Citation: | Liu BB, Han M, Liu J, et al. 2022. Determination of total sulfur in geothermal water by inductively coupled plasma-atomic emission spectrometry. Journal of Groundwater Science and Engineering, 10(3): 285-291 doi: 10.19637/j.cnki.2305-7068.2022.03.006 |
Ahmadi M, Aguirre MÁ, Madrakian T, et al. 2017. Total sulfur determination in liquid fuels by ICP-OES after oxidation-extraction desulfurization using magnetic graphene oxide. Fuel, 210: 507−513. doi: 10.1016/j.fuel.2017.08.104
|
Banks D, Boyce AJ, Westaway R, et al. 2021. Sulphur isotopes in deep groundwater reservoirs: Evidence from post-stimulation flowback at the Pohang geothermal facility, Korea. Geothermics, 91: 102003. doi: 10.1016/j.geothermics.2020.102003
|
Guo L, Zhao HY, Wen HY, et al. 2012. Simulataneous determination of Li, Na, K, Ca, Mg, B, S, Cl in brine by inductively coupled plasma-atomic emission spectrometry. Rock and Mineral Analysis, 31(5): 824−828. (in Chinese) doi: 10.3969/j.issn.0254-5357.2012.05.012
|
Hammerli J, Greber ND, Martin L, et al. 2021. Tracing sulfur sources in the crust via SIMS measurements of sulfur isotopes in apatite. Chemical Geology, 579: 120242. doi: 10.1016/j.chemgeo.2021.120242
|
Hu X, Shi L, Zhang WH. 2017. Determination of sulfur in high-sulfur bauxite by alkali fusion-inductively coupled plasma optical emission spectrometry. Rock and Mineral Analysis, 36(2): 124−129. (in Chinese) doi: 10.15898/j.cnki.11-2131/td.2017.02.005
|
Hu JZ, Wang L, Liu J, et al. 2018. Determination of water soluble sulfate in soil by inductively coupled plasma atomic emission spectrometry. Metallurgical Analysis, 38(11): 12−17. (in Chinese) doi: 10.13228/j.boyuan.issn1000-7571.010473
|
Kapitány S, Nagy D, Posta J, et al. 2020. Determination of atmospheric sulphur dioxide and sulphuric acid traces by indirect flame atomic absorption method. Microchemical Journal, 157: 104853. doi: 10.1016/j.microc.2020.104853
|
Li QC, Zhao QL, AN MG, et al. 2017. Determination of sulfide in geothermal water by inductively coupled plasma-optical emission spectrometry. Rock and Mineral Analysis, 36(3): 239−245. (in Chinese) doi: 10.15898/j.cnki.11-2131/td.201612120181
|
Liu M, Guo Q, Zhang C, et al. 2017. Sulfur isotope geochemistry indicating the source of dissolved sulfate in gonghe geothermal waters, northwestern China. Procedia Earth and Planetary Science, 17: 157−160. doi: 10.1016/j.proeps.2016.12.039
|
Marrocos VCP, Gonçalves RA, Lepri FG, et al. 2020. Chemical modification for sulfur determination in human hair by high-resolution continuum source graphite furnace molecular absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 174: 106008. doi: 10.1016/j.sab.2020.106008
|
Mitchell SC. 2021. Nutrition and sulfur. Advances in Food and Nutrition Research, 96: 123−174. doi: 10.1016/bs.afnr.2021.02.014
|
Ozbek N, Baysal A. 2015. A new approach for the determination of sulphur in food samples by high-resolution continuum source flame atomic absorption spectrometer. Food Chemistry, 168: 460−463. doi: 10.1016/j.foodchem.2014.07.093
|
Ozbek N, Akman S. 2016. Determination of total sulfur concentrations in different types of vinegars using high resolution flame molecular absorption spectrometry. Food Chemistry, 213: 529−533. doi: 10.1016/j.foodchem.2016.07.007
|
Robin JG, Stefánsson A, Ono S, et al. 2020. H2S sequestration traced by sulfur isotopes at Hellisheiði geothermal system, Iceland. Geothermics, 83: 101730. doi: 10.1016/j.geothermics.2019.101730
|
Schurr SL, Genske F, Strauss H, et al. 2020. A comparison of sulfur isotope measurements of geologic materials by inductively coupled plasma and gas source mass spectrometry. Chemical Geology, 558: 119869. doi: 10.1016/j.chemgeo.2020.119869
|
Wang LJ, Shi H. 2014. Direct determination of sulfate in natural mineral water by ICP-AES. Chinese Journal of Inorganic Analytical Chemistry, 4(4): 16−17. (in Chinese) doi: 10.3969/j.issn.2095-1035.2014.04.005
|
Wang XW, Liu JF, Guan H, et al. 2016. Determination of total sulfur dioxide in Chinese herbal medicines via triple quadrupole inductively coupled plasma mass spectrometry. Spectroscopy and Spectral Analysis, 36(2): 527−531. (in Chinese) doi: 10.3964/j.issn.1000-0593(2016)02-0527-05
|
Wang XF, Wang JJ. 2020. Determination of sulfur in soil by microwave digestion-inductively coupled plasma atomic emission spectrometry. Chemical Analysis and Meterage, 29(3): 47−50. (in Chinese) doi: 10.3969/j.issn.1008-6145.2020.03.011
|
Wang XJ, Liang WY, Xia MW, et al. 2021. Determination of total fluorine, total chlorine, total bromine and total sulfur in liquid hazardous waste. Chemical Reagents, 43(7): 936−940. (in Chinese) doi: 10.13822/j.cnki.hxsj.2021008006
|
Xu GR, Qu JG, Chang Y, et al. 2016. Accurate determination of sulfur content in sediments by double focusing inductively coupled plasma mass spectrometry combined with microwave digestion and studies on related matrix effect. Chinese Journal of Analytical Chemistry, 44(2): 273−280. (in Chinese) doi: 10.11895/j.issn.0253-3820.150735
|
Zhang WL, Long P, Wu J, et al. 2017. Determination of sulfur in solid and solution of phosphate ore pulp flue gas desulfurization agent with ICP-AES. Spectroscopy and Spectral Analysis, 37(5): 1535−1539. (in Chinese) doi: 10.3964/j.issn.1000-0593(2017)05-1535-05
|
[1] | Xiang Gao, Tai-lu Li, Yu-wen Qiao, Yao Zhang, Ze-yu Wang, 2024: A combined method using Lattice Boltzmann Method (LBM) and Finite Volume Method (FVM) to simulate geothermal reservoirs in Enhanced Geothermal System (EGS), Journal of Groundwater Science and Engineering, 12, 132-146. doi: 10.26599/JGSE.2024.9280011 |
[2] | Xiu-yan Wang, Lin Sun, Shuai-wei Wang, Ming-yu Wang, Jin-qiu Li, Wei-chao Sun, Jing-jing Wang, Xi Zhu, He Di, 2023: Development and application of multi-field coupled high-pressure triaxial apparatus for soil, Journal of Groundwater Science and Engineering, 11, 308-316. doi: 10.26599/JGSE.2023.9280025 |
[3] | Rustadi, I Gede Boy Darmawan, Nandi Haerudin, Agus Setiawan, Suharno, 2022: Groundwater exploration using integrated geophysics method in hard rock terrains in Mount Betung Western Bandar Lampung, Indonesia, Journal of Groundwater Science and Engineering, 10, 10-18. doi: 10.19637/j.cnki.2305-7068.2022.01.002 |
[4] | Han Zhang, Zong-yu Chen, Chang-yuan Tang, 2021: Quantifying groundwater recharge and discharge for the middle reach of Heihe River of China using isotope mass balance method, Journal of Groundwater Science and Engineering, 9, 225-232. doi: 10.19637/j.cnki.2305-7068.2021.03.005 |
[5] | A S El-Hames, 2020: Development of a simple method for determining the influence radius of a pumping well in steady-state condition, Journal of Groundwater Science and Engineering, 8, 97-107. doi: 10.19637/j.cnki.2305-7068.2020.02.001 |
[6] | Hong-wei SONG, Fan XIA, Hai-dong MU, Wei-qiang WANG, Ming-sen SHANG, 2020: Study on detecting spatial distribution availability in mine goafs by ultra-high density electrical method, Journal of Groundwater Science and Engineering, 8, 281-286. doi: 10.19637/j.cnki.2305-7068.2020.03.008 |
[7] | XIA Fan, SONG Hong-wei, WANG Meng, WANG Hong-liang, CHEN Yu, 2019: Analysis of prospecting polymetallic metallogenic belts by comprehensive geophysical method, Journal of Groundwater Science and Engineering, 7, 237-244. doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.004 |
[8] | SONG Hong-wei, MU Hai-dong, XIA Fan, 2018: Analyzing the differences of brackish-water in the Badain Lake by geophysical exploration method, Journal of Groundwater Science and Engineering, 6, 187-192. doi: 10.19637/j.cnki.2305-7068.2018.03.004 |
[9] | LI Guo-ao, YAN Lei, CHEN Zhen-he, LI Ye, 2017: Determination of organic carbon in soils and sediments in an automatic method, Journal of Groundwater Science and Engineering, 5, 124-129. |
[10] | MENG Rui-fang, YANG Hui-feng, LIU Chun-lei, 2016: Evaluation of water resources carrying capacity of Gonghe basin based on fuzzy comprehensive evaluation method, Journal of Groundwater Science and Engineering, 4, 213-219. |
[11] | HAO Qi-chen, SHAO Jing-li, CUI Ya-li, ZHANG Qiu-lan, 2016: Development of a new method for efficiently calculating of evaporation from the phreatic aquifer in variably saturated flow modeling, Journal of Groundwater Science and Engineering, 4, 26-34. |
[12] | LI Xiao-yuan, YUE Gao-fan, SU Ran, YU Juan, 2016: Research on Pisha-sandstone’s anti-erodibility based on grey multi-level comprehensive evaluation method, Journal of Groundwater Science and Engineering, 4, 103-109. |
[13] | JI Rui-li, ZHANG Ming, SU Rui, GUO Yong-hai, ZHOU Zhi-chao, LI Jie-biao, 2016: Research of in-situ hydraulic test method by using double packer equipment, Journal of Groundwater Science and Engineering, 4, 41-51. |
[14] | SUN Dong-sheng, ZHAO Wei-hua, LI A-wei, ZHANG An-bin, 2015: Analysis on method for effective in-situ stress measurement in hot dry rock reservoir, Journal of Groundwater Science and Engineering, 3, 9-15. |
[15] | GONG Xiao-ping, JIANG Guang-hui, CHEN Chang-jie, GUO Xiao-jiao, ZHANG Hua-sheng, 2015: Specific yield of phreatic variation zone in karst aquifer with the method of water level analysis, Journal of Groundwater Science and Engineering, 3, 192-201. |
[16] | ZHANG Wei, 2014: Establishment of an assessment method for site-scale suitability of CO2 geological storage, Journal of Groundwater Science and Engineering, 2, 19-25. |
[17] | Do Van Binh, 2014: Using Environmental Isotope Method to Study the Air Temperature Variations of the Earth, Journal of Groundwater Science and Engineering, 2, 97-102. |
[18] | ZHANG Shao-cai, LIU Li-jun, LIU Zhi-gang, WANG Jun-jie, CUI Qiu-ping, WANG Juan, 2014: Method for groundwater research in bedrock of mountainous area of Hebei, Journal of Groundwater Science and Engineering, 2, 97-104. |
[19] | LIU Chang-Rong, HUANG Shuang-Bing, ZHANG Li-Zhong, 2014: New Mine Geological Environment Impact Assessment Method, Journal of Groundwater Science and Engineering, 2, 88-96. |
[20] | Lihe Yin, Hongyun Ma, Jiaqiu Dong, Xiaoyong Wang, Ying Li, 2013: Using a Particle Tracking Method to Quantify Groundwater Circulation rates: a Case Study in the Ordos Plateau, Journal of Groundwater Science and Engineering, 1, 97-101. |
JGSE-ScholarOne Manuscript Launched on June 1, 2024.