• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ Scopus GeoRef AJ CNKI
Advanced Search
Volume 9 Issue 4
Dec.  2021
Turn off MathJax
Article Contents
Nguyen VH. 2021. Determination of groundwater solute transport parameters in finite element modelling using tracer injection and withdrawal testing data. Journal of Groundwater Science and Engineering, 9(4): 292-303 doi:  10.19637/j.cnki.2305-7068.2021.04.003
Citation: Nguyen VH. 2021. Determination of groundwater solute transport parameters in finite element modelling using tracer injection and withdrawal testing data. Journal of Groundwater Science and Engineering, 9(4): 292-303 doi:  10.19637/j.cnki.2305-7068.2021.04.003

Determination of groundwater solute transport parameters in finite element modelling using tracer injection and withdrawal testing data

doi: 10.19637/j.cnki.2305-7068.2021.04.003
More Information
  • Corresponding author: N_V_Hoang_VDC@yahoo.com
  • ①Trieu Duc Huy (Project head). 2015. Groundwater protection in large cities (city: Hanoi). Vietnam National Center for Water Resources Planning and Investigation-MoNRE.
  • ①Tong Thanh Tung. 2015. Specialized report: Interpretation and analysis of aquifer parameters for pumping test at group-well test CHN5 in Nghiem Xuyen-Thuong Tin-Hanoi. Project “Groundwater protection in large cities (city: Hanoi)”. Vietnam National Center for Water Resources Planning and Investigation-MoNRE.
  • Received Date: 2021-05-05
  • Accepted Date: 2021-10-09
  • Available Online: 2021-12-20
  • Publish Date: 2021-12-15
  • The groundwater tracer injection and withdrawal tests are often carried out for the determination of aquifer solute transport parameters. However, the parameter analyses encounter a great difficulty due to the radial flow nature and the variability of the temporal boundary conditions. An adaptive methodology for the determination of groundwater solute transport parameters using tracer injection and withdrawal test data had been developed and illustrated through an actual case. The methodology includes the treatment of the tracer boundary condition at the tracer injection well, the normalization of tracer concentration, the groundwater solute transport finite element modelling and the method of least squares to optimize the parameters. An application of this methodology was carried out in a field test in the South of Hanoi city. The tested aquifer is Pleistocene aquifer, which is a main aquifer and has been providing domestic water supply to the city since the French time. Effective porosity of 0.31, longitudinal dispersivity of 2.2 m, and hydrodynamic dispersion coefficients from D = 220 m2/d right outside the pumping well screen to D =15.8 m2/d right outside the tracer injection well screen have been obtained for the aquifer at the test site. The minimal sum of squares of the differences between the observed and model normalized tracer concentration is 0.00119, which is corresponding to the average absolute difference between observed and model normalized concentrations of 0.035 5 (while 1 is the worst and 0 is the best fit).
  • ①Trieu Duc Huy (Project head). 2015. Groundwater protection in large cities (city: Hanoi). Vietnam National Center for Water Resources Planning and Investigation-MoNRE.
    ①Tong Thanh Tung. 2015. Specialized report: Interpretation and analysis of aquifer parameters for pumping test at group-well test CHN5 in Nghiem Xuyen-Thuong Tin-Hanoi. Project “Groundwater protection in large cities (city: Hanoi)”. Vietnam National Center for Water Resources Planning and Investigation-MoNRE.
  • 加载中
  • Barone FS, Rowe RK, Quigley RM. 1992. A laboratory estimation of diffusion and adsorption coefficients for several volatile organics in natural clayey soils. Journal of Contaminant Hydrology, 10(3): 225-250. doi:  10.1016/0169-7722(92)90062-J
    Bear J, Verruijt A. 1987. Modeling groundwater flow and pollution. D Reidel Publishing Company, Dordrecht: Holland.
    Brouyère S. 2003. Modeling tracer injection and well-aquifer interactions: A new mathematical and numerical approach. Water Resource Research, 39(3): 1070-1075. doi:  10.1029/2002WR001813
    Do Van Binh. 2013. Source and formation of the arsenic in ground water in Hanoi, Vietnam. Journal of Groundwater Science and Engineering, 1(1): 102-108.
    Dong P. 1998. Mathematical modelling of coastal processes. Proceedings of the Forty Ninth Scottish Universities “Physical processes in the Coastal Zone: Computer modelling and remote sensing”. 95-108.
    Drost W, Klotz D, Koch A et al. 1968. Point dilution methods of investigating ground water flow by means of radioisotopes. Water Resource Research, 4(1): 125-146. doi:  10.1029/WR004i001p00125
    Fetter CW. 2001. Applied Hydrogeology. Prentice Hall Inc. New Jersey 07458.
    Fried JJ. 1975. Groundwater pollution: Theory, methodology, modelling, and practical rules. Elsevier Scientific Publishing Company. 330.
    Gelhar LW, Welty C, Rehfeldt KR. 1992. A critical review of data on field-scale dispersion in aquifers. Water Resource Research, 28(7): 1955-1975. doi:  10.1029/92WR00607
    Glen BC, Welty C, Buxton HT. 1999. Design and analysis of tracer tests to determine effective porosity and dispersivity in fractured sedimentary rocks, Newark basin, New Jersey. US Geological Survey. Water-Resources Investigations Report 98-4126A.
    Gutierrez A, Klinka T, Thiery D, et al. 2013. TRAC, a collaborative computer tool for tracer-test interpretation. EPJ Web of Conferences 50: 03002. doi:  10.1051/epjconf/20135003002
    Hall SH. 1996. Practical single-well tracer methods for aquifer testing. In: Tenth National Outdoor Action Conference and Exposition, National Groundwater Association, Columbus, Ohio, USA, 11.
    Honjo Y, Sato K, Nguyen Van Hoang. 1997. Groundwater of Hanoi, Vietnam: Parameter identification by the Bayesian method. Proceedings of Theme C: Groundwater: An Endangered Resource (463-468), the 27th IAHR Congress California, USA.
    Huyakorn PS, Pinder GF. 1983. Computational methods in subsurface flow. Academic Press, New York: 473.
    Keisuke K, Takeshi H, An Thuan Do, et al. 2017. Groundwater recharge in suburban areas of Hanoi, Vietnam: Effect of decreasing surface-water bodies and land-use change. Hydrogeology Journal, 25: 727-742.
    Klotz D, Seiler K P, Moser H. 1980. Dispersivity and velocity relationship from laboratory and field experiments. Journal of Hydrology, 45(4): 169-184.
    Martyna G, Emiliano S, Daniel S, et al. 2021. Arsenic behavior in groundwater in Hanoi (Vietnam) influenced by a complex biogeochemical network of iron, methane, and sulfur cycling. Journal of Hazardous Materials, 407(5).
    Nguyen Van Hoang. 2018. Study on the finite element modeling software for simulation of groundwater flow and solute transport by groundwater-application to aquifer in central plain of Vietnam. Codded ĐT. NCCB-ĐHƯD. 2012-G/04 supported by NAFOSTED-MOST.
    Novakowski KS. 1992. An evaluation of boundary conditions for one-dimensional solute transport: 1-Mathematical development. Water Resource Research, 28(9): 2399-2410. doi:  10.1029/92WR00593
    Rifai MNE, Kaufman WJ, Todd DK. 1956. Dispersion phenomena in laminar flow through porous media. Sanitary Engineering Research Laboratory and Division of Civil Engineering, University of California, 93(2): 157.
    Sharma PK, Sawant VA, Shukla SK, et al. 2014. Experimental and numerical simulation of contaminant transport through layered soil. International Journal of Geotechnical Engineering, 8(4): 345-351. doi:  10.1179/1939787913Y.0000000014
    Shook GM, Ansley SL, Wylie A. 2004. Tracers and Tracer Testing: Design, Implementation, and Interpretation Methods. US Department of Energy Office of Environmental Management. Report NEEL/EXT-03-01466.
    Welty C, Gelhar LW. 1994. Evaluation of longitudinal dispersivity from non-uniform flow tracer tests. Journal of Hydrology, 153(1): 71-102.
    Yan X, Qian J, Ma L. 2019. Experimental study on the velocity-dependent dispersion of the solute transport in different porous media. Journal of Groundwater Science and Engineering, 7(2): 106-114.
    Zhou L. 2002. Solute transport in layered and heterogeneous soils. Louisiana State University and Agricultural and Mechanical College. Ph. D. Thesis.
    Zhu H, Jia C, Xu Y, et al. 2018. Study on numerical simulation of organic pollutant transport in groundwater northwest of Laixi. Journal of Groundwater Science and Engineering, 6(4): 106-1114.
    Zienkiewicz OC, Morgan K. 1983. Finite Elements and Approximation. Academic Press.
    Zlotnik VA, Logan J D. 1996. Boundary Conditions for Convergent Radial Tracer Tests and Effect of Well Bore Mixing Volume. Papers in the Earth and Atmospheric Sciences: 159.
  • Relative Articles

    [1] Qing-shan Li, Xiao-bing Kang, Mo Xu, Bang-yan Mao, 2023: Effects of coal mining and tunnel excavation on groundwater flow system in karst areas by modeling: A case study in Zhongliang Mountain, Chongqing, Southwest China, Journal of Groundwater Science and Engineering, 11, 391-407.  doi: 10.26599/JGSE.2023.9280031
    [2] Yi-hang Gao, Jun-hui Shen, Lin Chen, Xiao Li, Shuang Jin, Zhen Ma, Qing-hua Meng, 2023: Influence of underground space development mode on the groundwater flow field in Xiong’an new area, Journal of Groundwater Science and Engineering, 11, 68-80.  doi: 10.26599/JGSE.2023.9280007
    [3] Tian Nan, Chen Yue, Wen-geng Cao, En-lin Mu, Yang Ou, Zhen-sheng Lin, Wei Kang, 2023: Effective groundwater level recovery from mining reduction: Case study of Baoding and Shijiazhuang Plain area, Journal of Groundwater Science and Engineering, 11, 278-293.  doi: 10.26599/JGSE.2023.9280023
    [4] Yu-kun Sun, Feng Liu, Hua-jun Wang, Xin-zhi Gao, 2022: Numerical simulation of operation performance on production and injection of a double well geothermal system in Kailu Basin, Inner Mongolia, Journal of Groundwater Science and Engineering, 10, 196-208.  doi: 10.19637/j.cnki.2305-7068.2022.02.008
    [5] Xin Ma, Dong-guang Wen, Guo-dong Yang, Xu-feng Li, Yu-jie Diao, Hai-hai Dong, Wei Cao, Shu-guo Yin, Yan-mei Zhang, 2021: Potential assessment of CO2 geological storage based on injection scenario simulation: A case study in eastern Junggar Basin, Journal of Groundwater Science and Engineering, 9, 279-291.  doi: 10.19637/j.cnki.2305-7068.2021.04.002
    [6] Akoanung Ayaba ABENDONG, ENDENE Emmanuel, Enoh Jeanot FONGOH, AKOACHERE Richard Ayuk II, NJENG Napoleon Ngenge, 2019: A trigger-tube tracer dilution technique for determining Darcy and apparent velocities of groundwater in dug wells: A case study on phreatic aquiferous formation in Bamenda -Cameroon, Journal of Groundwater Science and Engineering, 7, 182-194.  doi: 10.19637/j.cnki.2305-7068.2019.02.009
    [7] YAN Xiao-san, QIAN Jia-zhong, MA Lei, 2019: Experimental study on the velocity-dependent dispersion of the solute transport in different porous media, Journal of Groundwater Science and Engineering, 7, 106-114.  doi: 10.19637/j.cnki.2305-7068.2019.02.002
    [8] LI Lu-lu, SU Chen, HAO Qi-chen, SHAO Jing-li, 2018: Numerical simulation of response of groundwater flow system in inland basin to density changes, Journal of Groundwater Science and Engineering, 6, 7-17.  doi: 10.19637/j.cnki.2305-7068.2018.01.002
    [9] ZHU Heng-hua, JIA Chao, XU Yu-liang, YU Ze-min, YU Wei-jiang, 2018: Study on numerical simulation of organic pollutant transport in groundwater northwest of Laixi, Journal of Groundwater Science and Engineering, 6, 293-305.  doi: 10.19637/j.cnki.2305-7068.2018.04.005
    [10] ZHANG Han-xiong, HU Xiao-nong, 2018: Simulation and analysis of Chloride concentration in Zhoushan reclamation area, Journal of Groundwater Science and Engineering, 6, 150-160.  doi: 10.19637/j.cnki.2305-7068.2018.02.008
    [11] WANG Yao, HOU Li-sheng, CAI Yun-long, 2017: Scale effects of eroded sediment transport in Wujiang River Basin, Guizhou Province, China, Journal of Groundwater Science and Engineering, 5, 182-192.
    [12] ZHOU Xun, WANG Xiao-cui, CAO Qin, LONG Mi, ZHENG Yu-hui, GUO Juan, SHEN Xiao-wei, ZHANG Yu-qi, TA Ming-ming, CUI Xiang-fei, 2016: A discussion of up-flow springs, Journal of Groundwater Science and Engineering, 4, 279-283.
    [13] CHENG Tang-pei, LIU Xing-wei, SHAO Jing-Li, CUI Ya-li, 2016: Review of the algebraic linear methods and parallel implementation in numerical simulation of groundwater flow, Journal of Groundwater Science and Engineering, 4, 12-17.
    [14] FENG Guan-hong, XU Tian-fu, ZHU Hui-xing, 2016: Dynamics of fluid and heat flow in a CO2-based injection-production geothermal system, Journal of Groundwater Science and Engineering, 4, 377-388.
    [15] SUN Dong-sheng, ZHAO Wei-hua, LI A-wei, ZHANG An-bin, 2015: Analysis on method for effective in-situ stress measurement in hot dry rock reservoir, Journal of Groundwater Science and Engineering, 3, 9-15.
    [16] Ya-feng CHEN, Qiang ZHANG, Shi-jie XIE, 2014: Application of Tracer Experiments to Predict Leakage Channel-An Example of a Power Plant in Zhen'An, Journal of Groundwater Science and Engineering, 2, 49-55.
    [17] , 2014: The Experimental Investigations on Motion Features of Groundwater Flow near the Pumping Well, Journal of Groundwater Science and Engineering, 2, 1-11.
    [18] , 2013: Structural Control on Groundwater Distribution and Flow in the South of Ningxia Hui Autonomous Region, China, Journal of Groundwater Science and Engineering, 1, 1-8.
    [19] Wang Ping, Han Zhantao, Li Yasong, Chen Kang, Lv Xiaoli, Jian Ming, 2013: The Role of Groundwater Leakage through Deep Wells for the Deformation of Groundwater Flow: a Case Study in Cangzhou Area, Journal of Groundwater Science and Engineering, 1, 80-87.
    [20] Zong-jun Gao, Yong-gui Liu, 2013: Groundwater Flow Driven by Heat, Journal of Groundwater Science and Engineering, 1, 22-27.
  • 加载中

Catalog

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (516) PDF downloads(52) Cited by()
    Proportional views
    Related

    Welcome to Journal of Groundwater Science and  Engineering!

    Quick Submit

    Online Submission   E-mail Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return