• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO Scopus GeoRef AJ CNKI
Advanced Search
Volume 6 Issue 2
Jun.  2018
Turn off MathJax
Article Contents
GUO Si-jia, GUO Gui-ping. 2018: Enhancement of gaseous mercury (Hg0) adsorption for the modified activated carbons by surface acid oxygen function groups. Journal of Groundwater Science and Engineering, 6(2): 104-114. doi: 10.19637/j.cnki.2305-7068.2018.02.004
Citation: GUO Si-jia, GUO Gui-ping. 2018: Enhancement of gaseous mercury (Hg0) adsorption for the modified activated carbons by surface acid oxygen function groups. Journal of Groundwater Science and Engineering, 6(2): 104-114. doi: 10.19637/j.cnki.2305-7068.2018.02.004

Enhancement of gaseous mercury (Hg0) adsorption for the modified activated carbons by surface acid oxygen function groups

doi: 10.19637/j.cnki.2305-7068.2018.02.004
  • Publish Date: 2018-06-28
  • This article discussed the benzoic acid activated carbons which have changed the types and content of acid oxygen-function groups on the surface of activated carbons and their effect on the adsorption for Hg0 in simulated flue gas at 140 ℃. These surface acid oxygen function groups were identified by Boehm titration, Fourier transformation infrared spectrum, temperature programmed desorption and X-ray photoelectron spectroscopy. It indicates that the carboxyl, lactone and phenolic were formed when the benzoic acid is loaded on the surface of activated carbons. Among the surface acid oxygen function groups, the carboxyl groups enhance the adsorption capacities of Hg0 for activated carbons to a greater extent.

  • 加载中
  • Feng W, Borguet E, Vidic R D. 2006. Sulfurization of a carbon surface for vapor phase mercury removal - II: Sulfur forms and mercury uptake. Carbon, 44(14): 2998-3004.
    Li Y H, Lee C W, Gullett B K. 2003. Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption. Fuel, 82(4): 451-457.
    LUO Jin-Ying, LUO Jin-Jing, HUANG Hua-Wei. 2009. Experimental Study on modified activated carbons for elemental adsorption. Proceedings of the CSEE, 29(35): 77-82.
    SUN Wei, YAN Nai-qiang, JIA Jin-ping. 2006. Removal of elemental mercury in flue gas by brominated activated carbon. China Envi-ronmental Science, 26(3): 257-261.
    Brown T D, Smith D N, et al. 1999. Mercury measurement and its control: What we know, have learned, and need to further investigate. Journal of the Air & Waste Management Association, 49(6): 628-640.
    WU Jin-guang. 1994. Modern fourier infrared spectroscopy and its applications. Beijing: Scientificand Technical Documentation Press.
    Yan R, Liang D T, et al. 2004. Bench-scale experimental evaluation of carbon perfor-mance on mercury vapour adsorption. Fuel, 83(17-18): 2401-2409.
    Hutson N D, Attwood B C, Scheckel K G. 2007. XAS and XPS characterization of mercury binding on brominated activated carbon. Environmental Science & Technology, 41(5): 1747-1752.
    Manchester S, Wang X, et al. 2008. High capacity mercury adsorption on freshly ozone-treated carbon surfaces. Carbon, 46(3): 518-524.
    Wang J, Yang J, Liu Z. 2010. Gas-phase elemental mercury capture by a V2O5/AC catalyst. Fuel Processsing Technology, 91: 676-680.
    Tessmer C H, Vidic R D, Uranowski L J. 1997. Impact of oxygen-containing surface functional groups on activated carbon adsorption of phenols. Environmental Science & Technology, 31(7): 1872-1878.
    Sablinskas V, Hegelund F, et al. 2005. A high-resolution FT-IR study of the fundamental bands V7, V8, and V18 of ethene secondary ozonide. The Journal of Physical Chemistry A, 109(39): 8719-8723.
    LUO Jin-ying, LUO Jin-jing. 2009. Preparation of modified activated carbonsformercury vapor adsorption. Carbon Technologys, 28(5): 1-6.
    Figueiredo J, Pereira M, et al. 1999. Modification of the surface chemistry of activated carbons. Carbon, 37(9): 1379-1389.
    Menendez J A, Xia B, et al. 1996. On the modification and characterization of chemical surface pro?perties of activated carbon: Microcalorimetric, electrochemical, and thermal desorption probes. Langmuir, 12(18): 4404-4410.
    Sugawara K, Enda Y, et al. 2003. Effect of hydrogen sulfide on organic sulfur behavior in coal and char during heat treatments. Energy & Fuels, 17(1): 204-209.
    Ho T, Lee Y, et al. 2005. Modeling of mercury desorption from activated carbon at elevated temperatures under fluidized/fixed bed operations. Powder Technology, 151(1-3): 54-60.
    Buczek B, Biniak S, Swiatkowski A. 1999. Oxygen distribution within oxidised active carbon granules. Fuel, 78(12): 1443-1448.
    Vidic R D, Siler D P. 2001. Vapor-phase elemental mercury adsorption by activated carbon impregnated with chloride and chelating agents. Carbon, 39(1): 3-14.
  • Relative Articles

    [1] Li-qiang Ge, Yan-pei Cheng, Qing Yi, Xue-ru Wen, Hua Dong, Kun Liu, Jian-kang Zhang, 2024: Research on groundwater ecological environment mapping based on ecological service function: A case study of five Central Asian countries and neighboring regions of China, Journal of Groundwater Science and Engineering, 12, 339-346.  doi: 10.26599/JGSE.2024.9280025
    [2] Cheng-peng Ling, Qiang Zhang, 2024: Exploring the groundwater response to rainfall in a translational landslide using the master recession curve method and cross-correlation function, Journal of Groundwater Science and Engineering, 12, 237-252.  doi: 10.26599/JGSE.2024.9280018
    [3] Zi-jun Zhuo, Dun-yu Lv, Shu-ran Meng, Jian-yu Zhang, Song-bo Liu, Cui-ling Wang, 2023: Factors driving surface deformations in plain area of eastern Zhengzhou City, China, Journal of Groundwater Science and Engineering, 11, 347-364.  doi: 10.26599/JGSE.2023.9280028
    [4] Feng Ma, Gui-ling Wang, Hong-li Sun, Zhan-xue Sun, 2022: Indication of hydrogen and oxygen stable isotopes on the characteristics and circulation patterns of medium-low temperature geothermal resources in the Guanzhong Basin, China, Journal of Groundwater Science and Engineering, 10, 70-86.  doi: 10.19637/j.cnki.2305-7068.2022.01.007
    [5] Yemeli Elida Joelle, Temgoua Emile, Kengni Lucas, Ambrosi Jean-Paul, Momo-nouazi Mathieu, Silatsa-Tedou Francis Brice, Wamba Franck Robean, Tchakam-Kamtchueng Brice, 2021: Hydro-geochemistry of groundwater and surface water in Dschang town (West Cameroon): Alkali and alkaline-earth elements ascertain lithological and anthropogenic constraints, Journal of Groundwater Science and Engineering, 9, 212-224.  doi: 10.19637/j.cnki.2305-7068.2021.03.004
    [6] Yu-fei Xi, Ya-bo Zhao, DA Yuen, 2021: Geothermal structure revealed by curie isothermal surface under Guangdong Province, China, Journal of Groundwater Science and Engineering, 9, 114-120.  doi: 10.19637/j.cnki.2305-7068.2021.02.003
    [7] Min Liu, Zhen-long Nie, Le Cao, Li-fang Wang, Hui-xiong Lu, Zhe Wang, Pu-cheng Zhu, 2021: Comprehensive evaluation on the ecological function of groundwater in the Shiyang River watershed, Journal of Groundwater Science and Engineering, 9, 326-340.  doi: 10.19637/j.cnki.2305-7068.2021.04.006
    [8] Xue-ru Wen, Yan-pei Cheng, Jian-kang Zhang, Hua Dong, 2021: Ecological function zoning and protection of groundwater in Asia, Journal of Groundwater Science and Engineering, 9, 359-368.  doi: 10.19637/j.cnki.2305-7068.2021.04.009
    [9] ZHOU Nian-qing, LI Tian-shui, ZHAO Shan, ZHAO Shan, XIA Xue-min, 2019: Characteristics of the main inorganic nitrogen accumulation in surface water and groundwater of wetland succession zones, Journal of Groundwater Science and Engineering, 7, 173-181.  doi: 10.19637/j.cnki.2305-7068.2019.02.008
    [10] MIAO Qing-zhuang, ZHOU Xiao-ni, WANG Gui-ling, ZHANG Wei, LIU Feng, XING Lin-xiao, 2019: Research on changes of hydrodynamics and ion-exchange adsorption in Brackish-Water Interface, Journal of Groundwater Science and Engineering, 7, 94-105.  doi: 10.19637/j.cnki.2305-7068.2019.02.001
    [11] JIA Rui-liang, ZHOU Jin-long, LI Qiao, LI Yang, 2015: Analysis of evaporation of high-salinity phreatic water at a burial depth of 0 m in an arid area, Journal of Groundwater Science and Engineering, 3, 1-8.
    [12] LI Hui, HAN Zhan-tao, MA Chun-xiao, GUI Jian-ye, 2015: Comparison of 1,2,3-Trichloropropane reduction and oxidation by nanoscale zero-valent iron, zinc and activated persulfate, Journal of Groundwater Science and Engineering, 3, 156-163.
    [13] LIU Feng, CUI Ya-li, SHAO Jing-li, ZHANG Ge, 2015: Research on hydrogen and oxygen isotopes of paleoclimate reconstruction in Nuomuhong, Journal of Groundwater Science and Engineering, 3, 238-246.
    [14] Yan Zhang, Shuai Song, Jing Li, Fadong Li, Guangshuai Zhao, Qiang Liu, 2013: Stable Isotope Composition of Rainfall, Surface Water and Groundwater along the Yellow River, Journal of Groundwater Science and Engineering, 1, 82-88.
    [15] Cui-ling Wang, Chang-li Liu, Ya-jie Pang, Li-xin Pei, Yun Zhang, 2013: Adsorption Behavior of Hexavalent Chromium in Vadose Zone, Journal of Groundwater Science and Engineering, 1, 83-88.
  • 加载中

Catalog

    Article Metrics

    Article views (520) PDF downloads(531) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return