• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO Scopus GeoRef AJ CNKI
Advanced Search
Volume 7 Issue 1
Mar.  2019
Turn off MathJax
Article Contents
MAO Xiao-ping, LI Ke-wen, WANG Xin-wei. 2019: Causes of geothermal fields and characteristics of ground temperature fields in China. Journal of Groundwater Science and Engineering, 7(1): 15-28. doi: 10.19637/j.cnki.2305-7068.2019.01.002
Citation: MAO Xiao-ping, LI Ke-wen, WANG Xin-wei. 2019: Causes of geothermal fields and characteristics of ground temperature fields in China. Journal of Groundwater Science and Engineering, 7(1): 15-28. doi: 10.19637/j.cnki.2305-7068.2019.01.002

Causes of geothermal fields and characteristics of ground temperature fields in China

doi: 10.19637/j.cnki.2305-7068.2019.01.002
  • Publish Date: 2019-03-28
  • There are many arguments on energy sources and main controlling factors of geothermal fields, so a systematic study on the distribution of ground temperature fields shall be necessary. In this paper the thermal conduction forward method of geothermal field is used to simulate cooling rate of abnormal heat sources and heat transfer of the paleo-uplift model. Combined with a large number of geothermal field exploration cases and oil exploration well temperature curves of domestic and foreign, the following conclusions are drawn: (1) According to the magmatic activity time, the magmatism activities are divided into two categories: Magma active areas (activity time < 500 000 years) and weak/magma inactive areas (activity time > 500 000 years). The latter has a fast cooling rate (the cooling time of the magma pocket buried around 10 km is less than 200 000 years) after it has intruded into the shallow layer and it has no direct contribution to modern geothermal fields; (2) China belongs to a weak/magma inactive area such as Tengchong region and Qinghai-Tibet region because the chronological data of these regions show that its magma activity time is more than 500 000 years; (3) The temperature of most geothermal fields can be obviously divided into three segments in the vertical direction: A high geothermal gradient segment (Segment H) at the surface, then a low geothermal gradient segment (Segment L) at a secondary depth, and finally a lower temperature segment (Segment D) at a deeper depth. The temperature isoline presents a mirror reflection relation on the temperature profile, indicating that geothermal field is dominated by heat conduction, rather than having an abnormally high temperature “heat source” to provide heat; (4) Near-surface (0-5 km) materials’ lateral heterogeneity caused by tectonic movement shall probably be the main controlling factor of ground temperature fields.

  • 加载中
  • William Teplow, Bruce Marsh, et al. 2009. Dacite melt at the puna geothermal venture wellfield, big island of Hawaii. GRC Transactions, 33: 988-994.
    GAO Zong-jun, WU Li-jin, CAO Hong. 2009. The summarization of geothermal resources and its exploitation and utilization in Shandong Province. Journal of Shandong University of Science and Technology- Natural Science, 28(2):1-7.
    ZHAO P, Dor J, et al. 2003. Strontium isotope data for thermal waters in selected high-temperature geothermal fields, China. Acta Petrologica Sinica, 19(3): 569-576.
    Hirofumi Muraoka, Toshihiro Uchida, et al. 1998. Deep geothermal resources survey program: Igneous, metamorphic and hydrothermal processes in a well encountering 499 °C at 2 618 m depth, Kakkonda, Japan. Geothermics, 27(5/6): 507-534.
    Chapman D S, Rybach L. 1985. Heat flow anomalies and their interpretations. Geo-dynamics, 4: 3-37.
    BAI Jia-qi, MAI Lin, YANG Mei-ling. 2006. Geothermal resources and crustal thermal structure of the Qinghai-Tibet Plateau. Journal of Geomechanics, 12(3): 354-362.
    HE Lan-fang, CHEN Ling, et al. 2016. Mapping the geothermal system using AMT and MT in the Mapamyum (QP) Field Lake Manasarovar, Southwestern Tibet. Energies, 9(10), 855: 1-13.
    LIN Wen-jing, GAN Hao-nan, et al. 2016. Occurrence prospect of HDR and target site selection study in Southeastern of China. Acta Geologica Sinica, 90(8): 2043-2058.
    QIU Nan-sheng. 2002. Characters of thermal conductivity and radiogenic heat production rate in basins of northwest China. Chinese Journal of Geology, 37(2): 196-206.
    Turcotte D L, Schubert G. 1982.Geodynamics: Application of continuum physics to geological problems. New York: John Wiley and Sons. Inc.
    CHEN Hong-han, WU You, XIAO Qiu-gou. 2013. Thermal regime and Paleogeothermal gradient evolution of Mesozoic-Cenozoic sedimentary basins in the Tibet Plateau, China. Earth Science-Journal of China University of Geosciences, 38(3): 541-552.
    MAO Xiao-ping, WANG Xin-wei, et al. 2018. Sources of heat and control factors in geothermal Field. Earth Science, 43(11): 4256-4268.
    A J Boyce, P Fulignati, A Sbrana. 2003. Deep hydrothermal circulation in a granite intrusion beneath Larderello geothermal area (Italy): Constraints from mineralogy, fluid inclusions and stable isotopes. Journal of Volcanology and Geothermal Research, 126: 243-262.
    MAO Xiao-ping. 2018. Genetic mechanism and distribution characteristics of high temperature anomaly in geothermal field. Acta Geoscientica Sinica, 39(2): 216-224.
    GONG Yu-ling, WANG Liang-shu, et al. 2003. Distribution characteristics of terrestrial heat flow in Jiyang Depression. Science in China(D), 33(4): 384-391..
    TAO Shi-zhen, LIU De-liang. 2000. Geothermal field characteristics of Tanlu Fault Zone and its neighbouring regions, Thermal Spring Genesis and Its Composition. Natural Gas Industry, 20(6):42-47.
    WANG S B, FU J L, et al. 2015. Preliminary division for Neotectonic Episode of Teng-chong block, South-west Yunnan. Geological Bulletin of China, 34(1): 146-154.
    YAN Dun-shi, YU Ying-tai. 2000. Evaluation and utilization of geothermal resources in oil and gas area of Beijing-Tianjin-Hebei. Wuhan: China University of Geosciences Press.
    Berktold A. 1983. Electromagnetic studies in geothermal regions. Geophysical Surveys, 6(1-2): 173-200.
    Best M G, Christiansen E H. 2001. Igneous Petrology. Blackwell Science Ltd: 1-458.
    WU Zhen-han, JIANG Wan, et al. 2001. Thermal-chronological dating on the thermal history of plutons and tectonic-landform evolution of the central Tibetan plateau. Acta Geologica Sinica, 74(4): 468-476.
    YAO Zu-jin, 1986. An assessment of geothermal resources in Yangbajing, Xizang (Tibet). In: Chinese Academy of Geological Sciences. Journal of Institute of Hydrogeology and Engineering Geology (2). Beijing: Geological Publishing House: 12.
    WEI Wei, JIANG You-lu, et al. 2016. Coupling relationship between diagenetic evolution of sandstone reservoirs and hydrocarbon accumulation in Palaeogene in Hejian Trough, Raoyang Depression, Bohai Bay Basin, China. Natural Gas Geoscience, 27(8): 1477-1488.
    LIU Hai-yang. 2014. Temperature and pressure analysis of ZK212 in middle-deep well of Yangyi geothermal field. Beijing: China University of Geosciences (Beijing): 24.
    Oskooi B, Pedersen L B, et al. 2005. The deep geothermal structure of the Mid-Atlantic Ridge deduced from MT data in SW iceland. Phys. Earth Planet Inter, 150(1-3): 183-195.
    Axel K. Schmitt, Marty Grove, et al. 2003. The geysers-cobb mountain magma system, California (Part 2): Timescales of pluton emplacement and implications for its thermal history. Geochimica et Cosmo-chimica Acta, 67(18): 3443-3458.
    Villas R N, Norton D L.1977. Irreversible mass transfer between circulating hydrothermal fluids and the Mayflower Stock. Econ. Geol, 72(8): 1471-1540.
    CHEN Mo-xiang, DENG Xiao. 1990. The map of geothermal gradient of cenozoic sedimentary cover in the North China Plain and its brief explanation. Scientia Geologica Sinica, 3: 270-277.
    Cermark V, Rybach L. 1989. Vertical distribution of heat production in the continental crust. Tectonophysic, 159: 217-230.
    Lee W H K. 1970. On the global variations or terrestrial heat flow. Phys. Earth Planet. Inter, 2: 332-359.
    HU Xian-cai. 1992. Proceedings of the International Symposium on high temperature geothermal exploitation and utilization in Tibet, China. Tibet Lhasa: Geological Publishing House: 60-63.
    W A Elders, G ó Frieleifsson, A Albertsson. 2014. Drilling into magma and the implications of the Iceland Deep Drilling Project (DDP) for hightemperature geothermal systems worldwide. Geothermics, 49: 111-118.
    LIU Yan-guang. 2017. Preliminary construction of comprehensive test base for exploration and development of deep geothermal resources in Xianxian County, Hebei Province. China Geological Survey: China Geological Survey Release, 2017-12-18.
    Samuel Scotta, Thomas Driesnera, Philipp Weisa. 2016. The thermal structure and temporal evolution of high-enthalpy geothermal systems Samuel. Geothermics, 62: 33-47.
    Roy R F,Klackwell D D, Decker E R. 1972. Continental heat flow. In: Robertson EC (ed). The Nature of the Solid Earth. New York: McGraw-Hill: 506-543.
    MA Gang, ChANG En-xiang, et al. 1983. A preliminary investigation on the characteristics of a geothermal field and the conditions for its formation in the northern part of the North China Plain. Bulletin of the 562 Compremensive Geological Brigade, Chinese Academy of Geological Sciences, 4:109-126.
    JIAN Chao-song. 1998. Period division of volcano activities in the Cenozoic Era of Tengchong. Journal of Seismological Research, 21(4): 320-329.
    WANG Ji-yang, HU Sheng-biao, et al. 2012. Estimate of geothermal resources potential for hot dry rock in the continental area of China. Science & Technology Review, 30(32): 25-31.
    Baria R, Baumg?rtner J, Gérard A. 1994. Status of the european hot dry rock geothermal programmer. Geothermal Engineering, 19(1/2): 33-48.
    Urzua Luis, Powell T, et al. 2002. Apacheta, a new geothermal prospect in northern Chile. Geothermal Resources Council Annual Meeting.
    JIANG Mei, TAN Han-dong, et al. 2012. Geophysical mode of Mazhan-Gudong Magma Chamber in Tengchong volcano-tectonic area. Acta Geoscientica Sinica, 33(5): 731-739.
    DUAN W T, HUANG S P, et al. 2017. Numerical simulation of the thermal diffusion of volcanic magmatism with ansysworkbench. Acta Petrologica Sinica, 33(1): 267-278.
    HAN Xiang-jun, JIN Xu. 2002. Geothermal resource and thermail structure in north-eastern China. Geology and Prospecting, 38(1): 74-76.
    F Sepulveda, M D Rosenberg, et al. 2012. Kriging predictions of drill-hole stratigraphy and temperature data from the Wai-rakei geothermal field. New Zealand: Im-plications for conceptual modeling. Geothermics, 42: 13-31.
  • Relative Articles

    [1] Xin Wang, Guo-qiang Zhou, Yan-guang Liu, Ying-nan Zhang, Mei-hua Wei, Kai Bian, 2024: Research progress on temperature field evolution of hot reservoirs under low-temperature tailwater reinjection, Journal of Groundwater Science and Engineering, 12, 205-222.  doi: 10.26599/JGSE.2024.9280016
    [2] Xiu-yan Wang, Lin Sun, Shuai-wei Wang, Ming-yu Wang, Jin-qiu Li, Wei-chao Sun, Jing-jing Wang, Xi Zhu, He Di, 2023: Development and application of multi-field coupled high-pressure triaxial apparatus for soil, Journal of Groundwater Science and Engineering, 11, 308-316.  doi: 10.26599/JGSE.2023.9280025
    [3] Yi-hang Gao, Jun-hui Shen, Lin Chen, Xiao Li, Shuang Jin, Zhen Ma, Qing-hua Meng, 2023: Influence of underground space development mode on the groundwater flow field in Xiong’an new area, Journal of Groundwater Science and Engineering, 11, 68-80.  doi: 10.26599/JGSE.2023.9280007
    [4] Shuai-chao Wei, Feng Liu, Wei Zhang, Gui-ling Wang, Ruo-xi Yuan, Yu-zhong Liao, Xiao-xue Yan, 2022: Research on the characteristics and influencing factors of terrestrial heat flow in Guizhou Province, Journal of Groundwater Science and Engineering, 10, 166-183.  doi: 10.19637/j.cnki.2305-7068.2022.02.006
    [5] Wen-kai KANG, Feng LIU, Fei-fan YANG, Hua-jun WANG, 2020: Simulation of heat transfer performance using middle-deep coaxial borehole heat exchangers by FEFLOW, Journal of Groundwater Science and Engineering, 8, 315-327.  doi: 10.19637/j.cnki.2305-7068.2020.04.002
    [6] Yan WANG, Yan-guang LIU, Kai BIAN, Hong-liang ZHANG, Shen-jun QIN, Xiao-jun WANG, 2020: Seepage-heat transfer coupling process of low temperature return water injected into geothermal reservoir in carbonate rocks in Xian County, China, Journal of Groundwater Science and Engineering, 8, 305-314.  doi: 10.19637/j.cnki.2305-7068.2020.04.001
    [7] NAN Tian, GUO Si-jia, 2019: Influence of borehole quantity and distribution on lithology field simulation, Journal of Groundwater Science and Engineering, 7, 295-308.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.001
    [8] ZHOU Bo, WEI Shan-ming, WANG Tao, NIE Yu-peng, WANG Chuan-qi, 2019: Discussion on establishing monitoring networks for temperature fields of shallow thermal energy in Shandong, China, Journal of Groundwater Science and Engineering, 7, 86-93.  doi: 10.19637/j.cnki.2305-7068.2019.01.009
    [9] YU Yi-qiang, 2018: Study on ground source heat pump system zoning and methods in the Northwest of Shandong Province, Journal of Groundwater Science and Engineering, 6, 171-177.  doi: 10.19637/j.cnki.2305-7068.2018.03.002
    [10] ZHAO Fang-hua, 2018: Research on single hole heat transfer power of ground source heat pump system, Journal of Groundwater Science and Engineering, 6, 65-70.  doi: 10.19637/j.cnki.2305-7068.2018.01.008
    [11] LIU Yan-guang, LIU Bing, LU Chuan, ZHU Xi, WANG Gui-ling, 2017: Reconstruction of deep fluid chemical constituents for estimation of geothermal reservoir temperature using chemical geothermometers, Journal of Groundwater Science and Engineering, 5, 173-181.
    [12] LI Man, ZHANG Wei, HE Yu-jiang, WANG Gui-ling, 2017: Research on the effect of straw mulching on the soil moisture by field experiment in the piedmont plain of the Taihang Mountains, Journal of Groundwater Science and Engineering, 5, 286-295.
    [13] WANG Xiao-ming, XUE Fei, 2017: The Arc-view application in the field of hydrology and water resources, Journal of Groundwater Science and Engineering, 5, 387-396.
    [14] LU Yao-ru, ZHANG Wei, LIU Qi, YANG Min, ZHANG Feng-e, 2016: Building a scientific and ecological earth–on an important field of geo-science: Geo-environment and construction engineering effect, Journal of Groundwater Science and Engineering, 4, 259-278.
    [15] FENG Guan-hong, XU Tian-fu, ZHU Hui-xing, 2016: Dynamics of fluid and heat flow in a CO2-based injection-production geothermal system, Journal of Groundwater Science and Engineering, 4, 377-388.
    [16] Wang Bin, LI Bai-xiang, LI Fu-cheng, 2015: Discussion on heat source mechanism and geothermal system of Qinghai Gonghe-Guide Basin, Journal of Groundwater Science and Engineering, 3, 86-97.
    [17] LIU Yan-guang, ZHU Xi, YUE Gao-fan, LIN Wen-jing, HE Yu-jiang, WANG Gui-ling, 2015: A review of fluid flow and heat transfer in the CO2-EGS, Journal of Groundwater Science and Engineering, 3, 170-175.
    [18] SHANG Xiao-gang, YU Xiang-hui, LI Cheng-ying, CHAI Hui-peng, JIANG Nan-jie, 2015: Geochemical characteristics of geothermal water in Weiyuan geothermal field, Huzhu County, Qinghai Province, Journal of Groundwater Science and Engineering, 3, 59-69.
    [19] Patsakron Assiri, 2013: Artesian Flowing Wells Field of Phu Tok Aquifer, Journal of Groundwater Science and Engineering, 1, 95-98.
    [20] Zong-jun Gao, Yong-gui Liu, 2013: Groundwater Flow Driven by Heat, Journal of Groundwater Science and Engineering, 1, 22-27.
  • 加载中

Catalog

    Article Metrics

    Article views (835) PDF downloads(388) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return