica, 70(6): 2917–2932. DOI: 10.1007/s11600-022-00865-w. Dong Y, Ma Y. 1996. Pattern recognition of hte characteristics of AE source using neural network proceedings of the 14th word conference on NDT v. 4, New Delhi. Duragasi AR, Sukumaran JV. 2023. Geo-electrical resistivity–based study to estimate the aquifer parameters—a study in parts of Yamuna Nagar District, Haryana State, North India. Arabian Journal of Geosciences, 16(10): 584. DOI: 10.1007/s12517-023-11691-9 Ghosh R, Sutradhar S, Das N, et al. 2023, A comparative evaluation of GIS based flood susceptibility models: A case of Kopai river basin, Eastern India. Arabian Journal of Geosciences, 16(11): 591. DOI: 10.1007/s12517-023-11693-7. Goldman M, Neubauer F. 1994, Groundwater exploration using integrated geophysical techniques. Surveys in Geophysics, 15: 331–361. DOI: 10.1007/BF00665814. Gyeltshen S, Kannaujiya S, Chhetri IK, et al. 2023. Delineating groundwater potential zones using an integrated geospatial and geophysical approach in Phuentsholing, Bhutan. Acta Geophysica, 71(1): 341–357. DOI: 10.1007/S11600-022-00856-X. Hálek Václav, Jan Švec. 2011. Groundwater hydraulics. 7. Elsevier. Hansen R. 1997. Feature recognition from potential fields using neural networks. Geophysics, 62(3): 806–817. Available on https://www.pqdtcn.com/thesisDetails/E91274A10FEB4108D4FA530524A984F4 Hayashi Y, Buckley JJ, Czogala E. 1993. Fuzzy neural network with fuzzy signals and weights. International Journal of Intelligent Systems, 8(4): 527–537. DOI: 10.1002/int.4550080405. Hiskiawan P, Chen CC, Ye ZK. 2023. Processing of electrical resistivity tomography data using convolutional neural network in ERT-NET architectures. Arabian Journal of Geosciences, 16(10): 581. DOI: 10.1007/s12517-023-11690-w. Janič P, Jadlovská S, Zápach, J, et al. 2019. Modeling of underground mining processes in the environment of MATLAB/Simulink. Acta Montanistica Slovaca, 24(1): 1335−1788. Krenker A, Bešter J, Kos A. 2011. Introduction to the artificial neural networks. Artifiical Neural Networks: Methodological Advances and Biomedical Applications. InTech, 1-18. Li S, Bian H, Zhang D, et al. 2024, Research on pore structure and classification evaluation of tight oil reservoirs based on fractal theory. Acta Geophysica, 1-11. DOI: 10.1007/s11600-024-01299-2 Liu GH, Zhang XM, Jia XM. 2007. New technology of groundwater re-sources electrical prospecting. Beijing: Earthquake Press. Liu L, Chen J, Xu L. 2008. Realization and application research of BP neural network based on MATLAB, in Proceedings 2008 International Seminar on Future BioMedical Information Engineering, IEEE, 130–133. DOI: 10.1109/FBIE.2008.92. Liu S, Li X, Wang H. 2011. Hydraulics analysis for groundwater flow through permeable reactive barriers. Environmental Modeling & Assessment, 16: 591–598. DOI: 10.1007/s10666-011-9268-0. Lin HT, Ke KY, Chen CH, et al. 2010. Estimating anisotropic aquifer parameters by artificial neural networks. Hydrological Processes, 24(22): 3237−3250. DOI: 10.1002/hyp.7750. Lin J, Lin T, Ji Y, et al. 2013. Non-invasive characterization of water-bearing strata using a combination of geophysical techniques. Journal of Applied Geophysics, 91: 49−65. DOI: 10.1016/j.jappgeo.2013.02.002. Ling CP, Sun YJ, Yang LH, et al. 2007. Prediction of inrush water of mine with pore water yield based on BP artificial neural network. Hydrogeology & engineering geology, 34(5): 55–58. DOI: 10.16030/j.Cnki.Issn.1000-3665.2007.05.010. Lohani A, Krishan G. 2015. Groundwater level simulation using artificial neural network in southeast Punjab, India. Journal of Geology and Geosciences, 4(3): 206. DOI: 10.4172/2329-6755.1000206. Maiorov K, Vachrusheva N, Lozhkin A. 2021. Solving problems of the oil and gas sector using machine learning algorithms. Acta Montanistica Slovaca, 26(2): 327−337. DOI: 10.46544/AMS.v26i2.11. Maiti S, Erram VC, Gupta G, et al. 2012. ANN based inversion of DC resistivity data for groundwater exploration in hard rock terrain of western Maharashtra (India). Journal of Hydrology, 464: 294−308. DOI: 10.1016/j.jhydrol.2012.07.020. Mnasri M, Amiri A, Nasr IH, et al. 2023. Integrated geophysical approach for ore exploration: Case study of Sidi Bou Aouane–Khadhkhadha Pb–Zn province–Northern Tunisia. Geophysical Prospecting, 71. Advanced Techniques, Methods and Applications for an Integrated Approach to the Geophysical Prospecting, 1772–1791. DOI: 10.1111/1365-2478.13338. Patra H, Adhikari SK, Kunar S. 2016. Groundwater prospecting and management, Springer. DOI: 10.1007/978-981-10-1148-1 Persico R. 2023. Introduction to the special issue on 'Advanced techniques, methods and applications for an integrated approach to the geophysical prospecting'. Geophysical Prospecting, 1693–1695. DOI: 10.1111/1365-2478.13423. Sanchez-Vila X, Guadagnini A, Carrera J. 2006. Representative hydraulic conductivities in saturated groundwater flow. Reviews of Geophysics, 44(3): RG3002. DOI: 10.1029/2005RG000169. Saravanan KS, Bhagavathiappan V. 2024. Prediction of crop yield in India using machine learning and hybrid deep learning models. Acta Geophysica, 1-20. DOI: 10.1007/s11600-024-01312-8 Scanlon BR. 2000. Uncertainties in estimating water fluxes and residence times using environmental tracers in an arid unsaturated zone. Water Resources Research, 36(2): 395-409. DOI: 10.1029/1999WR900240 Sivakrishna K, Ratnam DV, Sivavaraprasad G. 2022. Support vector regression model to predict TEC for GNSS signals. Acta Geophysica, 70(6): 2827–2836. DOI: 10.1007/s11600-022-00954-w. Song H, Mu H, Xia F. 2018. Analyzing the differences of brackish-water in the Badain Lake by geophysical exploration method. Journal of Groundwater Science and Engineering, 6(3): 187−192. DOI: 10.19637/j.cnki.2305-7068.2018.03.004. Song H, Xia F, Mu H, et al. 2020. Study on detecting spatial distribution availability in mine goafs by ultra-high density electrical method. Journal of Groundwater Science and Engineering, 8(3): 281−286. DOI: 10.19637/j.cnki.2305-7068.2020.03.008. Xia F, Song H, Wang M, et al. 2019. Analysis of prospecting polymetallic metallogenic belts by comprehensive geophysical method. Journal of Groundwater Science and Engineering, 3: 237−244. DOI: 10.19637/j.cnki.2305-7068.2019.03.004. Yilmaz OS. 2022. Flood hazard susceptibility areas mapping using Analytical Hierarchical Process (AHP), Frequency Ratio (FR) and AHP-FR ensemble based on Geographic Information Systems (GIS): A case study for Kastamonu, Türkiye. Acta Geophysica, 70(6): 2747−2769. DOI: 10.1007/s11600-022-00882-9. Zhong S, Wang Y, Zheng Y, et al. 2021. Electrical resistivity tomography with smooth sparse regularization. Geophysical Prospecting, 69(8-9): 1773−1789. DOI: 10.1111/1365-2478.13138. -