Citation: | Muthamilselvan A, Preethi B. 2022. Spatial confirmation of termite mounds as Bio-geo indicator for groundwater occurrences using ground magnetic survey: A case study from Perambalur Region of Tamil Nadu, India. Journal of Groundwater Science and Engineering, 10(2): 184-195 doi: 10.19637/j.cnki.2305-7068.2022.02.007 |
Abe SS, Yamamoto S, Wakatsuki T. 2009. Soilparticle selection by the mound-building termite Macrotermes bellicosus on a sandy loam soil catena in a Nigerian tropical savanna. Journal of Tropical Ecology, 25: 449-452. doi: 10.1017/S0266467409006142
|
Adagunodo TA, Sunmonu A. Adeniji A, 2015. An overview of magnetic method in mineral exploration. Journal of Global Ecology and Environment, 3(1): 13-28.
|
Ahmed II, Jamilu B, Pradhan, B, et al. 2019. Aquifer potential assessment in termites manifested locales using Geo-electrical and surface hydraulic measurement parameters. Sensors, 19(9): 2107.
|
Balasubramanian, A. 2007. Methods of groundwater exploration. Centre for Advanced Studies in Earth Science University of Mysore, Mysore-6.
|
Bonachela JA, Pringle RM, Sheffer E, et al. 2015. Termite mounds can increase the robustness of dryland ecosystems to climatic change. Science, 347: 651-655.
|
Bottinelli N, Jouquet P, Grimaldi M, et al. 2014. Why is the influence of soil macrofauna on soil structure only considered by soil ecologists? Soil and Tillage Research, 146: 118–124.
|
Dangerfield JM, Mccarthy TS, Ellery WN. 1998. The mound-building termite Macrotermes michaelseni as an ecosystem engineer. Journal of Tropical Ecology, 14(4): 507-520.
|
Dowuona GNN, Atwere P, Dubbin W, et al. 2012. Characteristics of termite mounds and associated Acrisols in the coastal savanna zone of Ghana and impact on hydraulic conductivity. Natural Science, 4(7): 423-437.
|
Dransfield MH, Buckingham MJ, van Kann FJ. 1994. Lithological mapping by correlating magnetic and gravity gradient airborne measurements. Journal Exploration Geophysics, 25(1): 25-30.
|
Endubu M, Kombele BM, Litucha BM, et al. 1992. Prospects for using termite mounds to improve the fertility of tropical soils: Pot experiments. Tropicultura, 10: 51-54.
|
Fufa F, Alemayehu E, Lennartz B. 2013. Defluoridation of groundwater using termite mound. Water Air Soil Pollution, 224(5): 1552.
|
Grant FS, Dodds J. 1972. MAGMAP FFT processing system development notes: Paterson, Grant and Watson Limited.
|
Hinze WJ. 1990. The role of gravity and magnetic methods in engineering and environmental studies. In: Ward SH (ed) Geotechnical and environmental geophysics I, review and tutorial. SEG, Tulsa: 75-126.
|
Hu YW, Zhang L, Deng BL, et al. 2017. The non-additive effects of temperature and nitrogen deposition on CO2 emissions, nitrification, and nitrogen mineralization in soils mixed with termite nests. Catena, 154: 12-20.
|
Igwesi ID, Umego NM. 2013. Interpretation of aeromagnetic anomalies over some parts of lower Benue Trough using spectral analysis technique. International Journal of Science Technolofy Research. 2(8): 153-165.
|
Jamilu Bala Ahmed II, Biswajeet Pradhan. 2019. Spatial assessment of termites interaction with groundwater potential conditioning parameters in Keffi, Nigeria. Journal of Hydrology, 578: 124012.
|
Jouquet P, Barré P, Lepage M, et al. 2005. Impact of subterranean fungus-growing termites (Isoptera, Macrotermitiane) on chosen soil properties in a West African savanna. Biology and Fertility of Soils, 41(5): 365-370.
|
Lingerew Nebere, 2015. Reduction to the pole and analytic signal interpretation techniques of magnetic data in equatorial area, Ethiopia. International Journal of Scientific Engineering and Research (IJSER), 466-468.
|
Liu K, Luo X, Jiao JJ, et al. 2021. Gene abundances of AOA, AOB, and anammox controlled by groundwater chemistry of the Pearl River Delta. China, China Geology, 4: 463-475. doi: 10.31035/cg2021054
|
Liu X, Zuo R, Wang JS, et al. 2021. Advances in researches on ammonia, nitrite and nitrate on migration and transformation in the groundwater level fluctuation zone. Hydrogeology & Engineering Geology, 48(2): 27-36. (in Chinese)
|
Muthamilselvan A, Srimadhi K, Nandhini R, et al. 2017. Spatial confirmation of major lineament and groundwater exploration using ground magnetic method near mecheri village, salem district of Tamil Nadu, India. Journal of Geology & Geophysics, 6(1): 274.
|
Muthamilselvan A, Monika G, 2020. Mineral exploration around suriyamalai batholith of central tamil nadu, India; A magnetic and remote sensing approach. Asian Journal of Multidisciplinary Studies, 8(11): 8-21.
|
Muthamilselvan A. 2021. Identification of suitable sites for open and bore well using ground magnetic survey. Journal of Groundwater Science and Engineering, 9(3): 256-268.
|
MacLeod IN, Jones K, Dai TF. 1993. 3-D analytic signal in the interpretation of total magnetic field data at low magnetic latitudes. Exploration Geophysics, 24(3-4): 679-687.
|
MacLeod IN, Jones K, Dai TF. 2000. 3-D analytic signal in the interpretation of total magnetic field data at low magnetic latitudes (Research papers Geosoft Inc.) Omowumi Ademila. 2017. Aeromagnetic characterization of parts of Ondo and Ekiti States, Southwestern Nigeria. Environmental and Earth Sciences Research Journal, 4(3): 66-75.
|
Nabighian MN. 1972. The analytic signal of twodimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation. Geophysics, 37: 507-517.
|
Subasinghe ND, Charles WKDGDR, De Silva SN. 2014. Analytical signal and reduction to pole interpretation of total magnetic field data at eppawala phosphate deposit. Journal of Geoscience and Environment Protection, 2: 181-189. doi: 10.4236/gep.2014.23023
|
Onwuemesi AG. 1997. One dimensional spectral analysis of aeromagnetic anomalies and curie depth isotherm in Anambra Basin of Nigeria. Journal of Geodynamics, 23(2): 95-107.
|
Reid AB, Allsop JM, Granser H, et al. 1990. Magnetic interpretation in three dimensions using Euler Deconvolution. Geophysics, 55: 80-90. doi: 10.1190/1.1442774
|
Shanti Rajagopalan, 2003. Analytic signal vs. reduction to pole: Solutions for low magnetic latitudes. ASEG extended abstracts, 2: 1-4.
|
Sharma PV. 1997. Environmental and engineering geophysics: Cambridge University Press.
|
Sultan Awad Sultan Araffa, Hassan S. Sabet, Ahmed M, et al. 2015. Integrated Geophysical Interpretation on the Groundwater Aquifer (At the North Western Part of Sinai, Egypt) IJISET - International Journal of Innovative Science, Engineering & Technology, 2(12): 501-522.
|
Roberts RL, Hinze WJ, Leap DI. 1990. Data enhancement procedures on magnetic data from landfill investigations. In: Ward SH(ed) Geotechnical and environmental geophysics, Environmental and Groundwater. SEG, Tulsa, 2, 261–266.
|
Telford WM, Geldart LP, Sheriff RE. 1990. Applied Geophysics, Cambridge University Press.
|
Thompson DT. 1982. EULDPH- a new technique for making computer-assisted depth estimates from magnetic data. Geophysics, 47: 31-37. doi: 10.1190/1.1441278
|
Umeanoh DC, Ofoha CC, Ugwu SA. 2018. Spectral analysis and euler deconvolution of regional aeromagnetic data to delineate sedimentary thickness in Mmaku Area, south eastern Nigeria. World Scientific News, 109: 26-42.
|
UNESCO, 1998. Unesco handbook for groundwater investigations. Technical Report, ITC, Netherlands.
|
Watson JP. Water Movement in Two Termite Mounds in Rhodesia. Journal of Ecology, 57(2): 441-451.
|
Zhang D, Liu XL, Wang EZ. 2020. A universal expression of the equivalent permeability of heterogeneous porous media. Hydrogeology & Engineering Geology, 47(4): 35-42. (in Chinese)
|
[1] | Min Wang, 2023: Opportunities and challenges for geological work in China in the new era, Journal of Groundwater Science and Engineering, 11, 1-3. doi: 10.26599/JGSE.2023.9280001 |
[2] | Ertekin Can, Ulugergerli Emin U, 2022: Geoelectrical survey over perched aquifers in the northern part of Upper Sakarya River Basin, Türkiye, Journal of Groundwater Science and Engineering, 10, 335-352. doi: 10.19637/j.cnki.2305-7068.2022.04.003 |
[3] | Chun-lei Liu, Chen-ming Lu, Ya-song Li, Qi-chen Hao, Sheng-wei Cao, 2022: Genetic model and exploration target area of geothermal resources in Hongtang Area, Xiamen, China, Journal of Groundwater Science and Engineering, 10, 128-137. doi: 10.19637/j.cnki.2305-7068.2022.02.003 |
[4] | Rustadi, I Gede Boy Darmawan, Nandi Haerudin, Agus Setiawan, Suharno, 2022: Groundwater exploration using integrated geophysics method in hard rock terrains in Mount Betung Western Bandar Lampung, Indonesia, Journal of Groundwater Science and Engineering, 10, 10-18. doi: 10.19637/j.cnki.2305-7068.2022.01.002 |
[5] | Muthamilselvan A Dr, Sekar Anamika, Ignatius Emmanuel, 2022: Identification of groundwater potential in hard rock aquifer systems using Remote Sensing, GIS and Magnetic Survey in Veppanthattai, Perambalur, Tamilnadu, Journal of Groundwater Science and Engineering, 10, 367-380. doi: 10.19637/j.cnki.2305-7068.2022.04.005 |
[6] | Zhao-xian Zheng, Xiao-shun Cui, Pu-cheng Zhu, Si-jia Guo, 2021: Sensitivity assessment of strontium isotope as indicator of polluted groundwater for hydraulic fracturing flowback fluids produced in the Dameigou Shale of Qaidam Basin, Journal of Groundwater Science and Engineering, 9, 93-101. doi: 10.19637/j.cnki.2305-7068.2021.02.001 |
[7] | A Muthamilselvan, 2021: Identification of suitable sites for open and bore well using ground magnetic survey, Journal of Groundwater Science and Engineering, 9, 256-268. doi: 10.19637/j.cnki.2305-7068.2021.03.008 |
[8] | Ai-min WU, Ai-bing HAO, Hai-peng GUO, Jing-tao LIU, Er-yong ZHANG, Huang WANG, Xin-feng WANG, Xue-ru WEN, Cui-guang ZHANG, 2020: Main progress and prospect for China's hydrogeological survey, Journal of Groundwater Science and Engineering, 8, 195-209. doi: 10.19637/j.cnki.2305-7068.2020.03.001 |
[9] | Zhi-yuan LIU, Ding TAN, Zhi-bin CHEN, Yun-fei WEI, Quan CHAI, Xiao-hang CHEN, 2020: Study on multiple induced polarization parameters in groundwater exploration in Bashang poverty alleviation area of Heibei Province, China, Journal of Groundwater Science and Engineering, 8, 274-280. doi: 10.19637/j.cnki.2305-7068.2020.03.007 |
[10] | SUN Dong, LIU Xin-ze, YANG Hai-jun, CAO Nan, ZHANG Zhi-peng, CHEN Yin-song, LI Da-meng, 2019: Analysis of hydrogeolgical characteristics and water environmental impact pathway of typical shale gas exploration and development zones in Sichuan Basin, China, Journal of Groundwater Science and Engineering, 7, 195-213. doi: 10.19637/j.cnki.2305-7068.2019.03.001 |
[11] | SONG Hong-wei, MU Hai-dong, XIA Fan, 2018: Analyzing the differences of brackish-water in the Badain Lake by geophysical exploration method, Journal of Groundwater Science and Engineering, 6, 187-192. doi: 10.19637/j.cnki.2305-7068.2018.03.004 |
[12] | CAO Yan-ling, CHENG Gang-jian, ZHAO Cheng-liang, WANG Tao, JIANG Hai-yang, 2018: Application of CSAMT in hydrogeology exploration in Shandong Province–An example from geothermal exploration in Changdao County (south four islands), Journal of Groundwater Science and Engineering, 6, 58-64. doi: 10.19637/j.cnki.2305-7068.2018.01.007 |
[13] | WU Ting-wen, WANG Li-huan, YANG Xiang-kui, 2017: Evaluation of groundwater potential and eco-geological environment quality in Sanjiang Plain of Heilongjiang Province, Journal of Groundwater Science and Engineering, 5, 193-201. |
[14] | WU Jian-qiang, WU Xia-yi, 2016: Geological environment impact analysis of a landfill by the Yangtze River, Journal of Groundwater Science and Engineering, 4, 96-102. |
[15] | ZHOU Zhi-chao, WANG Ju, SU Rui, GUO Yong-hai, LI Jie-biao, JI Rui-li, ZHANG Ming, DONG Jian-nan, 2016: Study on the residence time of deep groundwater for high-level radioactive waste geological disposal, Journal of Groundwater Science and Engineering, 4, 52-59. |
[16] | LIU Ji-chao, SHI Jian-sheng, GAO Ye-xin, REN Zhan-bing, 2016: Exploration on compound water circulation system to solve water resources problems of North China Plain, Journal of Groundwater Science and Engineering, 4, 229-237. |
[17] | ZHANG Jian-kang, WEN Xue-ru, GAO Yun, YUE Chen, YI Qing, 2015: Analysis of the negative effects of groundwater exploitation on geological environment in Asia, Journal of Groundwater Science and Engineering, 3, 202-212. |
[18] | ZHAI Yuan-zheng, JIANG Shi-jie, TENG Yan-guo, WANG Jin-sheng, GU Hong-biao, XIE Liang, YIN Zhi-hua, 2015: Thirty years (1984-2014) of groundwater science teaching and research in China: A dissertation-based bibliometric survey, Journal of Groundwater Science and Engineering, 3, 222-237. |
[19] | LIU Chang-Rong, HUANG Shuang-Bing, ZHANG Li-Zhong, 2014: New Mine Geological Environment Impact Assessment Method, Journal of Groundwater Science and Engineering, 2, 88-96. |
[20] | GUO Qing-shi, ZHOU Zhi-yong, GUO Si-si, HAO Ji-kun, 2014: Application Research of Remote Sensing Technology in Regional Hydrogeological Survey, Journal of Groundwater Science and Engineering, 2, 62-67. |
JGSE-ScholarOne Manuscript Launched on June 1, 2024.