• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO Scopus GeoRef AJ CNKI
Advanced Search
Volume 9 Issue 1
Mar.  2021
Turn off MathJax
Article Contents
Muhammad Juandi, Islami Nur. 2021: Prediction criteria for groundwater potential zones in Kemuning District, Indonesia using the integration of geoelectrical and physical parameters. Journal of Groundwater Science and Engineering, 9(1): 12-19. doi: 10.19637/j.cnki.2305-7068.2021.01.002
Citation: Muhammad Juandi, Islami Nur. 2021: Prediction criteria for groundwater potential zones in Kemuning District, Indonesia using the integration of geoelectrical and physical parameters. Journal of Groundwater Science and Engineering, 9(1): 12-19. doi: 10.19637/j.cnki.2305-7068.2021.01.002

Prediction criteria for groundwater potential zones in Kemuning District, Indonesia using the integration of geoelectrical and physical parameters

doi: 10.19637/j.cnki.2305-7068.2021.01.002
More Information
  • Corresponding author: Juandi Muhammad, E-mail: juandi@lecturer.unri.ac.id
  • Received Date: 2020-06-22
  • Accepted Date: 2020-08-18
  • Publish Date: 2021-03-28
  • The presence of groundwater is strongly related to its geological and geohydrological conditions. It is, however, important to study the groundwater potential in an area before it is utilized to provide clean water. Werner-Schlumberger's method was used to analyze the groundwater potential while hydraulic properties such as soil porosity and hydraulic conductivity were used to determine the quality and ability of the soil to allow water's movement in the aquifer. The results show that the aquifer in the Sekara and Kemuning Muda is at a depth of more than 6 meters below the ground level with moderate groundwater potential. It is also found that the aquifer at depths of over 60 m have high groundwater potential. Moreover, soil porosity in Kemuning is found to be average while the ability to conduct water was moderate. This makes it possible for some surface water to seep into the soil while the remaining flows to the rivers and ditches.
  • 加载中
  • Alley WM, Healy RW, LaBaugh JW, et al. 2002. Flow and storage in groundwater systems. Science, 296: 1985-1990. doi:  10.1126/science.1067123
    Bechte TD, Nico G. 2017. Geoelectrical finger-printing of two contrasting ecohydrological peatland types in the Alps. Wetlands, 37: 875-884. doi:  10.1007/s13157-017-0921-5
    Heriyanto H, Karya D, Choanji T, et al. 2019. Regression model in transitional geological environment for calculation farming and production of oil palm dominant factor in Indragiri Hilir Riau Province. Journal of Geoscience, Engineering, Environment and Technology, 4(1): 56-65. doi:  10.25299/jgeet.2019.4.1.2600
    Islami N, Taib S, Yusoff I, et al. 2011. Time lapse chemical fertilizer monitoring in agri-culture sandy soil. International Journal of Environmental Scince Technology, 8: 765-780. doi:  10.1007/BF03326260
    Juandi M, Syahril S. 2017. Empirical relationship between soil permeability and resistivity, and its application for determining the ground-water gross recharge in Marpoyan Damai, Pekanbaru, Indonesia. Water Practice and Technology, 12(3): 660-666. doi:  10.2166/wpt.2017.069
    Juandi M, Surbakti A, Syech R, et al. 2017. Poten-tial of aquifers for groundwater exploitation using Cooper-Jacob Equation. Journal of Environmental Science and Technology, 10: 215-219. doi:  10.3923/jest.2017.215.219
    Juandi M. 2019. Study of groundwater in the rock area using geoelectric survey. Journal of Ph-ysics Conference Series, 1351: 012010. doi:  10.1088/1742-6596/1351/1/012010
    Juandi M. 2020. Water sustainability model for estimation of groundwater availability in Kemuning district, Riau-Indonesia. Journal of Groundwater Science and Engineering, 8(1): 20-29. doi:  10.19637/j.cnki.2305-7068.2020.01.003
    Krüger JP, Dotterweich M, Kopf C, et al. 2017. Carbon balance of rewetted peatland forests in low mountain range areas, Germany. Pro-ceedings of EGU General Assembly Vienna, Austria, 3212, April 23-28.
    Lenkey L, Hámori Z, Mihálffy P. 2005. Investiga-ting the hydrogeology of a water-supply area using direct-current vertical electrical sound-ings. Geophysics, 70(4): 11-19. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=GPYSA7000070000004000H11000001&idtype=cvips&prog=normal
    Loke MH, Chambers JE, Rucker DF, et al. 2013. Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics, 95: 135-156. doi:  10.1016/j.jappgeo.2013.02.017
    LU Chuan, LI Long, LIU Yan-guang, et al. 2014. Capillary pressure and relative permeability model uncertainties in simulations of geological CO2 sequestration. Journal of Groundwater Science and Engineering, 2(2): 1-17. http://gwse.iheg.org.cn/en/article/id/120
    Muhammad J. 2020. Peat water purification by hybrid of slow sand filtration and coagulant treatment. Journal of Environmental Science and Technology, 13(1): 22-28. http://www.researchgate.net/publication/338647775_Peat_Water_Purification_by_Hybrid_of_Slow_Sand_Filtration_and_Coagulant_Treatment
    Powlson DS, Whitmore AP, Goulding KW. 2011. Soil carbon sequestration to mitigate climate change: A critical reexamination to identify the true and the false. European Journal of Soil Science, 62(1): 42-55. doi:  10.1111/j.1365-2389.2010.01342.x
    Revil A, Karaoulis M, Johnson T, et al. 2012. Review: Some low-frequency electrical me-thods for subsurface characterization and monitoring in hydrogeology. Hydrogeology Journal, 20: 617-658. doi:  10.1007/s10040-011-0819-x
    Sheriff RE. 2002. Encyclopedic dictionary of applied geophysics, 4th edition. Society of Exploration Geophysicists, Tulsa, Oklahoma, USA: 30-34.
    Silliman SE, Borum BI, Boukari M, et al. 2010. Issues of sustainability of coastal groundwater resources: Benin, West Africa. Sustainability, 2(8): 2652-2675. doi:  10.3390/su2082652
    Sultan SA, Santos FAM. 2008. Evaluating sub-surface structures and stratigraphic units using 2D electrical and magnetic data at the area North Greater Cairo, Egypt, International Journal Applied Earth Observation and Geoinformation, 10: 56-67.
    Telford WM, Geldart LP, Sheriff RE. 1991. Aplied Geophysic, 2nd Edition. New York: Cambridge University Press: 283-290.
    Udmale P, Shrestha S, Ichikawa Y, et al. 2014. Assessing groundwater resource and its sus-tainability in drought prone area of India. Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), 58: 235-240. http://www.jstage.jst.go.jp/article/jscejhe/70/4/70_40/_article
    Wada Y, Wisser D, Bierkens MFP. 2014. Global modeling of withdrawal, allocation and con-sumptive use of surface water and ground-water resources. Earth System Dynamics, 5: 15-40. doi:  10.5194/esd-5-15-2014
    Wagner B, Tarnawski VR, Hennings V, et al. 2001. Evaluation of pedo-transfer functions for unsaturated soil hydraulic conductivity using an independent data set. Geoderma, 102(3-4): 275-297. doi:  10.1016/S0016-7061(01)00037-4
  • Relative Articles

    [1] Jin-xing Guo, Zhi-ping Li, Catalin Stefan, 2022: Managed aquifer recharge (MAR) applications in China–achievements and challenges, Journal of Groundwater Science and Engineering, 10, 57-69.  doi: 10.19637/j.cnki.2305-7068.2022.01.006
    [2] Vinay Kumar Gautam, Mahesh Kothari, P.K. Singh, S.R. Bhakar, K.K. Yadav, 2022: Analysis of groundwater level trend in Jakham River Basin of Southern Rajasthan, Journal of Groundwater Science and Engineering, 10, 1-9.  doi: 10.19637/j.cnki.2305-7068.2022.01.001
    [3] Abdelhakim LAHJOUJ, Abdellah EL HMAIDI, Karima BOUHAFA, 2020: Spatial and statistical assessment of nitrate contamination in groundwater: Case of Sais Basin, Morocco, Journal of Groundwater Science and Engineering, 8, 143-157.  doi: 10.19637/j.cnki.2305-7068.2020.02.006
    [4] KHELFAOUI Hakim, DAJBRI Larbi, LAKHAL Fatima Zohra, CHAFFAI Hicham, HANI Azzedine, SAYAD Lamine, 2020: Determination of the origin of mineralization and groundwater salinity in the Adrar region in the southwest of Algeria, Journal of Groundwater Science and Engineering, 8, 158-171.  doi: 10.19637/j.cnki.2305-7068.2020.02.007
    [5] Muhammad Nauman Malik, Mehdi Murtuza, Iqbal Asif, Bakar Muhammad Saifullah Abu, Brahim Aissa, Dk Nur Afiqah Jalwati Puteri, Amer Farhan Rafique, 2019: Adaptive state estimation of groundwater contaminant boundary input flux in a 2-dimensional aquifer, Journal of Groundwater Science and Engineering, 7, 373-382.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.008
    [6] LI Bo, LI Xue-mei, 2018: Characteristics of karst groundwater system in the northern basin of Laiyuan Spring area, Journal of Groundwater Science and Engineering, 6, 261-269.  doi: 10.19637/j.cnki.2305-7068.2018.04.002
    [7] LI Xiao-hang, WANG Rui, LI Jian-feng, 2018: Study on hydrochemical characteristics and formation mechanism of shallow groundwater in eastern Songnen Plain, Journal of Groundwater Science and Engineering, 6, 161-170.  doi: 10.19637/j.cnki.2305-7068.2018.03.001
    [8] ZHOU Xun, 2017: Arsenic distribution and source in groundwater of Yangtze River Delta economic region, China, Journal of Groundwater Science and Engineering, 5, 343-353.
    [9] Eunhee Lee, Kyoochul Ha, Nguyen Thi Minh Ngoc, Adichat Surinkum, Ramasamy Jayakumar, Yongje Kim, Kamaludin Bin Hassan, 2017: Groundwater status and associated issues in the Mekong-Lancang River Basin: International collaborations to achieve sustainable groundwater resources, Journal of Groundwater Science and Engineering, 5, 1-13.
    [10] Pezhman ROUDGARMI, Ebrahim FARAHANI, 2017: Investigation of groundwater quantitative change, Tehran Province, Iran, Journal of Groundwater Science and Engineering, 5, 278-285.
    [11] Khongsab Somphone, OunakoneKone Xayviliya, 2017: Climate change and groundwater resources in Lao PDR, Journal of Groundwater Science and Engineering, 5, 53-58.
    [12] BAI Bing, CHENG Yan-pei, JIANG Zhong-cheng, ZHANG Cheng, 2017: Climate change and groundwater resources in China, Journal of Groundwater Science and Engineering, 5, 44-52.
    [13] Chamroeun SOK, Sokuntheara CHOUP, 2017: Climate change and groundwater resources in Cambodia, Journal of Groundwater Science and Engineering, 5, 31-43.
    [14] ZHANG Xiang-yang, CHEN Zong-yu, YANG Guo-min, TU Le-yi, HU Shui-ming, 2016: Krypton-85 dating of shallow aquifer in Hebei Plain, Journal of Groundwater Science and Engineering, 4, 328-332.
    [15] ZHANG Chun-chao, WANG Wen-Ke, SUN Yi-bo, LI Xiang-quan,HOU Xin-wei, 2015: Processes of hydrogeochemical evolution of groundwater in the Guanzhong Basin, China, Journal of Groundwater Science and Engineering, 3, 136-146.
    [16] Liang ZHU, Wei-dong KANG, Ji-chao SUN, Jing-tao LIU, 2014: Quantitative Calculation of Groundwater Vulnerability Assessment Based on Quantification Theory III, Journal of Groundwater Science and Engineering, 2, 78-85.
    [17] MA Shao-bing, ZHOU Jun, LIANG Peng, SU Yao-ming, 2014: Characteristics-based classification research on typical petroleum contaminants of groundwater, Journal of Groundwater Science and Engineering, 2, 41-47.
    [18] Song Bo, Liu Changli, Zhang Yun, Hou Hongbing, Pei Lixin, Yang Liu, 2013: Urban Waste Disposal and Its Impact on Groundwater Pollution in China, Journal of Groundwater Science and Engineering, 1, 88-95.
    [19] Jingli Shao, Yali Cui, Yunzhang Zhao, 2013: A Study on Infiltration and Groundwater Development in the Influent Zone of the Perched Lower Yellow River, Journal of Groundwater Science and Engineering, 1, 46-53.
    [20] Jiansheng Shi, Hongtao Liu, Zhiyuan Liu, Tieliu Chen, 2013: Application of the “Accurate Control Groundwater Resources” Theory in Containment of Groundwater Resource Exhaustion Trend, Journal of Groundwater Science and Engineering, 1, 1-10.
  • 加载中

Catalog

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (1100) PDF downloads(112) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return