• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO Scopus GeoRef AJ CNKI
Advanced Search
Volume 7 Issue 2
Jun.  2019
Turn off MathJax
Article Contents
LI Wen-yon, FU Li, ZHU Zheng-feng. 2019: Numerical simulation and land subsidence control for deep foundation pit dewatering of Longyang Road Station on Shanghai Metro Line 18. Journal of Groundwater Science and Engineering, 7(2): 133-144. doi: 10.19637/j.cnki.2305-7068.2019.02.004
Citation: LI Wen-yon, FU Li, ZHU Zheng-feng. 2019: Numerical simulation and land subsidence control for deep foundation pit dewatering of Longyang Road Station on Shanghai Metro Line 18. Journal of Groundwater Science and Engineering, 7(2): 133-144. doi: 10.19637/j.cnki.2305-7068.2019.02.004

Numerical simulation and land subsidence control for deep foundation pit dewatering of Longyang Road Station on Shanghai Metro Line 18

doi: 10.19637/j.cnki.2305-7068.2019.02.004
  • Publish Date: 2019-06-28
  • In terms of controlling groundwater in deep foundation pit projects, the usual methods include increasing the curtain depth, reducing the amount of pumped groundwater, and implementing integrated control, in order to reduce the drawdown and land subsidence outside pits. In dewatering design for confined water, factors including drawdown requirements, the thickness of aquifers, the depth of dewatering wells and the depth of cutoff curtains have to be considered comprehensively and numerical simulations are generally conducted for calculation and analysis. Longyang Road Station on Shanghai Metro Line 18 is taken as the case study subject in this paper, a groundwater seepage model is developed according to the on-site engineering geological conditions and hydrogeological conditions, the excavation depth of the foundation pit as well as the design depth of the enclosure, hydrogeological parameters are determined via the pumping test, and the foundation pit dewatering is simulated by means of the three-dimensional finite difference method, which produces numerical results that consistent with real monitoring data as to the groundwater table. Besides, the drawdown and the land subsidence both inside and outside the pit caused by foundation pit dewatering are calculated and analyzed for various curtain depths. This study reveals that the drawdown and the land subsidence change faster near the curtain with the increase in the curtain depth, and the gradient of drawdown and land subsidence changes dwindles beyond certain depths. In this project, the curtain depth of 47/49 m is adopted, and a drawdown-land subsidence verification test is completed given hanging curtains before the excavation. The result turns out that the real measurements basically match the calculation results from the numerical simulation, and by increasing the depth of curtains, the land subsidence resulting from dewatering is effectively controlled.

  • 加载中
  • ZHOU Nian-qing, TANG Yi-qun, et al. 2011. Numerical simulation of deep foundation pit dewatering and land subsidence control of Xujiahui Metro Station. Chinese Journal of Geotechnical Engineering, 33(12):1950-1956.
    YUAN Bin, WU Yong-xia, et al. 2017. Optimi-zation of deep excavation pit dewatering in water-rich sand and gravel strata based on numerical model. Geotech?nical Investigation & Surveying, 45(01):34-39.
    LUO Zu-jiang, LIU Jin-bao, LI Lang. 2008. Three-dimensional full coupling numerical simu?lation of groundwater dewatering and land-subsidence in quaternary loose sedi?ments. Chinese Journal of Geotechnical Engineering, 30(02):193-198.
    FENG Hu, GAO Dan-ying, et al. 2013. Research on centrifuge model clay ultra-deep exca-vation instability and failure. Journal of Zhengzhou University (Engineering Science), 34(05):1-6.
    FENG Xiao-la, CAI Jiao-jiao, et al. 2016. Re-search on well group pumping test for foundation pit with drop waterproof curtains. Hydrogeology and Engineering Geology, 43(06):107-112.
    HUANG Ying-chao, XU Yang-qing. 2014. Nu-meri?cal simulation analysis of dewatering and recharge process of deep foundation pits. Chinese Journal of Geotechnical Engineering, 36(S2):299-303.
    DING Zhou-xiang, GONG Xiao-nan, et al. 2005. Finite element analysis of environmental effects of waterproof wall on foundation pit. Rock and Soil Mechanics, 26(S1):146-150.
    MA Chang-hui, MAO Yun, et al. 2014. Effects of dewatering methods on seepage and deformation of foundation pits. Chinese Journal of Geotechnical Engineering, 36(S2): 294-298.
    LOU Rong-xiang, ZHOU Nian-qing, ZHAO Shan. 2011. Numerical simulation of deep foun-dation pit dewatering of Xujiahui Station of Shanghai Metro Line No. 11. Chinese Journal of Underground Space and Engineering, 7(05): 908-913.
    ZHANG Fei, LI Jing-pei, et al. 2016. A study on the Anti-Upheaval Mode Test in the narrow and deep foundation pit in soft soil. Rock and Soil Mechanics, 37(10):2825-2832.
    LU Jian-sheng, FU Jun. 2013. Analysis of comprehensive control of groundwater in foundation pit under complex environment condition. Chinese Journal of Underground Space and Engineering, 9(06):1433-1438.
    WANG Kang-da, TONG Li-yuan, et al. 2014. Optimization of dewatering wells in deep foundation pit considering effect of retaining structure. Chinese Journal of Geotechnical Engineering, 36(S2):259-264.
  • Relative Articles

    [1] Zhe Wang, Li-juan Wang, Jian-mei Shen, Zhen-long Nie, Le Cao, Ling-qun Meng, 2024: Groundwater recharge via precipitation in the Badain Jaran Desert, China, Journal of Groundwater Science and Engineering, 12, 109-118.  doi: 10.26599/JGSE.2024.9280009
    [2] Mouna Djellali, Omar Guefaïfia, Chemsedinne Fehdi, Adel Djellali, Amor Hamad, 2023: Assessing the impact of artificial recharge on groundwater in an over-exploited aquifer: A case study in the Cheria Basin, North-East of Algeria, Journal of Groundwater Science and Engineering, 11, 263-277.  doi: 10.26599/JGSE.2023.9280022
    [3] Vinay Kumar Gautam, Mahesh Kothari, P.K. Singh, S.R. Bhakar, K.K. Yadav, 2022: Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan, Journal of Groundwater Science and Engineering, 10, 1-9.  doi: 10.19637/j.cnki.2305-7068.2022.01.001
    [4] Yu-kun Sun, Feng Liu, Hua-jun Wang, Xin-zhi Gao, 2022: Numerical simulation of operation performance on production and injection of a double well geothermal system in Kailu Basin, Inner Mongolia, Journal of Groundwater Science and Engineering, 10, 196-208.  doi: 10.19637/j.cnki.2305-7068.2022.02.008
    [5] Xin Ma, Dong-guang Wen, Guo-dong Yang, Xu-feng Li, Yu-jie Diao, Hai-hai Dong, Wei Cao, Shu-guo Yin, Yan-mei Zhang, 2021: Potential assessment of CO2 geological storage based on injection scenario simulation: A case study in eastern Junggar Basin, Journal of Groundwater Science and Engineering, 9, 279-291.  doi: 10.19637/j.cnki.2305-7068.2021.04.002
    [6] Feng LIU, Gui-ling WANG, Wei ZHANG, Chen YUE, Li-bo TAO, 2020: Using TOUGH2 numerical simulation to analyse the geothermal formation in Guide basin, China, Journal of Groundwater Science and Engineering, 8, 328-337.  doi: 10.19637/j.cnki.2305-7068.2020.04.003
    [7] KHELFAOUI Hakim, DAJBRI Larbi, LAKHAL Fatima Zohra, CHAFFAI Hicham, HANI Azzedine, SAYAD Lamine, 2020: Determination of the origin of mineralization and groundwater salinity in the Adrar region in the southwest of Algeria, Journal of Groundwater Science and Engineering, 8, 158-171.  doi: 10.19637/j.cnki.2305-7068.2020.02.007
    [8] ZHAO Yue-wen, WANG Xiu-yan, LIU Chang-li, LI Bing-yan, 2020: Finite-difference model of land subsidence caused by cluster loads in Zhengzhou, China, Journal of Groundwater Science and Engineering, 8, 43-56.  doi: 10.19637/j.cnki.2305-7068.2020.01.005
    [9] Chun-chao ZHANG, Xin-wei HOU, Xiang-quan LI, Zhen-xing WANG, Chun-lei GUI, Xue-feng ZUO, Jian-fei MA, Ming GAO, 2020: Numerical simulation and environmental impact prediction of karst groundwater in Sangu Spring Basin, China, Journal of Groundwater Science and Engineering, 8, 210-222.  doi: 10.19637/j.cnki.2305-7068.2020.03.002
    [10] WANG Shu-fang, LIU Jiu-rong, SUN Ying, LIU Shi-liang, GAO Xiao-rong, SUN Cai-xia, LI Hai-kui, 2018: Study on the geothermal production and reinjection mode in Xiong County, Journal of Groundwater Science and Engineering, 6, 178-186.  doi: 10.19637/j.cnki.2305-7068.2018.03.003
    [11] ZHAN Jiang, LI Wu-jin, LI Zhi-ping, ZHAO Gui-zhang, 2018: Indoor experiment and numerical simulation study of ammonia-nitrogen migration rules in soil column, Journal of Groundwater Science and Engineering, 6, 205-219.  doi: 10.19637/j.cnki.2305-7068.2018.03.006
    [12] ZHANG Chun-chao, LI Xiang-quan, GAO Ming, HOU Xin-wei, LIU Ling-xia, WANG Zhen-xing, MA Jian-fei, 2017: Exploitation of groundwater resources and protection of wetland in the Yuqia Basin, Journal of Groundwater Science and Engineering, 5, 222-234.
    [13] YUE Gao-fan, LV Wen-bin, ZHANG Wei, SU Ran, LIN Wen-jing, 2016: Optimization of geothermal water exploitation in Xinji, Hebei Province, P. R. China, Journal of Groundwater Science and Engineering, 4, 197-203.
    [14] QI Jian-feng, TIAN Meng-ke, CHI Xiu-cheng, WANG Cheng-zhen, 2016: Research on ground fissure origins and mechanisms in Hebei Plain, P. R. China, Journal of Groundwater Science and Engineering, 4, 188-196.
    [15] WANG Ji-ning, MENG Yong-hui, 2016: Characteristics analysis and model prediction of sea-salt water intrusion in lower reaches of the Weihe River, Shandong Province, China, Journal of Groundwater Science and Engineering, 4, 149-156.
    [16] LIU Qi, JIANG Si-min, PU Ye-feng, ZHANG Wei, 2016: Hydro-geochemical simulation of the mixing balance of exploitation and reinjection of geothermal fluid, Journal of Groundwater Science and Engineering, 4, 81-87.
    [17] LIU Yan-guang, ZHU Xi, YUE Gao-fan, LIN Wen-jing, HE Yu-jiang, WANG Gui-ling, 2015: A review of fluid flow and heat transfer in the CO2-EGS, Journal of Groundwater Science and Engineering, 3, 170-175.
    [18] YANG Yun, WU Jian-feng, LIU De-peng, 2015: Numerical modeling of water yield of mine in Yangzhuang Iron Mine, Anhui Province of China, Journal of Groundwater Science and Engineering, 3, 352-362.
    [19] WANG Ye, ZHANG Qiu-lan, WANG Shi-chang, SHAO Jing-li, 2015: Forecasting of water yield of deep-buried iron mine in Yanzhou, Shandong, Journal of Groundwater Science and Engineering, 3, 342-350.
    [20] WEI Jia-hua, CHU Hai-bo, WANG Rong, JIANG Yuan, 2015: Numerical simulation of karst groundwater system for discharge prediction and protection design of spring in Fangshan District, Beijing, Journal of Groundwater Science and Engineering, 3, 316-330.
  • 加载中

Catalog

    Article Metrics

    Article views (726) PDF downloads(199) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return