• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ Scopus GeoRef AJ CNKI
Advanced Search
Volume 9 Issue 2
Jun.  2021
Turn off MathJax
Article Contents
Zhong-shuang Cheng, Chen Su, Zhao-xian Zheng, et al. 2021: Grain size characteristics and genesis of the Muxing loess in the Muling-Xingkai Plain, Northeast China. Journal of Groundwater Science and Engineering, 9(2): 152-160. doi: 10.19637/j.cnki.2305-7068.2021.02.007
Citation: Zhong-shuang Cheng, Chen Su, Zhao-xian Zheng, et al. 2021: Grain size characteristics and genesis of the Muxing loess in the Muling-Xingkai Plain, Northeast China. Journal of Groundwater Science and Engineering, 9(2): 152-160. doi: 10.19637/j.cnki.2305-7068.2021.02.007

Grain size characteristics and genesis of the Muxing loess in the Muling-Xingkai Plain, Northeast China

doi: 10.19637/j.cnki.2305-7068.2021.02.007
More Information
  • Corresponding author: sc.1219@163.com
  • Received Date: 2020-08-04
  • Accepted Date: 2021-02-05
  • Available Online: 2021-08-18
  • Publish Date: 2021-06-28
  • Thick loess is deposited on the platform in the piedmont zone of Muling-Xingkai Plain (Muxing Plain), but the genesis of the Muxing loess is still unclear. The aims of this study are to analyze the grain size characteristics of Muxing loess collected from the cores of a typical borehole (ZK1) in the piedmont zone of Muxing Plain, and to verify its genesis. The Muxing loess is mainly composed of the particles with diameter less than 50 μm, with an average content of 92.48%. The coarse silt particles with diameter of 10-50 μm are the basic composition of aeolian sediments, and their average content is 44.34% for the Muxing loess, which is the mode class among the particles with different diameters. The grain size parameters and frequency curves are similar to those of the typical aeolian sediments. The distribution characteristic of the Muxing loess in the C-M scatter diagram is consistent with that of the Xi Feng loess. In addition, the discriminant analysis shows the Muxing loess mostly consists of aeolian sediments. Therefore, it can be concluded that the Muxing loess mainly resulted from aeolian deposition based on the grain size characteristics. Muxing Plain is dominated by the monsoon climate, and the wind-blown dusts are gradually deposited after being transported over long distances.
  • 加载中
  • An ZS, Liu XD. 2000. The history and variability of East Asian monsoon climate. Chinese Science Bulletin, 45(3): 238-248. (in Chinese) doi:  10.1360/csb2000-45-3-238
    Cao Z, Zhu XD. 2014. Research on the formation reason of loess in Middle and Eastern Place in Northeast China. Journal of Changchun Normal University: Natural Science (2): 85-89. doi:  10.1016/j.apenergy.2014.05.018
    Chen PJ, Zheng XM, Zhou LM, et al. 2017. The grain size characteristics of Xiashu loess in Ningzhen area and its paleoenvironmental significance. Geological Science and Technology Information, 36(5): 7-13. (in Chinese)
    Ding ZL, Derby SE, Yang SL. 2005. Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution. Earth and Planetary Science Letters, 237(1/2): 45-55. doi:  10.1016/j.jpgl.2005.06.036
    He KH, Xie YQ, Kang CG, et al. 2009. Particle size composition and source analysis of Harbin sand dust sediments. Chinese Agricultural Science Bulletin, 25(11): 200-205. (in Chinese)
    Huang Z, Wang JL, Wang Y. 2010. Grain-size features of Quaternary sediments in Changjiang Three Gorge Reservoir of the Wushan area. Tropical Geography, 30(1): 30-33, 39. doi:  10.13284/j.cnki.rddl.001323
    Jiang GL, Liu LJ, Bi ZW, et al. 2018. Grain size characteristics of Fengning loess in Hebei and its environmental significance. Geological Science and Technology Information, 37(4): 83-89. (in Chinese) doi:  10.19509/j.cnki.dzkq.2018.0410(inChinese)
    Li CA, Zhang YF, Yuan SY. 2010. Grain size characteristics of “Wushan loess” and its indication of genesis. Earth Science-Journal of China University of Geosciences, 35(5): 779-884. (in Chinese)
    Li XS, Yang DY. 2001. A preliminary study on the grain size characteristics and genesis of Xiashu loess in Zhenjiang. Marine Geology and Quaternary Geology, 21(1): 25-31. (in Chinese) doi:  10.16562/j.cnki.0256-1492.2001.01.005(inChinese)
    Li Y, Song YG, Yan LB, et al. 2014. The formation of loess in Tacheng, Xinjiang. Journal of Geological Environment, 5(2): 127-134. (in Chinese)
    Liu DS. 1985. Loess and environment. Beijing: Science Press. (in Chinese)
    Liu JF, Guo ZT, Qiao YS. 2005. The morphological characteristics and size distribution of quartz particles in the Miocene loess-paleosoil sequence in Tai’an and their significance to the genesis. Chinese Science Bulletin, 50(24): 2806-2809. (in Chinese) doi:  10.1007/BF02878745
    Lu HY, An ZS. 1998. The paleoclimatic significance of the grain size composition of loess in the Loess Plateau. Science in China: Series D, 28(3): 278-283. (in Chinese)
    Peng SZ, Hao QZ, Wang L, et al. 2016. Geochemical and grain-size evidence for the provenance of loess deposits in the Central Shandong Mountains region, northern China. Quaternary Research, 85(2): 290-298. doi:  10.1016/j.yqres.2016.01.005
    Pye K, Tsoar H. 1987. The mechanics and geological implications of dust transport and deposition in deserts with particular reference to loess formation and dune sand diagenesis in the northern Negev, Israel. Geological Society Special Publication, 35: 139-156. doi:  10.1144/GSL.SP.1987.035.01.10
    Sahu BK. 1964. Depositional mechanisms from the size analysis of clastic sediments. Journal of SedimentaryResearch, 34(1): 73-83. doi:  10.1306/74D70FCE-2B21-11D7-8648000102C1865D
    Sun DH, Lu HY, David R. 2000. The bimodal distribution of grain size of Chinese loess and its paleoclimatic significance. Acta Sedimentologica Sinica, 18(3): 327-335. (in Chinese) doi:  10.3969/j.issn.1000-0550.2000.03.001
    Sun HY, Song YJ, Li Y, et al. 2018. Magnetic susceptibility, grain size characteristics and paleoclimatic significance of bole loess in the northern foot of Tianshan Mountains. Journal of Earth Environment, 9(2): 123-136. (in Chinese)
    Wang XY, Lu HY, Zhang HZ, et al. 2018. Distribution, provenance, and onset of the Xiashu loess in Southeast China with paleoclimatic implications. Journal of Asian Earth Sciences, 155: 180-187. (in Chinese) doi:  10.1016/j.jseaes.2017.11.022
    Wang ZD, Huang CC, Yang HJ. 2018a. Provenance characteristics and evolution of loess grain size indicators from the eastern foot of Liupan Mountain since the Late Pleistocene. Geographical Sciences, 38(5): 818-826. doi:  10.13249/j.cnki.sgs.2018.05.020
    Wang ZD, Huang CC, Zhou YL. 2018b. Variation characteristics and paleoclimate significance of Holocene loess-paleosoil sequence in eastern Guanzhong. Advances in Earth Science, 33(3): 293-304. (in Chinese) doi:  10.11867/j.issn.1001-8166.2018.03.0293(inChinese)
    Wei CY, Li CA, Kang CG. 2015. Grain size characteristics of the loess around the mountain in Harbin and its indications of genesis. Earth Science-Journal of China University of Geosciences, 40(12): 1945-1954. (in Chinese) doi:  10.3799/dqkx.2015.175
    Wu C, Zheng XM, Wang H. 2019. Multivariate statistical analysis of grain size and sedimentary environment discrimination of the first hard clay layer in the Yangtze River Delta. Acta Sedimentologica Sinica, 037(001): 115-123. (in Chinese) doi:  10.14027/j.issn.1000-0550.2018.100
    Wu K, Peng HX, Shi R. 2014. Analysis of the grain size characteristics and causes of loess in the Three Gorges area of the Yangtze River. Journal of Central China Normal University (Natural Science Edition), 48(2): 284-289. (in Chinese) doi:  10.3969/j.issn.1000-1190.2014.02.026
    Zeng L, Wu HF, Lyu AQ, et al. 2016. New magnetostratigraphic and pedostratigraphic investigations of loess deposits in north-east China and their implications for regional environmental change during the Mid-Pleistocene climatic transition. Journal of Quaternary Science, 31(1): 20-32. DOI:  10.1002/jqs.2829.
    Zhang YX, Chen DL, Xue XX. 1998. Genetic types of late Neogene red clay in the middle reaches of the Yellow River. Journal of Stratigraphy, 22(1): 10-15.
    Zhu XY, Liu LW, Meng XQ. 2019. Grain size characteristics and source enlightenment of the Wushan loess in the Yangtze Three Gorges area. Journal of Earth Environment, 10(6): 579-589. (in Chinese) doi:  10.7515/JEE192023
  • Relative Articles

    [1] Guo-Qiang Yu, Qian Wang, Li-Feng Zhu, Xia Zhang, 2023: Regulation of vegetation pattern on the hydrodynamic processes of erosion on hillslope in Loess Plateau, China, Journal of Groundwater Science and Engineering, 11, 4-19.  doi: 10.26599/JGSE.2023.9280002
    [2] Shuai-chao Wei, Feng Liu, Wei Zhang, Gui-ling Wang, Ruo-xi Yuan, Yu-zhong Liao, Xiao-xue Yan, 2022: Research on the characteristics and influencing factors of terrestrial heat flow in Guizhou Province, Journal of Groundwater Science and Engineering, 10, 166-183.  doi: 10.19637/j.cnki.2305-7068.2022.02.006
    [3] Chao Song, Man Liu, Qiu-yao Dong, Lin Zhang, Pan Wang, Hong-yun Chen, Rong Ma, 2022: Variation characteristics of CO2 in a newly-excavated soil profile, Chinese Loess Plateau: Excavation-induced ancient soil organic carbon decomposition, Journal of Groundwater Science and Engineering, 10, 19-32.  doi: 10.19637/j.cnki.2305-7068.2022.01.003
    [4] Liu YANG, Ying-ping ZHANG, Xue-ru WEN, Li-xin PEI, Bing LIU, 2020: Characteristics of groundwater and urban emergency water sources optimazation in Luoyang, China, Journal of Groundwater Science and Engineering, 8, 298-304.  doi: 10.19637/j.cnki.2305-7068.2020.03.010
    [5] ZHANG Ying, LUO Jun, FENG Jian-yun, 2020: Characteristics of geothermal reservoirs and utilization of geothermal resources in the southeastern coastal areas of China, Journal of Groundwater Science and Engineering, 8, 134-142.  doi: 10.19637/j.cnki.2305-7068.2020.02.005
    [6] YANG Hai-jun, DONG Jian-xing, SUN Dong, HUANG Rui, 2019: Characteristics of shallow geothermal fields in major cities of Tibet Autonomous Region, Journal of Groundwater Science and Engineering, 7, 77-85.  doi: 10.19637/j.cnki.2305-7068.2019.01.008
    [7] MAO Xiao-ping, LI Ke-wen, WANG Xin-wei, 2019: Causes of geothermal fields and characteristics of ground temperature fields in China, Journal of Groundwater Science and Engineering, 7, 15-28.  doi: 10.19637/j.cnki.2305-7068.2019.01.002
    [8] LI Bo, LI Xue-mei, 2018: Characteristics of karst groundwater system in the northern basin of Laiyuan Spring area, Journal of Groundwater Science and Engineering, 6, 261-269.  doi: 10.19637/j.cnki.2305-7068.2018.04.002
    [9] ZHANG Yu-qin, WANG Guang-wei, WANG Shi-qin, YUAN Rui-qiang, TANG Chang-yuan, SONG Xian-fang, 2018: Hydrochemical characteristics and geochemistry evolution of groundwater in the plain area of the Lake Baiyangdian watershed, North China Plain, Journal of Groundwater Science and Engineering, 6, 220-233.  doi: 10.19637/j.cnki.2305-7068.2018.03.007
    [10] LI Xiao-hang, WANG Rui, LI Jian-feng, 2018: Study on hydrochemical characteristics and formation mechanism of shallow groundwater in eastern Songnen Plain, Journal of Groundwater Science and Engineering, 6, 161-170.  doi: 10.19637/j.cnki.2305-7068.2018.03.001
    [11] ZHU Wei, TANG Wen, LIU Qiang, ZHANG Mei-gui, 2017: Analysis on variation characteristics of geothermal response in Liaoning Province, Journal of Groundwater Science and Engineering, 5, 336-342.
    [12] JIANG Ti-sheng, QU Ci-xiao, WANG Ming-yu, SUN Yan-wei, HU Bo, CHU Jun-yao, 2017: Analysis on temporal and spatial variations of groundwater hydrochemical characteristics in the past decade in southern plain of Beijing, China, Journal of Groundwater Science and Engineering, 5, 235-248.
    [13] TIAN Xia, FEI Yu-hong, ZHANG Zhao-ji, LI Ya-song, DUN Yu, GUO Chun-yan, 2017: Analysis on hydrochemical characteristics of groundwater in strongly exploited area in Hutuo River Plain, Journal of Groundwater Science and Engineering, 5, 130-139.
    [14] SONG Chao, HAN Gui-lin, WANG Pan, SHI Ying-chun, HE Ze, 2017: Hydrochemical and isotope characteristics of spring water discharging from Qiushe Loess Section in Lingtai, northwestern China and their implication to groundwater recharge, Journal of Groundwater Science and Engineering, 5, 364-373.
    [15] LI Jie-biao, SU Rui, YANG Jing-zhi, ZHOU Zhi-chao, JI Rui-li, ZHANG Ming, GAO Yu-feng, 2016: Distribution characteristics of tritium in the soil in Beishan area of Gansu Province, Journal of Groundwater Science and Engineering, 4, 131-140.
    [16] ZHANG Wei, SHI Jian-sheng, XU Jian-ming, LIU Ji-chao, DONG Qiu-yao, FAN Shu-xian, 2016: Dynamic influence of Holocene characteristics on vadose water in typical region of central North China Plain, Journal of Groundwater Science and Engineering, 4, 247-258.
    [17] YI Qing, GE Li-qiang, CHENG Yan-pei, DONG Hua, LIU Kun, ZHANG Jian-kang, YUE Chen, 2015: Compilation of Groundwater Quality Map and study of hydrogeochemical characteristics of groundwater in Asia, Journal of Groundwater Science and Engineering, 3, 176-185.
    [18] CHANG Yuan, DONG Qi, , LI Xi-tao, NI Wen-juan, 2015: Research on the gully forming in the gully region of Yanhe River Basin and process of geological disasters, Journal of Groundwater Science and Engineering, 3, 30-38.
    [19] MA Shao-bing, ZHOU Jun, LIANG Peng, SU Yao-ming, 2014: Characteristics-based classification research on typical petroleum contaminants of groundwater, Journal of Groundwater Science and Engineering, 2, 41-47.
    [20] SU Chen, XU Cheng-yun, CHEN Zong-yu, WEI wen, 2014: Comparison of hydrogeological characteristics between the Sanjiang Plain and the Amur River Basin, Journal of Groundwater Science and Engineering, 2, 26-34.
  • 加载中

Catalog

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (712) PDF downloads(48) Cited by()
    Proportional views
    Related

    Welcome to Journal of Groundwater Science and  Engineering!

    Quick Submit

    Online Submission   E-mail Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return