• ISSN 2305-7068
  • Indexed by ESCI CABI CAS
  • DOAJ Scopus GeoRef AJ CNKI
Advanced Search
Volume 10 Issue 4
Dec.  2022
Turn off MathJax
Article Contents
Zong YJ, Chen LH, Liu JJ, et al. 2022. Analytical solutions for constant-rate test in bounded confined aquifers with non-Darcian effect. Journal of Groundwater Science and Engineering, 10(4): 311-321 doi:  10.19637/j.cnki.2305-7068.2022.04.001
Citation: Zong YJ, Chen LH, Liu JJ, et al. 2022. Analytical solutions for constant-rate test in bounded confined aquifers with non-Darcian effect. Journal of Groundwater Science and Engineering, 10(4): 311-321 doi:  10.19637/j.cnki.2305-7068.2022.04.001

Analytical solutions for constant-rate test in bounded confined aquifers with non-Darcian effect

doi: 10.19637/j.cnki.2305-7068.2022.04.001
More Information
  • Corresponding author: xiaoliang850425@gmail.com
  • Received Date: 2022-06-01
  • Accepted Date: 2022-10-29
  • Available Online: 2022-12-20
  • Publish Date: 2022-12-31
  • This paper proposes a simplified analytical solution considering non-Darcian and wellbore storage effect to investigate the pumping flow in a confined aquifer with barrier and recharge boundaries. The mathematical modelling for the pumping-induced flow in aquifers with different boundaries is developed by employing image-well theory with the superposition principle, of which the non-Darcian effect is characterized by Izbash’s equation. The solutions are derived by Boltzmann and dimensionless transformations. Then, the non-Darcian effect and wellbore storage are especially investigated according to the proposed solution. The results show that the aquifer boundaries have non-negligible effects on pumping, and ignoring the wellbore storage can lead to an over-estimation of the drawdown in the first 10 minutes of pumping. The higher the degree of non-Darcian, the smaller the drawdown.
  • 加载中
  • Asadi-Aghbolaghi M, Seyyedian H. 2010. An analytical solution for groundwater flow to a vertical well in a triangle-shaped aquifer. Journal of Hydrology, 393(3−4): 341−348. doi:  10.1016/j.jhydrol.2010.08.034
    Chan YK. 1976. Improved image-well technique for aquifer analysis. Journal of Hydrology, 29: 149−164. doi:  10.1016/0022-1694(76)90011-1
    Chen YJ, Yeh HD, Yang SY. 2009. Analytical solutions for constant-flux and constant-head tests at a Finite-Diameter well in a wedge-shaped aquifer. Journal of Hydraulic Engineering, 135: 333−337. doi:  10.1061/(ASCE)0733-9429(2009)135:4(333
    Cherry GS. 2001. Simulation of flow in the upper north coast limestone aquifer, Manati-Vega Baja area, Puerto Rico. Water-Resources Investigations Report: 2000−4266. doi:  10.3133/wri20004266
    Corapcioglu MY, Borekci O, Haridas A. 1983. Analytical solutions for rectangular aquifers with third-kind (Cauchy) boundary conditions. Water Resources Research, 19: 523−528. doi:  10.1029/WR019i002p00523
    El-Hames AS. 2020. Development of a simple method for determining the influence radius of a pumping well in steady-state condition. Journal of Groundwater Science and Engineering, 8(2): 11. doi:  10.19637/j.cnki.2305-7068.2020.02.001
    Gavin L. 2004. Pre-Darcian flow: A missing piece of the improved oil recovery puzzle? The SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma.SPE-89433-MS.
    Guadagnini A, Riva M, Neuman SP. 2003. Three-dimensional steady state flow to a well in a randomly heterogeneous bounded aquifer. Water Resources Research, 39(3): 53−62. doi:  10.1029/2002WR001443
    Hao HB, Jie LV, Chen YM, et al. 2021. Research advances in non-Darcian flow in low permeability media. Journal of Groundwater Science and Engineering, 9(1): 83−92. doi:  10.19637/j.cnki.2305-7068.2021.01.008
    Holzbecher E. 2005. Analytical solution for two-dimensional groundwater flow in presence of two isopotential lines. Water Resources Research, 41(12): W12502. doi:  10.1029/2005WR004583
    Hu LT, Chen CX. 2008. Analytical methods for transient flow to a well in a confined-unconfined aquifer. Ground-water, 46(4): 642−646. doi:  10.1111/j.1745-6584.2008.00436.x
    Jafari F, Javadi S, Golmohammadi G, et al. 2016. Numerical simulation of groundwater flow and aquifer-system compaction using simulation and InSAR technique: Saveh basin, Iran. Environmental Earth Sciences, 75(9): 833. doi:  10.1007/s12665-016-5654-x
    Kacimov AR, Kayumov IR, Al-Maktoumi A. 2016a. Rainfall induced groundwater mound in wedge-shaped promontories: The Strack-Chernyshov model revisited. Advances in Water Resources, 97: 110−119. doi:  10.1016/j.advwatres.2016.08.011
    Kacimov AR, Maklakov DV, Kayumov IR, et al. 2016b. Free surface flow in a microfluidic corner and in an unconfined aquifer with accretion: The signorini and Saint-Venant analytical techniques revisited. Transport in Porous Media, 116(1): 1−28. doi:  10.1007/s11242-016-0767-y
    Kihm JH, Kim JM, Song SH, et al. 2007. Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation due to groundwater pumping in an unsaturated fluvial aquifer system. Journal of Hydrology, 335(1−2): 1−14. doi:  10.1016/j.jhydrol.2006.09.031
    Kim JM. 2005. Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation in unsaturated true anisotropic aquifers due to groundwater pumping. Water Resources Research, 41(1): 1003. doi:  10.1029/2003wr002941
    Kruseman GP, Ridderna NAD. 1990. Analysis and evaluation of pumping test data, 2nd ed. International Institute for Land Reclamation and Improvement: 21-30.
    Latinopoulos P. 1984. Periodic recharge to finite aquifiers from rectangular areas. Advances in Water Resources, 7: 137−140. doi:  10.1016/0309-1708(84)90043-5
    Latinopoulos P. 1985. Analytical solutions for periodic well recharge in rectangular aquifers with third-kind boundary conditions. Journal of Hydrology, 77: 296−306. doi:  10.1016/0022-1694(85)90213-6
    Li Y, Zhou Z, Zhuang C. et al. 2020. Non-Darcian effect on a variable-rate pumping test in a confined aquifer. Hydrogeology Journal, 28: 2853−2863. doi:  10.1007/s10040-020-02223-w
    Lin CC, Chang YC, Yeh HD. 2018. Analysis of groundwater flow and stream depletion in L-shaped fluvial aquifers. Hydrology and Earth System Sciences, 22(4): 2359−2375. doi:  10.5194/hess-22-2359-2018
    Liu MM, Chen YF, Zhan H, et al. 2017. A generalized Forchheimer radial flow model for constant-rate tests. Advances in Water Resources, 107: 317−325. doi:  10.1016/j.advwatres.2017.07.004
    Loudyi D, Falconer RA, Lin B. 2006. Mathematical development and verification of a non-orthogonal finite volume model for groundwater flow applications. Advances in Water Resources, 30(1): 29−42. doi:  10.1016/j.advwatres.2006.02.010
    Lu C, Xin P, Li L, et al. 2015. Steady state analytical solutions for pumping in a fully bounded rectangular aquifer. Water Resource Research, 51: 8294−8302. doi:  10.1002/2015WR017019
    Mahdavi A, Seyyedian H. 2014. Steady-state groundwater recharge in trapezoidal-shaped aquifers: A semi-analytical approach based on variational calculus. Journal of Hydrology, 512: 457−462. doi:  10.1016/j.jhydrol.2014.03.014
    Mathias SA, Moutsopoulos KN. 2016. Approximate solutions for Forchheimer flow during water injection and water production in an unconfined aquifer. Journal of Hydrology, 538: 13−21. doi:  10.1016/j.jhydrol.2016.03.048
    Mawlood D, Mustafa J. 2016. Comparison between Neuman (1975) and Jacob (1946) application for analysing pumping test data of unconfined aquifer. Journal of Groundwater Science and Engineering, 4(3): 165−173. doi:  10.21271/zjpas.32.2.2
    Samani N, Sedghi MM. 2015. Semi-analytical solutions of groundwater flow in multi-zone (patchy) wedge-shaped aquifers. Advances in Water Resources, 77: 1−16. doi:  10.1016/j.advwatres.2015.01.003
    Samani N, Zarei-Doudeji S. 2012. Capture zone of a multi-well System in wedge-shaped aquifers for remediation purposes. Advances in Water Resources, 39: 71−84. doi:  10.1016/j.advwatres.2012.01.004
    Sen. 1990. Nonlinear radial flow in confined aquifers toward large-diameter wells. Water Resources Research, 26(5): 1103−1109. doi:  10.1029/WR026i005p01103
    Sergio E, Serrano. 2013. A simple approach to groundwater modelling with decomposition. Hydrological Sciences Journal, 58: 177−185. doi:  10.1080/02626667.2012.745938
    Stallman RW, Brown RH. 1951. Nonequilibrium type curves modified for two-well systems. Open-File Report: 51-150.
    Taigbenu AE. 2003. Green element simulations of multiaquifer flows with a time-dependent Green’s function. Journal of Hydrology, 284(1-4): 131−150. doi:  10.1016/j.jhydrol.2003.07.002
    Wen Z, Huang G, Zhan H. 2011. Solutions for Non-Darcian flow to an extended well in fractured rock. Ground water, 49(2): 280−285. doi:  10.1111/j.1745-6584.2010.00728.x
    Wen Z, Huang G, Zhan H, et al. 2008a. Two-region non-Darcian flow toward a well in a confined aquifer. Advances in Water Resources, 31: 818−827. doi:  10.1016/j.advwatres.2008.01.014
    Wen Z, Huang G, Zhan H. 2008b. An analytical solution for non-Darcian flow in a confined aquifer using the power law function. Advances in Water Resources, 364(1): 99−106. doi:  10.1016/j.jhydrol.2008.10.009
    Wen Z, Liu K, Zhan H. 2014. Non-Darcian flow toward a larger-diameter partially penetrating well in a confined aquifer. Environmental Earth Sciences, 72(11): 4617−4625. doi:  10.1007/s12665-014-3359-6
    Xiao L, Ye M, Xu Y, et al. 2019. A simplified solution using Izbash’s equation for non-Darcian flow in a constant rate pumping test. Ground water, 57(6): 962−968. doi:  10.1111/gwat.12886
    Xiong Y, Yu J, Sun H, et al. 2016. A new Non-Darcian flow model for low-velocity multiphase flow in tight reservoirs. Transport in Porous Media, 117: 367−383. doi:  10.1007/s11242-017-0838-8
    Younger, PAUL. 2007. Groundwater in the environment: An introduction. Fems Microbiology Letters, 291(2): 169−174. doi:  10.1111/j.1574-6968.2008.01448.x
    Zhang M, Lai Y, Li S, et al. 2007. Laboratory study on cooling effect of crushedrock embankment with impermeable boundary in cold regions. Proceedings of the seventh International Symposium on Permafrost Engineering: 239−247. doi:  10.1061/40836(210)31
  • Relative Articles

    [1] Ying-nan Zhang, Yan-guang Liu, Kai Bian, Guo-qiang Zhou, Xin Wang, Mei-hua Wei, 2024: Development status and prospect of underground thermal energy storage technology, Journal of Groundwater Science and Engineering, 12, 92-108.  doi: 10.26599/JGSE.2024.9280008
    [2] Temesgen Mekuriaw Manderso, Yitbarek Andualem Mekonnen, Tadege Aragaw Worku, 2023: Application of GIS based analytical hierarchy process and multicriteria decision analysis methods to identify groundwater potential zones in Jedeb Watershed, Ethiopia, Journal of Groundwater Science and Engineering, 11, 221-236.  doi: 10.26599/JGSE.2023.9280019
    [3] Peng-yu Shi, Jian-jun Liu, Yi-jie Zong, Kai-qing Teng, Yu-ming Huang, Liang Xiao, 2023: Analytical solution for Non-Darcian effect on transient confined-unconfined flow in a confined aquifer, Journal of Groundwater Science and Engineering, 11, 365-378.  doi: 10.26599/JGSE.2023.9280029
    [4] Jin-xing Guo, Zhi-ping Li, Catalin Stefan, 2022: Managed aquifer recharge (MAR) applications in China–achievements and challenges, Journal of Groundwater Science and Engineering, 10, 57-69.  doi: 10.19637/j.cnki.2305-7068.2022.01.006
    [5] Shima Nasiri, Hossein Ansari, Ali Naghi Ziaei, 2022: Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models : A case study of Samalqan plain in Iran, Journal of Groundwater Science and Engineering, 10, 44-56.  doi: 10.19637/j.cnki.2305-7068.2022.01.005
    [6] Hong-bo HAO, Jie LV, Yan-mei CHEN, Chuan-zi WANG, Xiao-rui HUANG, 2021: Research advances in non-Darcy flow in low permeability media, Journal of Groundwater Science and Engineering, 9, 83-92.  doi: 10.19637/j.cnki.2305-7068.2021.01.008
    [7] Chun-lei GUI, Zhen-xing WANG, Rong MA, Xue-feng ZUO, 2021: Aquifer hydraulic conductivity prediction via coupling model of MCMC-ANN, Journal of Groundwater Science and Engineering, 9, 1-11.  doi: 10.19637/j.cnki.2305-7068.2021.01.001
    [8] Xin Ma, Dong-guang Wen, Guo-dong Yang, Xu-feng Li, Yu-jie Diao, Hai-hai Dong, Wei Cao, Shu-guo Yin, Yan-mei Zhang, 2021: Potential assessment of CO2 geological storage based on injection scenario simulation: A case study in eastern Junggar Basin, Journal of Groundwater Science and Engineering, 9, 279-291.  doi: 10.19637/j.cnki.2305-7068.2021.04.002
    [9] Qiao-ling YUAN, Zhi-ping LI, Lei-cheng LI, Shu-li WANG, Si-yu YAO, 2020: Pharmaceuticals and personal care products transference-transformation in aquifer system, Journal of Groundwater Science and Engineering, 8, 358-365.  doi: 10.19637/j.cnki.2305-7068.2020.04.006
    [10] Mehmood Qaisar, Arshad Muhammad, Rizwan Muhammad, Hamid Shanawar, Mehmood Waqas, Ansir Muneer Muhammad, Irfan Muhammad, Anjum Lubna, 2020: Integration of geoelectric and hydrochemical approaches for delineation of groundwater potential zones in alluvial aquifer, Journal of Groundwater Science and Engineering, 8, 366-380.  doi: 10.19637/j.cnki.2305-7068.2020.04.007
    [11] Yacob T Tesfaldet, Avirut Puttiwongrak, Tanwa Arpornthip, 2020: Spatial and temporal variation of groundwater recharge in shallow aquifer in the Thepkasattri of Phuket, Thailand, Journal of Groundwater Science and Engineering, 8, 10-19.  doi: 10.19637/j.cnki.2305-7068.2020.01.002
    [12] Ai-min WU, Ai-bing HAO, Hai-peng GUO, Jing-tao LIU, Er-yong ZHANG, Huang WANG, Xin-feng WANG, Xue-ru WEN, Cui-guang ZHANG, 2020: Main progress and prospect for China's hydrogeological survey, Journal of Groundwater Science and Engineering, 8, 195-209.  doi: 10.19637/j.cnki.2305-7068.2020.03.001
    [13] Babak Ghazi, Rasoul Daneshfaraz, Esmaeil Jeihouni, 2019: Numerical investigation of hydraulic characteristics and prediction of cavitation number in Shahid Madani Dam's Spillway, Journal of Groundwater Science and Engineering, 7, 323-332.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.003
    [14] Nouayti Abderrahime, Khattach Driss, Hilali Mohamed, Nouayti Nordine, 2019: Mapping potential areas for groundwater storage in the High Guir Basin (Morocco):Contribution of remote sensing and geographic information system, Journal of Groundwater Science and Engineering, 7, 309-322.  doi: DOI: 10.19637/j.cnki.2305-7068.2019.04.002
    [15] ZHANG Xiang-yang, CHEN Zong-yu, YANG Guo-min, TU Le-yi, HU Shui-ming, 2016: Krypton-85 dating of shallow aquifer in Hebei Plain, Journal of Groundwater Science and Engineering, 4, 328-332.
    [16] LI Xiao-yuan, YUE Gao-fan, SU Ran, YU Juan, 2016: Research on Pisha-sandstone’s anti-erodibility based on grey multi-level comprehensive evaluation method, Journal of Groundwater Science and Engineering, 4, 103-109.
    [17] LI Duo, WEI Ai-hua, 2016: Analysis of influence of the power plant ash storage yard on groundwater environment, Journal of Groundwater Science and Engineering, 4, 35-40.
    [18] CHEN Qu, 2014: Anticipatory Adaptation Approaches to Climate Change--A Review and Discussion of Southern Australia’s Sustainable Water Management and Its Strategies and Shortcomings, Journal of Groundwater Science and Engineering, 2, 54-61.
    [19] ZHANG Wei, 2014: Establishment of an assessment method for site-scale suitability of CO2 geological storage, Journal of Groundwater Science and Engineering, 2, 19-25.
    [20] Patsakron Assiri, 2013: Artesian Flowing Wells Field of Phu Tok Aquifer, Journal of Groundwater Science and Engineering, 1, 95-98.
  • Supporting Information A.docx
    Supporting Information B.docx
  • 加载中

Catalog

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (862) PDF downloads(91) Cited by()
    Proportional views
    Related

    Welcome to Journal of Groundwater Science and  Engineering!

    Quick Submit

    Online Submission   E-mail Submission

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return