• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ EBSCO Scopus GeoRef AJ CNKI
Advanced Search
Volume 9 Issue 2
Jun.  2021
Turn off MathJax
Article Contents
Yue-nan Li, Yan-sheng Gu, Man-zhou Li, et al. 2021: Comparison on the phytoextraction efficiency of Bidens pilosa at heavy metal contaminated site in natural and electrokinetic conditions. Journal of Groundwater Science and Engineering, 9(2): 121-128. doi: 10.19637/j.cnki.2305-7068.2021.02.004
Citation: Yue-nan Li, Yan-sheng Gu, Man-zhou Li, et al. 2021: Comparison on the phytoextraction efficiency of Bidens pilosa at heavy metal contaminated site in natural and electrokinetic conditions. Journal of Groundwater Science and Engineering, 9(2): 121-128. doi: 10.19637/j.cnki.2305-7068.2021.02.004

Comparison on the phytoextraction efficiency of Bidens pilosa at heavy metal contaminated site in natural and electrokinetic conditions

doi: 10.19637/j.cnki.2305-7068.2021.02.004
More Information
  • Corresponding author: limz2006@126.com
  • Received Date: 2019-12-30
  • Accepted Date: 2020-12-10
  • Available Online: 2021-08-04
  • Publish Date: 2021-06-28
  • The plant samples of Bidens pilosa were collected from a coal gangue vacant site and its surrounding area, located in central China, to study the remediation effect of the plant species on heavy metal (HM) contamination in both natural and electrokinetic (EK) conditions. The analytical results showed that the effect of phytoextraction and bioconcentration on the heavy metals in the sample of the EK group is more significant than those in the other control group. Compared with the results of natural condition, under the EK condition the concentrations of cadmium (Cd), lead (Pb), copper (Cu) and zinc (Zn) in the stems and leaves of the Bidens pilosa increased to 0.40 mg/kg, 4.23 mg/kg, 7.27 mg/kg, 830.24 mg/kg, respectively, with their increments of 292%, 1731%, 141%, 2076%. For root samples, the Cd, Pb, Cu and Zn concentrations increased to 0.52 mg/kg, 4.36 mg/kg, 10.87 mg/kg, and 98.12 mg/kg and the increase rates were 1034%, 140%, 29%, and 181%, respectively. The phytoextraction efficiency of the Bidens pilosa was significantly higher than that of control group. The removal efficiency of Cd, Pb, Cu and Zn in soil increased to 26%, 72%, 27%, and 79% with the EK applied. In addition, the mechanism of HM migration, extraction and enrichment in Bidens pilosa under the EK condition was discussed.
  • 加载中
  • Aboughalma H, Bi R, Schlaak M. 2008. Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants. Journal of Environmental Science and Health, Part A, 43(8): 926-933. doi:  10.1080/10934520801974459
    Agwu KK, Okoye C, Okeji MC, et al. 2018. Potential health impacts of heavy metal concentrations in fresh and marine water fishes consumed in southeast, Nigeria. Pakistan Journal of Nutrition, 17(12): 647-653. doi:  10.3923/pjn.2018.647.653
    Ahemad. 2019. Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: Paradigms and prospects. Arabian Journal of Chemistry, 12(7): 1365-1377. doi:  10.1016/j.arabjc.2014.11.020
    Badr N, Fawzy M, Al-Qahtani KM. 2012. Phytoremediation: An ecological solution to heavy-metal-polluted soil and evaluation of plant removal ability. World Applied Sciences Journal, 16(9): 1292-1301.
    Bi R, Schlaak M, Siefert E, et al. 2011. Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum). Chemosphere, 83(3): 318-326. doi:  10.1016/j.chemosphere.2010.12.052
    Bian F, Zhong Z, Zhang X, et al. 2019. Bamboo-an untapped plant resource for the phytoremediation of heavy metal contaminated soils. Chemosphere, 246: 125750. doi:  10.1016/j.chemosphere.2019.125750
    Cameselle C, Chirakkara RA, Reddy KR. 2013. Electrokinetic-enhanced phytoremediation of soils: Status and opportunities. Chemosphere, 93(4): 626-636. doi:  10.1016/j.chemosphere.2013.06.029
    Cang L, Wang Q, Zhou D, et al. 2011. Effects of electrokinetic-assisted phytoremediation of a multiple-metal contaminated soil on soil metal bioavailability and uptake by Indian mustard. Separation & Purification Technology, 79(2): 246-253. doi:  10.1016/j.seppur.2011.02.016
    Chen HF, Zhou DM, Cang L, et al. 2007. Effects of vertical electric field and EDTA application on ryegrass copper and zinc uptake and their leaching risks. Acta Pedologica Sinica, 44(1): 174-178. (in Chinese)
    Couto N, Guedes P, Ribeiro AB, et al. 2015. Phytoremediation and the electrokinetic process: Potential use for the phytoremediation of Antimony and Arsenic. In: Phytoremediation. Springer, pp. 199-209. DOI: 10.1007/978-3-319-10969-5_17.
    Hassan I, Mohamedelhassan E, Yanful EK, et al. 2018. Enhancement of bioremediation and phytoremediation using electrokinetics. In: Naofumi Shiomi (ed), Advances in Bioremediation and Phytoremediation, IntechOpen. DOI: 10.5772/intechopen.73202.
    Hodko D, Hyfte JV, Denvir A, et al. 2000. Methods for enhancing phytoextraction of contaminants from porous media using electrokinetic phenomena. US Patent 6145244.
    Jacob JM, Karthik C, Saratale RG, et al. 2018. Biological approaches to tackle heavy metal pollution: A survey of literature. Journal of Environmental Management, 217: 56-70. doi:  10.1016/j.jenvman.2018.03.077
    Jin ZM, Deng SQ, Wen YC, et al. 2019. Application of Simplicillium chinense for Cd and Pb biosorption and enhancing heavy metal phytoremediation of soils. Science of the Total Environment, 697(20): 1-9. doi:  10.1016/j.scitotenv.2019.134148
    Kalčíková G, Zupančič M, Jemec A, et al. 2016. The impact of humic acid on chromium phytoextraction by aquatic macrophyte Lemna minor. Chemosphere, 147: 311-317. doi:  10.1016/j.chemosphere.2015.12.090
    Li KJ, Lun ZJ, Zhao L, et al. 2017. Screening for autochthonous phytoextractors in a heavy metal contaminated coal mining area. International Journal of Environmental Researchandd Public Health, 14(9): 1068. doi:  10.3390/ijerph14091068
    Li KJ, Gu YS, Li MZ, et al. 2018. Spatial analysis, source identification and risk assessment of heavy metals in a coal mining area in Henan, Central China. International Biodeterioration & Biodegradation, 128: 148-154. doi:  10.1016/j.ibiod.2017.03.026
    Liu WQ, Zhu F, Ma SY, et al. 2015. Research progress on the electro-kinetic remediation of soil polluted by heavy metal. Safety Environmental Engineering, 22(2): 55-60. (in Chinese)
    Lu P, Feng QY, Li XD, et al. 2009. Improvement in electrokinetic remediation of chromium contaminated soil with polarity exchange technique. Chinese Journal of Environmental Engineering, 3(2): 354-358. (in Chinese)
    Ma SC, Zhang HB, Ma ST, et al. 2015. Effects of mine wastewater irrigation on activities of soil enzymes and physiological properties, heavy metal uptake and grain yield in winter wheat. Ecotoxicology and Environmental Safety, 113: 483-490. doi:  10.1016/j.ecoenv.2014.12.031
    Manoj SR, Karthik C, Kadirvelu K, et al. 2020. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. Journal of environmental management, 254: 109779. doi:  10.1016/j.jenvman.2019.109779
    Paulo JC, Pratas J, Varun M, et al. 2014. Phytoremediation of soils contaminated with metals and metalloids at mining areas: Potential of native flora. Environmental Risk Assessment of Soil Contamination, 17: 485-517. doi:  10.5772/57469
    Pazos M, Sanroman MA, Cameselle C. 2006. Improvement in electrokinetic remediation of heavy metal spiked kaolin with the polarity exchange technique. Chemosphere, 62(5): 817-822. doi:  10.1016/j.chemosphere.2005.04.071
    Pratas J, Paulo JC, D'Souza R, et al. 2013. Phytoremedial assessment of flora tolerant to heavy metals in the contaminated soils of an abandoned Pb mine in Central Portugal. Chemosphere, 90(8): 2216-2225. doi:  10.1016/j.chemosphere.2012.09.079
    Reddy KR, Cameselle C. 2009. Electrochemical remediation Technologies for Polluted Soils, Sediments and Groundwater. John Wiley & Sons, Hoboken, New Jersey, USA. DOI: 10.1002/9780470523650.
    Reddy KR, Chandhuri KS. 2009. Fenton-like oxidation of polycyclic aromatic hydrocarbons in soils using electrokinetics. Journal of Geotechnical and Geo-environmental Engineering, 135(10): 1429-1439. doi:  10.1061/(ASCE)GT.1943-5606.0000109
    Siyar R, Ardejani FD, Farahbakhsh M, et al. 2020. Potential of Vetiver grass for the phytoremediation of a real multi-contaminated soil, assisted by electrokinetic. Chemosphere, 246: 1-10. doi:  10.1016/j.chemosphere.2019.125802
    Sun YB, Zhou QX, Lin W, et al. 2009. Characteristics of cadmium tolerance and bioaccumulation of Bidens pilosa L seedlings. Environmental Science, 30(10): 3028-3035. (in Chinese)
    Tangahu BV, Abdullah SS, Basri H, et al. 2011. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011: 1-31. doi:  10.1155/2011/939161
    Van der Ent A, Baker AJM, Reeves RD, et al. 2013. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil, 362: 319-334. doi:  10.1007/s11104-012-1287-3
    Xi YH, Yang Y, Zhou GH. 2009. Experimental research of electrokinetic remediation of undisturbed soil polluted by Pb2+. Guizhou Agricultural Sciences, 37(4): 101-104. (in Chinese)
    Xu HZ. 2015. Efficiency of direct current (DC) field and Sedum alfredii Hance on remediation to cadmium contaminated soil. M.S. thesis. Hangzhou: Zhejiang A & F University.
    Yao GH. 2015. Effects of alternating current (AC) field and organic materials on improving the efficiency of Sedum alfredii Hance to remediate heavy metal contaminated soil. M.S. thesis. Hangzhou: Zhejiang A & F University.
    Zeng P, Guo ZH, Xiao XY, et al. 2019. Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil. Science of the Total Environment, 650: 594-603. doi:  10.1016/j.scitotenv.2018.09.055
    Zhang CL, Zhang ZZ, Chen J, et al. 2016. Biliometric analysis of soil heavy metal pollution restoration in China. World Agriculture, 01: 136-140. (in Chinese)
    Zhao PL, Bi R. 2012. Electrokinetic combined phytoremediation technology for soil heavy metal pollution. Heilongjiang Science and Technology Information, 10: 43-44. (in Chinese)
    Zheng SS, Shen ZM, Chen XJ, et al. 2007. Electrokinetic remediation of heavy contamination soils using enhanced with approaching anodes technique. Journal of Agro-Environment Science, 26(1): 240-245. (in Chinese)
    Zhou BZ, Lyu X, Zhao XH. 2011. Research on electrokinetic remediation of heavy metals in surplus sludge. Chinese Journal of Environmental Engineering, 5(6): 1401-1404. (in Chinese)
    Zhou DM, Cang L, Deng CF, et al. 2005. Influence of complexes and acidity control on electrokinetic processes of soil chromium. China Environmental Science, 25(1): 10-14. (in Chinese)
    Zhu X, Qian F, Zhou C, et al. 2019. Inherent metals of a phytoremediation plant influence its recyclability by hydrothermal liquefaction. Environmental Science & Technology, 53(11): 6580-6586. doi:  10.1021/acs.est.9b00262
  • Relative Articles

    [1] Fu-ning Lan, Yi Zhao, Jun Li, Xiu-qun Zhu, 2024: Health risk assessment of heavy metal pollution in groundwater of a karst basin, SW China, Journal of Groundwater Science and Engineering, 12, 49-61.  doi: 10.26599/JGSE.2024.9280005
    [2] Qing-shan Li, Xiao-bing Kang, Mo Xu, Bang-yan Mao, 2023: Effects of coal mining and tunnel excavation on groundwater flow system in karst areas by modeling: A case study in Zhongliang Mountain, Chongqing, Southwest China, Journal of Groundwater Science and Engineering, 11, 391-407.  doi: 10.26599/JGSE.2023.9280031
    [3] Ya-wei Zhang, Yun-tao Liu, Zi-wen Wang, Yu Cao, Xiao-ran Tu, Di Cao, Shuai Yuan, Xiao-man Cheng, Lian-sheng Zhang, 2023: Source analysis of dissolved heavy metals in the Shaying River Basin, China, Journal of Groundwater Science and Engineering, 11, 408-421.  doi: 10.26599/JGSE.2023.9280032
    [4] Han Zhang, Zong-yu Chen, Chang-yuan Tang, 2022: Tracing runoff components in the headwater area of Heihe River by isotopes and hydrochemistry, Journal of Groundwater Science and Engineering, 10, 405-412.  doi: 10.19637/j.cnki.2305-7068.2022.04.008
    [5] Chun-lei Liu, Chen-ming Lu, Ya-song Li, Qi-chen Hao, Sheng-wei Cao, 2022: Genetic model and exploration target area of geothermal resources in Hongtang Area, Xiamen, China, Journal of Groundwater Science and Engineering, 10, 128-137.  doi: 10.19637/j.cnki.2305-7068.2022.02.003
    [6] Hao ZHOU, Yong WU, Feng HUANG, Xue-fang TANG, 2021: Experimental simulation and dynamic model analysis of Cadmium (Cd) release in soil affected by rainfall leaching in a coal-mining area, Journal of Groundwater Science and Engineering, 9, 65-72.  doi: 10.19637/j.cnki.2305-7068.2021.01.006
    [7] SAMI Guellouh, ABDELWAHHAB Filali, Med ISSAM Kalla, 2020: Estimation of the peak flows in the catchment area of Batna (Algeria), Journal of Groundwater Science and Engineering, 8, 79-86.  doi: 10.19637/j.cnki.2305-7068.2020.01.008
    [8] ZHOU Chang-song, ZOU Sheng-zhang, ZHU Dan-ni, XIE Hao, CHEN Hong-feng, WANG Jia, 2018: Pollution pattern of underground river in karst area of the Southwest China, Journal of Groundwater Science and Engineering, 6, 71-83.  doi: 10.19637/j.cnki.2305-7068.2018.02.001
    [9] LI Bo, LI Xue-mei, 2018: Characteristics of karst groundwater system in the northern basin of Laiyuan Spring area, Journal of Groundwater Science and Engineering, 6, 261-269.  doi: 10.19637/j.cnki.2305-7068.2018.04.002
    [10] ZHANG Han-xiong, HU Xiao-nong, 2018: Simulation and analysis of Chloride concentration in Zhoushan reclamation area, Journal of Groundwater Science and Engineering, 6, 150-160.  doi: 10.19637/j.cnki.2305-7068.2018.02.008
    [11] TIAN Xia, FEI Yu-hong, ZHANG Zhao-ji, LI Ya-song, DUN Yu, GUO Chun-yan, 2017: Analysis on hydrochemical characteristics of groundwater in strongly exploited area in Hutuo River Plain, Journal of Groundwater Science and Engineering, 5, 130-139.
    [12] LIN Dan, JIN Meng-gui, LI Xiu-juan, 2017: Risk assessment of heavy metals in topsoil along the banks of theYangtze River in Huangshi, China, Journal of Groundwater Science and Engineering, 5, 162-172.
    [13] CUI Zhen, YANG Po, ZHANG Zheng, 2016: Comprehensive suitability evaluation of urban geological environment in Zhengzhou-Kaifeng area, Journal of Groundwater Science and Engineering, 4, 204-212.
    [14] LIU Shu-yuan, WANG Hong-qi, 2016: Dynamic assessment of pollution risk of groundwater source area in Northern China, Journal of Groundwater Science and Engineering, 4, 333-343.
    [15] LI Jie-biao, SU Rui, YANG Jing-zhi, ZHOU Zhi-chao, JI Rui-li, ZHANG Ming, GAO Yu-feng, 2016: Distribution characteristics of tritium in the soil in Beishan area of Gansu Province, Journal of Groundwater Science and Engineering, 4, 131-140.
    [16] XIA Ri-yuan, 2016: Groundwater resources in karst area in Southern China and sustainable utilization pattern, Journal of Groundwater Science and Engineering, 4, 301-309.
    [17] YU Kai-ning, LI Jian, LI Hui, CHEN Kang, LV Bing-xu, ZHAO Long-hui, 2016: Statistical characteristics of heavy metals content in groundwater and their interrelationships in a certain antimony mine area, Journal of Groundwater Science and Engineering, 4, 284-292.
    [18] WANG Hong-ke, GUO Jiao, SHI Ying-chun, 2015: Type of major water hazards and study of countermeasures in Shennan Mining Area, Journal of Groundwater Science and Engineering, 3, 70-76.
    [19] ZHANG Shao-cai, LIU Li-jun, LIU Zhi-gang, WANG Jun-jie, CUI Qiu-ping, WANG Juan, 2014: Method for groundwater research in bedrock of mountainous area of Hebei, Journal of Groundwater Science and Engineering, 2, 97-104.
    [20] CHEN Feng, LI Lian-juan, ZHANG Hao, LI Yan, 2014: Evaluation on Water Burst (inrush) Risks on 15# Coal Seam Roof of Shigejie Coal Mine of Shaanxi Lu’an Group, Journal of Groundwater Science and Engineering, 2, 40-46.
  • 加载中

Catalog

    Figures(4)  / Tables(5)

    Article Metrics

    Article views (707) PDF downloads(116) Cited by()
    Proportional views
    Related

    JGSE-ScholarOne Manuscript Launched on June 1, 2024.

    Online Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return