• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ Scopus GeoRef AJ CNKI
Advanced Search
Volume 10 Issue 3
Sep.  2022
Turn off MathJax
Article Contents
Liu BB, Han M, Liu J, et al. 2022. Determination of total sulfur in geothermal water by inductively coupled plasma-atomic emission spectrometry. Journal of Groundwater Science and Engineering, 10(3): 285-291 doi:  10.19637/j.cnki.2305-7068.2022.03.006
Citation: Liu BB, Han M, Liu J, et al. 2022. Determination of total sulfur in geothermal water by inductively coupled plasma-atomic emission spectrometry. Journal of Groundwater Science and Engineering, 10(3): 285-291 doi:  10.19637/j.cnki.2305-7068.2022.03.006

Determination of total sulfur in geothermal water by inductively coupled plasma-atomic emission spectrometry

doi: 10.19637/j.cnki.2305-7068.2022.03.006
More Information
  • Corresponding author: hanmei0209@163.com
  • Received Date: 2021-12-16
  • Accepted Date: 2022-07-21
  • Publish Date: 2022-09-15
  • Sulfur speciation and concentration in geothermal water are of great significance for the research and utilization of the water resources. In most situations, it is necessary to determine the total sulfur in geothermal water. In this study, the method was established for the determination of determining total sulfur content — the inductively coupled plasma-atomic emission spectrometry (ICP-AES), with the wavelength of 182.034 nm selected in spectral line of sulfur. It was identified that the optimal working conditions of the ICP-AES instrument were 1 200 W for high frequency generator power 9 mm for vertical observation height, 0.30 MPa atomizer pressure, and 50 r/min analytical pump speed. The matrix interference of the method was eliminated by the matrix matching method. Using this method, sulfur detection limit and minimum quantitative detection limit were 0.028 mg/L and 0.110 mg/L, respectively, whilst the linear range was 0.0–100.0 mg/L. The recovery rate of sample was between 90.67% and 108.7%, and the relative standard deviation (RSD) was between 0.36% and 2.14%. The method was used to analyze the actual samples and the results were basically consistent with the industry standard method. With high analysis efficiency, the method has low detection limit and minimum quantitative detection limit, wide linear range, good precision and accuracy, and provides an important detection method for the determination of total sulfur in geothermal water.
  • 加载中
  • Ahmadi M, Aguirre MÁ, Madrakian T, et al. 2017. Total sulfur determination in liquid fuels by ICP-OES after oxidation-extraction desulfurization using magnetic graphene oxide. Fuel, 210: 507−513. doi:  10.1016/j.fuel.2017.08.104
    Banks D, Boyce AJ, Westaway R, et al. 2021. Sulphur isotopes in deep groundwater reservoirs: Evidence from post-stimulation flowback at the Pohang geothermal facility, Korea. Geothermics, 91: 102003. doi:  10.1016/j.geothermics.2020.102003
    Guo L, Zhao HY, Wen HY, et al. 2012. Simulataneous determination of Li, Na, K, Ca, Mg, B, S, Cl in brine by inductively coupled plasma-atomic emission spectrometry. Rock and Mineral Analysis, 31(5): 824−828. (in Chinese) doi:  10.3969/j.issn.0254-5357.2012.05.012
    Hammerli J, Greber ND, Martin L, et al. 2021. Tracing sulfur sources in the crust via SIMS measurements of sulfur isotopes in apatite. Chemical Geology, 579: 120242. doi:  10.1016/j.chemgeo.2021.120242
    Hu X, Shi L, Zhang WH. 2017. Determination of sulfur in high-sulfur bauxite by alkali fusion-inductively coupled plasma optical emission spectrometry. Rock and Mineral Analysis, 36(2): 124−129. (in Chinese) doi:  10.15898/j.cnki.11-2131/td.2017.02.005
    Hu JZ, Wang L, Liu J, et al. 2018. Determination of water soluble sulfate in soil by inductively coupled plasma atomic emission spectrometry. Metallurgical Analysis, 38(11): 12−17. (in Chinese) doi:  10.13228/j.boyuan.issn1000-7571.010473
    Kapitány S, Nagy D, Posta J, et al. 2020. Determination of atmospheric sulphur dioxide and sulphuric acid traces by indirect flame atomic absorption method. Microchemical Journal, 157: 104853. doi:  10.1016/j.microc.2020.104853
    Li QC, Zhao QL, AN MG, et al. 2017. Determination of sulfide in geothermal water by inductively coupled plasma-optical emission spectrometry. Rock and Mineral Analysis, 36(3): 239−245. (in Chinese) doi:  10.15898/j.cnki.11-2131/td.201612120181
    Liu M, Guo Q, Zhang C, et al. 2017. Sulfur isotope geochemistry indicating the source of dissolved sulfate in gonghe geothermal waters, northwestern China. Procedia Earth and Planetary Science, 17: 157−160. doi:  10.1016/j.proeps.2016.12.039
    Marrocos VCP, Gonçalves RA, Lepri FG, et al. 2020. Chemical modification for sulfur determination in human hair by high-resolution continuum source graphite furnace molecular absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 174: 106008. doi:  10.1016/j.sab.2020.106008
    Mitchell SC. 2021. Nutrition and sulfur. Advances in Food and Nutrition Research, 96: 123−174. doi:  10.1016/bs.afnr.2021.02.014
    Ozbek N, Baysal A. 2015. A new approach for the determination of sulphur in food samples by high-resolution continuum source flame atomic absorption spectrometer. Food Chemistry, 168: 460−463. doi:  10.1016/j.foodchem.2014.07.093
    Ozbek N, Akman S. 2016. Determination of total sulfur concentrations in different types of vinegars using high resolution flame molecular absorption spectrometry. Food Chemistry, 213: 529−533. doi:  10.1016/j.foodchem.2016.07.007
    Robin JG, Stefánsson A, Ono S, et al. 2020. H2S sequestration traced by sulfur isotopes at Hellisheiði geothermal system, Iceland. Geothermics, 83: 101730. doi:  10.1016/j.geothermics.2019.101730
    Schurr SL, Genske F, Strauss H, et al. 2020. A comparison of sulfur isotope measurements of geologic materials by inductively coupled plasma and gas source mass spectrometry. Chemical Geology, 558: 119869. doi:  10.1016/j.chemgeo.2020.119869
    Wang LJ, Shi H. 2014. Direct determination of sulfate in natural mineral water by ICP-AES. Chinese Journal of Inorganic Analytical Chemistry, 4(4): 16−17. (in Chinese) doi:  10.3969/j.issn.2095-1035.2014.04.005
    Wang XW, Liu JF, Guan H, et al. 2016. Determination of total sulfur dioxide in Chinese herbal medicines via triple quadrupole inductively coupled plasma mass spectrometry. Spectroscopy and Spectral Analysis, 36(2): 527−531. (in Chinese) doi:  10.3964/j.issn.1000-0593(2016)02-0527-05
    Wang XF, Wang JJ. 2020. Determination of sulfur in soil by microwave digestion-inductively coupled plasma atomic emission spectrometry. Chemical Analysis and Meterage, 29(3): 47−50. (in Chinese) doi:  10.3969/j.issn.1008-6145.2020.03.011
    Wang XJ, Liang WY, Xia MW, et al. 2021. Determination of total fluorine, total chlorine, total bromine and total sulfur in liquid hazardous waste. Chemical Reagents, 43(7): 936−940. (in Chinese) doi:  10.13822/j.cnki.hxsj.2021008006
    Xu GR, Qu JG, Chang Y, et al. 2016. Accurate determination of sulfur content in sediments by double focusing inductively coupled plasma mass spectrometry combined with microwave digestion and studies on related matrix effect. Chinese Journal of Analytical Chemistry, 44(2): 273−280. (in Chinese) doi:  10.11895/j.issn.0253-3820.150735
    Zhang WL, Long P, Wu J, et al. 2017. Determination of sulfur in solid and solution of phosphate ore pulp flue gas desulfurization agent with ICP-AES. Spectroscopy and Spectral Analysis, 37(5): 1535−1539. (in Chinese) doi:  10.3964/j.issn.1000-0593(2017)05-1535-05
  • Relative Articles

    [1] Masoud H Hamed, Rebwar N Dara, Marios C Kirlas, 2024: Groundwater vulnerability assessment using a GIS-based DRASTIC method in the Erbil Dumpsite area (Kani Qirzhala), Central Erbil Basin, North Iraq, Journal of Groundwater Science and Engineering, 12, 16-33.  doi: 10.26599/JGSE.2024.9280003
    [2] Xiu-yan Wang, Lin Sun, Shuai-wei Wang, Ming-yu Wang, Jin-qiu Li, Wei-chao Sun, Jing-jing Wang, Xi Zhu, He Di, 2023: Development and application of multi-field coupled high-pressure triaxial apparatus for soil, Journal of Groundwater Science and Engineering, 11, 308-316.  doi: 10.26599/JGSE.2023.9280025
    [3] Rustadi, I Gede Boy Darmawan, Nandi Haerudin, Agus Setiawan, Suharno, 2022: Groundwater exploration using integrated geophysics method in hard rock terrains in Mount Betung Western Bandar Lampung, Indonesia, Journal of Groundwater Science and Engineering, 10, 10-18.  doi: 10.19637/j.cnki.2305-7068.2022.01.002
    [4] Han Zhang, Zong-yu Chen, Chang-yuan Tang, 2021: Quantifying groundwater recharge and discharge for the middle reach of Heihe River of China using isotope mass balance method, Journal of Groundwater Science and Engineering, 9, 225-232.  doi: 10.19637/j.cnki.2305-7068.2021.03.005
    [5] A S El-Hames, 2020: Development of a simple method for determining the influence radius of a pumping well in steady-state condition, Journal of Groundwater Science and Engineering, 8, 97-107.  doi: 10.19637/j.cnki.2305-7068.2020.02.001
    [6] Hong-wei SONG, Fan XIA, Hai-dong MU, Wei-qiang WANG, Ming-sen SHANG, 2020: Study on detecting spatial distribution availability in mine goafs by ultra-high density electrical method, Journal of Groundwater Science and Engineering, 8, 281-286.  doi: 10.19637/j.cnki.2305-7068.2020.03.008
    [7] XIA Fan, SONG Hong-wei, WANG Meng, WANG Hong-liang, CHEN Yu, 2019: Analysis of prospecting polymetallic metallogenic belts by comprehensive geophysical method, Journal of Groundwater Science and Engineering, 7, 237-244.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.03.004
    [8] SONG Hong-wei, MU Hai-dong, XIA Fan, 2018: Analyzing the differences of brackish-water in the Badain Lake by geophysical exploration method, Journal of Groundwater Science and Engineering, 6, 187-192.  doi: 10.19637/j.cnki.2305-7068.2018.03.004
    [9] LI Guo-ao, YAN Lei, CHEN Zhen-he, LI Ye, 2017: Determination of organic carbon in soils and sediments in an automatic method, Journal of Groundwater Science and Engineering, 5, 124-129.
    [10] MENG Rui-fang, YANG Hui-feng, LIU Chun-lei, 2016: Evaluation of water resources carrying capacity of Gonghe basin based on fuzzy comprehensive evaluation method, Journal of Groundwater Science and Engineering, 4, 213-219.
    [11] HAO Qi-chen, SHAO Jing-li, CUI Ya-li, ZHANG Qiu-lan, 2016: Development of a new method for efficiently calculating of evaporation from the phreatic aquifer in variably saturated flow modeling, Journal of Groundwater Science and Engineering, 4, 26-34.
    [12] LI Xiao-yuan, YUE Gao-fan, SU Ran, YU Juan, 2016: Research on Pisha-sandstone’s anti-erodibility based on grey multi-level comprehensive evaluation method, Journal of Groundwater Science and Engineering, 4, 103-109.
    [13] JI Rui-li, ZHANG Ming, SU Rui, GUO Yong-hai, ZHOU Zhi-chao, LI Jie-biao, 2016: Research of in-situ hydraulic test method by using double packer equipment, Journal of Groundwater Science and Engineering, 4, 41-51.
    [14] SUN Dong-sheng, ZHAO Wei-hua, LI A-wei, ZHANG An-bin, 2015: Analysis on method for effective in-situ stress measurement in hot dry rock reservoir, Journal of Groundwater Science and Engineering, 3, 9-15.
    [15] GONG Xiao-ping, JIANG Guang-hui, CHEN Chang-jie, GUO Xiao-jiao, ZHANG Hua-sheng, 2015: Specific yield of phreatic variation zone in karst aquifer with the method of water level analysis, Journal of Groundwater Science and Engineering, 3, 192-201.
    [16] ZHANG Wei, 2014: Establishment of an assessment method for site-scale suitability of CO2 geological storage, Journal of Groundwater Science and Engineering, 2, 19-25.
    [17] Do Van Binh, 2014: Using Environmental Isotope Method to Study the Air Temperature Variations of the Earth, Journal of Groundwater Science and Engineering, 2, 97-102.
    [18] ZHANG Shao-cai, LIU Li-jun, LIU Zhi-gang, WANG Jun-jie, CUI Qiu-ping, WANG Juan, 2014: Method for groundwater research in bedrock of mountainous area of Hebei, Journal of Groundwater Science and Engineering, 2, 97-104.
    [19] LIU Chang-Rong, HUANG Shuang-Bing, ZHANG Li-Zhong, 2014: New Mine Geological Environment Impact Assessment Method, Journal of Groundwater Science and Engineering, 2, 88-96.
    [20] Lihe Yin, Hongyun Ma, Jiaqiu Dong, Xiaoyong Wang, Ying Li, 2013: Using a Particle Tracking Method to Quantify Groundwater Circulation rates: a Case Study in the Ordos Plateau, Journal of Groundwater Science and Engineering, 1, 97-101.
  • 加载中

Catalog

    Figures(4)  / Tables(6)

    Article Metrics

    Article views (333) PDF downloads(26) Cited by()
    Proportional views
    Related

    Welcome to Journal of Groundwater Science and  Engineering!

    Quick Submit

    Online Submission   E-mail Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return