Citation: | ZENG Tu-rong. 2019: Research on basic characteristics of 2H, 18O and 14C in geothermal fluid in Guangdong Province, China. Journal of Groundwater Science and Engineering, 7(1): 42-52. doi: 10.19637/j.cnki.2305-7068.2019.01.004 |
In general, previous geothermal geochemical studies in Guangdong Province mainly involves single method to cover limited aspects and areas. In that way, various methods available cannot actually provide more convincing results of geothermal fluid’s circulation system and evolution process from different dimensions, especially in terms of isotope. As a result, more comprehensive researches remain to be done on geochemistry of geothermal fluid, in particular, the space-time law of isotope’s evolution pattern as well as recharge cycle. Based on data of environmental isotopes (2H and 18O) and the isotope of radiometric dating (14C), geothermal geology, characteristics of groundwater flow field and types of goethermal reservior in Guangdong Province are taken into account in this paper, so as to analyze numerical rule and spatial distribution features of isotopes. Thus, corresponding main causes, mechanism and hydrogeological significance can be revealed to further study the potential of geothermal fluid to renew and recharge in the long run, which is conducive to enrich geothermal theories and solve existing hydrogeological problems.
CHEN J S, X X Sun, et al. 2012. Isotopic and hydrochemical data to restrict the origin of the groundwater in the badain Jaran Desert, Northern China. Geochemistry International, 50(5): 455-465.
|
Ian D Clark, Peter Fritz. 1997. Environmental isotopes in hydrogeology. New York: Lewis Publishers.
|
WANG Ji-yang. 2002. Isotope hydrogeology and water resources plus hydroenvironment. Earth Science Journal of China University of Geosciences, 27(5): 532-533.
|
WANG Heng-chun. 1991. Isotope hydrogeology. Beijing: Geological Publishing House.
|
PANG Zhong-he, FAN Zhi-cheng. 1990. Research on isotope tritium in hydrothermal system of Zhangzhou Basin. Scientia Geo-logica Sinica, (4): 296-302.
|
ZENG Tu-rong et al. 2015. Report on evaluation and zoning of current geothermal resources in Guangdong Province. Zhanjiang: No.4 Geological Survey Team of Guangdong Geological Bureau: 70-80.
|
Mook W G. 2000. Environmental isotopes in the hydrological cycle. Paris: UNESCO.
|
YUAN Jian-fei. 2013. Hydrogeochemical study of geothermal system in coastal areas of Guangdong Province. Wuhan: China University of Geosciences (Wuhan).
|
[1] | Mi Tang, Jun Lv, Shi Yu, Yan Liu, Shao-hong You, Ping-ping Jiang, 2024: Application of hydrochemistry and strontium isotope for understanding the hydrochemical characteristics and genesis of strontium-rich groundwater in karst area, Gongcheng County, Southwest China, Journal of Groundwater Science and Engineering, 12, 264-280. doi: 10.26599/JGSE.2024.9280020 |
[2] | Feng Ma, Gui-ling Wang, Hong-li Sun, Zhan-xue Sun, 2022: Indication of hydrogen and oxygen stable isotopes on the characteristics and circulation patterns of medium-low temperature geothermal resources in the Guanzhong Basin, China, Journal of Groundwater Science and Engineering, 10, 70-86. doi: 10.19637/j.cnki.2305-7068.2022.01.007 |
[3] | Han Zhang, Zong-yu Chen, Chang-yuan Tang, 2022: Tracing runoff components in the headwater area of Heihe River by isotopes and hydrochemistry, Journal of Groundwater Science and Engineering, 10, 405-412. doi: 10.19637/j.cnki.2305-7068.2022.04.008 |
[4] | Zhao-xian Zheng, Ling-xia Liu, Xiao-shun Cui, 2021: Source identification of methane in groundwater in shale gas development areas: A critical review of the state of the art, prospects, and future challenges, Journal of Groundwater Science and Engineering, 9, 245-255. doi: 10.19637/j.cnki.2305-7068.2021.03.007 |
[5] | ZHANG Ying, LUO Jun, FENG Jian-yun, 2020: Characteristics of geothermal reservoirs and utilization of geothermal resources in the southeastern coastal areas of China, Journal of Groundwater Science and Engineering, 8, 134-142. doi: 10.19637/j.cnki.2305-7068.2020.02.005 |
[6] | LI Yang, KANG Feng-Xin, ZOU An-de, 2019: Isotope analysis of nitrate pollution sources in groundwater of Dong’e geohydrological unit, Journal of Groundwater Science and Engineering, 7, 145-154. doi: 10.19637/j.cnki.2305-7068.2019.02.005 |
[7] | TAN Xiao-bo, WEI Shan-ming, BO Ben-yu, JIANG Dian-qing, 2019: Analysis of occurrence characteristics of geothermal resources and its relation to control structures in Zibo City,China, Journal of Groundwater Science and Engineering, 7, 70-76. doi: 10.19637/j.cnki.2305-7068.2019.01.007 |
[8] | YANG Hai-jun, DONG Jian-xing, SUN Dong, HUANG Rui, 2019: Characteristics of shallow geothermal fields in major cities of Tibet Autonomous Region, Journal of Groundwater Science and Engineering, 7, 77-85. doi: 10.19637/j.cnki.2305-7068.2019.01.008 |
[9] | MAO Xiao-ping, LI Ke-wen, WANG Xin-wei, 2019: Causes of geothermal fields and characteristics of ground temperature fields in China, Journal of Groundwater Science and Engineering, 7, 15-28. doi: 10.19637/j.cnki.2305-7068.2019.01.002 |
[10] | ZHOU Nian-qing, LI Tian-shui, ZHAO Shan, ZHAO Shan, XIA Xue-min, 2019: Characteristics of the main inorganic nitrogen accumulation in surface water and groundwater of wetland succession zones, Journal of Groundwater Science and Engineering, 7, 173-181. doi: 10.19637/j.cnki.2305-7068.2019.02.008 |
[11] | SONG Chao, HAN Gui-lin, WANG Pan, SHI Ying-chun, HE Ze, 2017: Hydrochemical and isotope characteristics of spring water discharging from Qiushe Loess Section in Lingtai, northwestern China and their implication to groundwater recharge, Journal of Groundwater Science and Engineering, 5, 364-373. |
[12] | LIU Yan-guang, LIU Bing, LU Chuan, ZHU Xi, WANG Gui-ling, 2017: Reconstruction of deep fluid chemical constituents for estimation of geothermal reservoir temperature using chemical geothermometers, Journal of Groundwater Science and Engineering, 5, 173-181. |
[13] | ZHU Wei, TANG Wen, LIU Qiang, ZHANG Mei-gui, 2017: Analysis on variation characteristics of geothermal response in Liaoning Province, Journal of Groundwater Science and Engineering, 5, 336-342. |
[14] | FENG Guan-hong, XU Tian-fu, ZHU Hui-xing, 2016: Dynamics of fluid and heat flow in a CO2-based injection-production geothermal system, Journal of Groundwater Science and Engineering, 4, 377-388. |
[15] | LIU Qi, JIANG Si-min, PU Ye-feng, ZHANG Wei, 2016: Hydro-geochemical simulation of the mixing balance of exploitation and reinjection of geothermal fluid, Journal of Groundwater Science and Engineering, 4, 81-87. |
[16] | SHANG Xiao-gang, YU Xiang-hui, LI Cheng-ying, CHAI Hui-peng, JIANG Nan-jie, 2015: Geochemical characteristics of geothermal water in Weiyuan geothermal field, Huzhu County, Qinghai Province, Journal of Groundwater Science and Engineering, 3, 59-69. |
[17] | LIU Feng, CUI Ya-li, SHAO Jing-li, ZHANG Ge, 2015: Research on hydrogen and oxygen isotopes of paleoclimate reconstruction in Nuomuhong, Journal of Groundwater Science and Engineering, 3, 238-246. |
[18] | LIU Kai, SUN Ying, LI Yu, LIU Jiu-rong, LIU Ying-chao, 2014: Zonation for exploitation and utilization of geothermal water in Beijing, Journal of Groundwater Science and Engineering, 2, 94-104. |
[19] | Do Van Binh, 2014: Using Environmental Isotope Method to Study the Air Temperature Variations of the Earth, Journal of Groundwater Science and Engineering, 2, 97-102. |
[20] | Yan Zhang, Shuai Song, Jing Li, Fadong Li, Guangshuai Zhao, Qiang Liu, 2013: Stable Isotope Composition of Rainfall, Surface Water and Groundwater along the Yellow River, Journal of Groundwater Science and Engineering, 1, 82-88. |
JGSE-ScholarOne Manuscript Launched on June 1, 2024.